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Abstract. The Smarandache structure of generalized BCK-algebras is considered.
Several examples of a qS-gBCK-algebra are provided. The notion of SΩ-ideals and
qSΩ-ideals is introduced, and related properties are investigated.

1 Introduction. A BCK/BCI-algebra is an important calss of logical algebras intro-
duced by K. Iséki and was extensively investigated by several researchers. Hong et al. [1]
established a new algebra, called a generalized BCK-algebra, which is a generaliza-
tion of a positive implicative BCK-algebra, and gave a method to construct a generalized
BCK-algebra from a quasi-ordered set. They studied also ideal theory in a generalized
BCK-algebra. Generally, in any human field, a Smarandache Structure on a set A
means a weak structure W on A such that there exists a proper subset B of A which is em-
bedded with a strong structure S. In [6], W. B. Vasantha Kandasamy studied the concept
of Smarandache groupoids, subgroupoids, ideal of groupoids, semi-normal subgroupoids,
Smarandache Bol groupoids and strong Bol groupoids and obtained many interesting re-
sults about them. Smarandache semigroups are very important for the study of congruences,
and it was studied by R. Padilla [5]. It will be very interesting to study the Smarandache
structure in BCK/BCI-algebras. In [2], Y. B. Jun discussed the Smarandache structure
in BCI-algebras. He introduced the notion of Smarandache (positive implicative, com-
mutative, implicative) BCI-algebras, Smarandache subalgebras and Smarandache ideals,
and investigated some related properties. In [3], the author dealt with Smarandache ideal
structures in Smarandache BCI-algebras. He introduced the notion of Smarandache fresh
ideals and Smarandache clean ideals in Smarandache BCI-algebras, and investigated its use-
ful properties. He gave relations between Q-Smarandache fresh ideals and Q-Smarandache
clean ideals. He also establish extension properties for Q-Smarandache fresh ideals and
Q-Smarandache clean ideals. In this paper we discuss a Smarandache structure on general-
ized BCK-algebras, and introduce the notion of SΩ-ideal and qSΩ-ideal, and investigate its
properties.

2 Preliminaries. An algebra (X ; ∗, 0) of type (2, 0) is called a BCI-algebra if it satisfies
the following conditions:

(I) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

(II) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),

(III) (∀x ∈ X) (x ∗ x = 0),

(IV) (∀x, y ∈ X) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

If a BCI-algebra X satisfies the following identity:
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(V) (∀x ∈ X) (0 ∗ x = 0),

then X is called a BCK-algebra. In a BCK-algebra X, the following identity holds.

(a1) (∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y).

We refer the reader to the book [4] for further information regarding BCK/BCI-algebras.

3 Quasi Smarandache generalized BCK-algebras

Definition 3.1. [1] By a generalized BCK-algebra (gBCK-algebra, for short) we
mean an algebra (G, ∗, 0), where G is a nonempty set, ∗ is a binary operation on G and
0 ∈ G is a nullary operation, called zero element, such that

(G1) x ∗ 0 = x,

(G2) x ∗ x = 0,

(G3) (x ∗ y) ∗ z = (x ∗ z) ∗ y,

(G4) (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z).

Notice that gBCK-algebras are determined by identities, and thus the class of gBCK-
algebras forms a variety.

Example 3.2. [1] Let G = {0, a, b, c} be a set with the following Cayley table.

∗ 0 a b c
0 0 0 0 0
a a 0 a a
b b b 0 0
c c c 0 0

It is routine to check that (G, ∗, 0) is a gBCK-algebras, which is not a BCK-algebra.

Example 3.3. Let G = {0, 1, 2, 3, 4} be a set with the following Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 1 0
2 2 1 0 2 0
3 3 3 3 0 3
4 4 4 4 4 0

It is routine to verify that (G, ∗, 0) is a BCK-algebra which is not a gBCK-algebra.

Proposition 3.4. [1] Let G be a gBCK-algebra. Then

(i) (∀x ∈ G) (0 ∗ x = 0).

(ii) (∀x, y ∈ G) (x ∗ y) ∗ x = 0).

(iii) (∀x, y, z ∈ G) (x ∗ y = 0 ⇒ (x ∗ z) ∗ (y ∗ z) = 0).

Proposition 3.5. Let (G, ∗, 0) be a nontrivial gBCK-algebra. For every a(�= 0) ∈ G, the
set {0, a} is a BCK-algebra under the operation in G.
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Proof. By the conditions (G1) and (G2), it is straightforward.

Proposition 3.5 shows that every nontrivial gBCK-algebra (G, ∗, 0) has a BCK-algebra
of order 2. The following example shows that there is a gBCK-algebra in which there are
no proper BCK-algebras of order more than 3.

Example 3.6. Let G = {0, a, b, c} be a set with the following Cayley table.

∗ 0 a b c
0 0 0 0 0
a a 0 0 0
b b 0 0 0
c c 0 0 0

Then (G, ∗, 0) is a gBCK-algebra which is not a BCK-algebra, and the sets {0, a, b}, {0, a, c},
{0, b, c} are not BCK-algebras.

