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Abstract 
 
This paper aims to study the Smarandache cosets and derive some interesting 
results about them. We prove the classical Lagranges theorem for 
Smarandache semigroup is not true and that there does not exist a one-to-one 
correspondence between any two right cosets. We also show that the classical 
theorems cannot be extended to all Smarandache semigroups. This leads to the 
definition of Smarandache Lagrange semigroup, Smarandache p Sylow 
subgroup and Smarandache Cauchy elements. Further if we restrict ourselves 
to the subgroup of the Smarandache semigroup all results would follow 
trivially hence the Smarandache coset would become a trivial definition.  
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Definition [2]: The Smarandache semigroup is defined to be a semigroup A 
such that a proper subset of A is a group (with respect to the same induced 
operation).  
 
Definition 1. Let A be a Smarandache semigroup. A is said to be a 
commutative Smarandache semigroup if the proper subset of A that is a group 
is commutative.  
If A is a commutative semigroup and if A is a Smarandache semigroup then A 
is obviously a commutative Smarandache semigroup. 
 
Definition 2. Let A be a Smarandache semigroup. H ⊆ A be a group under the 
same operations of A.  For any a ∈ A the Smarandache right coset is Ha = {ha 
/ h ∈ H}. Ha is called the Smarandache right coset of H in A. Similarly left 
coset of H in A can be defined.  
 
Example 1: Let Z12 = {0, 1, 2, ..., 11} be the Smarandache semigroup under 
multiplication modulo 12. Clearly Z12 is a commutative Smarandache 
semigroup. Let A = {3,9} be a subgroup of Z12 under multiplication. 92 = 9 
(mod 12) acts as identity with respect to multiplication. For 4 ∈ Z12 the right 
(left) coset of A in Z12 is 4A = {0}. For 1 ∈ Z12 the right (left) coset of A in Z12 
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is 1A = {3, 9}. Hence we see the number of elements in nA is not the same for 
each n ∈ Z12.  
 
Example 2.  Z9 = {0, 1, 2, ..., 8} be the commutative Smarandache semigroup 
under multiplication modulo 9. A = {1, 8} and A1 = {2, 4, 1, 5, 7, 8} are the 
subgroups of Z9. Clearly order of A does not divide 9. Also order of A1 does 
not divide 9. 
 
Example 3.  Let S denote the set of all mappings from a 3-element set to itself. 
Clearly number of elements in S is 27.  S is a semigroup under the composition 
of maps.  
 
Now S contains S3 the symmetric group of permutations of degree 3. The order 
of S3 is 6. Clearly 6 does not divide order of S.  
 
Thus we see from the above examples that the classical Lagrange theorem for 
groups do not hold good for Smarandache semigroups. It is important to 
mention here that the classical Cayley theorem for groups could be extended to 
the case of Smarandache semigroups. This result is proved in [3]. For more 
details please refer [3]. Thus:  
 
Definition 3. Let S be a finite Smarandache semigroup. If the order of every 
subgroup of S divides the order of S then we say S is a Smarandache Lagrange 
semigroup.  
 
Example 4.  Let Z4 = {0, 1, 2, 3} be the semigroup under multiplication. A = 
{1, 3} is the only subgroup of Z4. Clearly |A|/4. Hence Z4 is a Smarandache 
Lagranges semigroup.  
 
But we see most of the Smarandache semigroups are not Smarandache 
Lagrange semigroup. So one has: 
 
Definition 4. Let S be a finite Smarandache semigroup. If there exists at least 
one group, i.e. a proper subset having the same operations in S, whose order  
divides the order of S, then we say that S is a weakly Smarandache Lagrange 
semigroup.  
 
Theorem 5. Every Smarandache Lagrange semigroup is a weakly 
Smarandache Lagrange semigroup and not conversely.  
 
Proof:  By the very definition 3 and 4 we see that every Smarandache Lagrange 
semigroup is a weakly Smarandache Lagrange semigroup.  
 
To prove the converse is not true consider the Smarandache semigroup given in 
Example 3. 6 does not divide 27 so S is not a Smarandache Lagrange 
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semigroup but S contains subgroup say 
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order 3. Clearly 3 divides 27. Thus S is a weakly Smarandache Lagrange 
semigroup.  
 
Thus the class of Smarandache Lagrange semigroup is strictly contained in the 
class of weakly Smarandache Lagrange semigroup.        
 
Theorem 6. Let S = {1, 2, ..., n}, n ≥ 3, be the set with n natural elements, S(n) 
the semigroup of mappings of the set S to itself. Clearly S(n) is a semigroup 
under the composition of mapping. S(n) is a weakly Smarandache Lagrange 
semigroup.  
 
Proof: Clearly order of S(n) = nn. Sn the symmetric group of order n!. Given n  
≥ 3, n! does not divide nn for  
 

1n..2.1

nn

n.1n..4.3.2.1

nn

!n

n

times1ntimesn

n

−
××=

−
××=

−

L

48476
L

L

48476
L

  

 
Now since (n -1, n) = 1, that is n - 1 and n are relatively prime. We see n! does 
not divide nn. Hence the class of Smarandache semigroups S(n), n ≥ 3, are 
weakly Smarandache Lagrange semigroup.  
 
Corollary.  S(n) , n = 2, is a Smarandache Lagrange semigroup.  
 

Proof: Let n = 2. Then S(n) = 
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the claim.  
 
Now the natural question would be: does there exist a Smarandache semigroup, 
which are not a Smarandache Lagrange semigroup and weakly Smarandache 
Lagrange semigroup?  The answer is yes. The Smarandache semigroup Z9 = 
{0, 1, 2 , ..., 8} under multiplication given in example 2 does not  have 
subgroups which divides 9, hence the claim.  
 
Now to consider the converse of the classical Lagrange theorem we see that 
there is no relation between the divisor of the order of the Smarandache 
semigroup S and the order of the subgroup S contains. The example is quite 
interesting.  
 



 4 

Example 5: Let Z10 = {0, 1, 2, ... , 9} be the semigroup of order 10. Clearly Z10 
is a Smarandache semigroup. The subgroups of Z10 are A1 = {1, 9} , A2 = {2, 4, 
6, 8} and A3 = {1, 3, 7, 9}, A4 = {4, 6}. Thus 4 does not divide 10, which 
contradicts Lagrange’s theorem (that the order of a subgroup divides the order 
of the group) in the case of Smarandache semigroup.  Also Z10  has subgroups 
of order 5 leading to a contradiction of the classical Sylow theorem (which 
states that if pα divides the order of the group G then G has a subgroup of