In [1], Hong et al. showed how to construct a gBCK-algebra from any given quasi-ordered
set.

Proposition 3.7. [1] Let (G,R) be a quasi-ordered set. Suppose 0 /∈ G and let G0 =
G ∪ {0}. Define a binary operation ∗ on G0 as follows:

x ∗ y =
{

0 if (x, y) ∈ R
x otherwise.

Then (G0, ∗, 0) is a gBCK-algebra.

Using Proposition 3.7, we construct a gBCK-algebra.

Example 3.8. Let G = {a, b, c, d, e} be a quasi-ordered set with the following directed
graph:
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Then (G0 = G ∪ {0}; ∗, 0) is a gBCK-algebra with the following Cayley table:

∗ 0 a b c d e
0 0 0 0 0 0 0
a a 0 0 a 0 0
b b b 0 b 0 0
c c c 0 0 0 0
d d d 0 d 0 0
e e e 0 e 0 0

Note that (G0 = G ∪ {0}; ∗, 0) is not a BCK-algebra.

Based on the results above, we give the following definition.
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Definition 3.9. A quasi Smarandache gBCK-algebra (briefly, qS-gBCK-algebra)
is defined to be a gBCK-algebra in which there exists a proper subset Ω of G such that

(s1) 0 ∈ Ω and |Ω| ≥ 3,

(s2) Ω is a BCK-algebra with respect to the same operation on G.

Note that any gBCK-algebra of order 3 cannot be a qS-gBCK-algebra. Hence, if G is a
qS-gBCK-algebra, then |G| ≥ 4. Notice that the gBCK-algebra G in Example 3.6 is not a
qS-gBCK-algebra.

Example 3.10. (1) The gBCK-algebra G in Example 3.2 is a qS-gBCK-algebra since Ω =
{0, a, b} is a BCK-algebra which is properly contained in G.

(2) Let G = {0, a, b, c, d} be a set with the following Cayley table.

∗ 0 a b c d
0 0 0 0 0 0
a a 0 a 0 a
b b b 0 0 b
c c b a 0 c
d d d d d 0

It is routine to check that (G, ∗, 0) is a qS-gBCK-algebra.
(3) The gBCK-algebra G0 in Example 3.8 is a qS-gBCK-algebra in which Ω1 = {0, a, b},

Ω2 = {0, a, c}, Ω3 = {0, a, d}, Ω4 = {0, a, c, e}, and Ω5 = {0, a, d, e}, are BCK-algebras.
(4) Consider a quasi-ordered set G = {a, b, c, d} with the following directed graph:
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Then (G0 = G ∪ {0}; ∗, 0) is a qS-gBCK-algebra, where ∗ is given by the following Cayley
table:

∗ 0 a b c d
0 0 0 0 0 0
a a 0 0 0 a
b b 0 0 0 b
c c 0 0 0 c
d d d d d 0

Note that Ω1 = {0, a, d}, Ω2 = {0, b, d}, and Ω3 = {0, c, d} are BCK-algebras.

In what follows, let G and Ω denote a qS-gBCK-algebra and a nontrivial proper BCK-
algebra of order more than 3, respectively, unless otherwise specified.

Definition 3.11. A nonempty subset I of G is called a quasi Smarandache gBCK-ideal
of G related to Ω (briefly, qSΩ-ideal) of G if it satisfies the following conditions:

(b1) I ∗ Ω := {a ∗ x | a ∈ I, x ∈ Ω} ⊆ I,
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(b2) (∀x ∈ Ω) (∀a, b ∈ I) (x ∗ ((x ∗ a) ∗ b) ∈ I).

Example 3.12. (1) Let G = {0, a, b, c, d} be the qS-gBCK-algebra with Ω = {0, a, b, c} in
Example 3.10(2). Then the sets I = {0, a, d} and J = {0, b, d} are qSΩ-ideals of G.

(2) Let G = {0, a, b, c} be a gBCK-algebra described in Example 3.2. Then G is a qS-
gBCK-algebra with Ω = {0, a, b}. The sets I1 = {0, a} and I2 = {0, b} are qSΩ-ideals of G.
But J = {0, c} is not a qSΩ-ideal of G since

b ∗ ((b ∗ c) ∗ 0) = b ∗ (0 ∗ 0) = b ∗ 0 = b /∈ J.

(3) Consider the qS-gBCK-algebra G0 in Example 3.10(3) with Ω1 = {0, a, b} and Ω2 =
{0, a, c}. Then a set I = {0, b} is a qSΩ2 -ideal of G, but not a qSΩ1 -ideal of G since
a ∗ ((a ∗ b) ∗ b) = a /∈ I. The sets J1 = {0, a} and J2 = {0, c} are qSΩ4 -ideals of G0, but the
set J3 = {0, e} is not a qSΩ4 -ideal of G0.

Theorem 3.13. For any element a ∈ G, the set (a] := {x ∈ G | x ∗ a = 0} is a qSΩ-ideal
of G.

Proof. Let x ∈ (a] and y ∈ Ω. Then x ∗ a = 0, and so

(x ∗ y) ∗ a = (x ∗ a) ∗ (y ∗ a) = 0 ∗ (y ∗ a) = 0.

Hence x ∗ y ∈ (a], i.e., (a] ∗Ω ⊆ (a]. Let z ∈ Ω and x, y ∈ (a]. Then x ∗ a = 0 and y ∗ a = 0.
Hence

(z ∗ ((z ∗ a) ∗ y)) ∗ a = (z ∗ a) ∗ (((z ∗ x) ∗ y) ∗ a)
= (z ∗ a) ∗ (((z ∗ x) ∗ a) ∗ (y ∗ a))
= (z ∗ a) ∗ (((z ∗ a) ∗ (x ∗ a)) ∗ (y ∗ a))
= (z ∗ a) ∗ (((z ∗ a) ∗ 0) ∗ 0)
= (z ∗ a) ∗ (z ∗ a)
= 0,

and so z ∗ ((z ∗ x) ∗ y) ∈ (a]. Therefore (a] is a qSΩ-ideal of G.

Proposition 3.14. Every qSΩ-ideal I of G satisfies the following implication:

(∀x ∈ Ω) (∀a ∈ I) (x ∗ a = 0 ⇒ x ∈ I).

Proof. Let x ∈ Ω and a ∈ I satisfy x∗a = 0. Taking b = 0 in (b2) and using (G4), it follows
that x = x ∗ 0 = x ∗ (x ∗ a) = x ∗ ((x ∗ a) ∗ 0) ∈ I. This completes the proof.

Lemma 3.15. Let I be a nonempty subset of G such that

(c1) 0 ∈ I,

(c2) (∀x ∈ Ω) (∀y ∈ I) (x ∗ y ∈ I ⇒ x ∈ I).

Then we have (∀x ∈ Ω) (∀a ∈ I) (x ∗ (x ∗ a) ∈ I).

Proof. Assume that I satisfies (c1) and (c2). Let x ∈ Ω and a ∈ I. Then

(x ∗ (x ∗ a)) ∗ a = (x ∗ a) ∗ (x ∗ a) = 0 ∈ I

by (c1). It follows from (c2) that x ∗ (x ∗ a) ∈ I.
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Definition 3.16. A nonempty subset I of G is called a Smarandache gBCK-ideal of G
related to Ω (briefly, SΩ-ideal) of G if it satisfies the conditions (c1) and (c2).

Theorem 3.17. Every qSΩ-ideal is an SΩ-ideal.

Proof. Let I be a qSΩ-ideal of G. Obviously, (c1) is valid by using (G2) and (b1). Suppose
that x ∗ y ∈ I for all x ∈ Ω and y ∈ I. Then (x∗ (x∗ y) = x ∗ ((x∗ y) ∗ 0) ∈ I by (b2), and so

x = x ∗ 0 = x ∗ ((x ∗ (x ∗ y)) ∗ (x ∗ (x ∗ y))) = x ∗ ((x ∗ a) ∗ b) ∈ I

by (b2) where a = x ∗ y and b = x ∗ (x ∗ y). Hence (c2) is valid.

Proposition 3.18. Every qSΩ-ideal I of G satisfies the following inclusion:

(∀a, b ∈ I) ([a, b] ⊆ I),(1)

where [a, b] = {x ∈ G | (x ∗ a) ∗ b = 0}.
Proof. Let I be a qSΩ-ideal of G. Let a, b ∈ I and z ∈ [a, b]. Then (z ∗ a) ∗ b = 0, and so
z ∈ I. Hence [a, b] ⊆ I.

Theorem 3.19. If a nonempty subset I of G satisfies (1), then I is an SΩ-ideal of G.

Proof. Suppose that [a, b] ⊆ I for every a, b ∈ I. Note that (0 ∗ a) ∗ a = 0 ∗ a = 0 so that
0 ∈ [a, a] ⊆ I. Let x ∈ Ω and y ∈ I satisfy x ∗ y ∈ I. Using (G2) and (G3), we have
(x ∗ (x ∗ y)) ∗ y = (x ∗ y) ∗ (x ∗ y) = 0 and so x ∈ [x ∗ y, y] ⊆ I. Hence I is an SΩ-ideal of
G.

Theorem 3.20. Let I be an SΩ-ideal of G that satisfies the following inclusion:

Ω ∗ I := {x ∗ a | x ∈ Ω, a ∈ I} ⊆ Ω.

Then I is a qSΩ-ideal of G.

Proof. Let x ∈ Ω and a ∈ I. Then (a ∗ x) ∗ a = 0 ∈ I by (c1), and so a ∗ x ∈ I by (c2). Now
that x ∈ Ω and a, b ∈ I. Then x ∗ a ∈ Ω by assumption, and thus

(x ∗ ((x ∗ a) ∗ b)) ∗ a = (x ∗ a) ∗ ((x ∗ a) ∗ b) ∈ I

by Lemma 3.15. Hence (b2) is valid. Therefore I is a qSΩ-ideal of G.
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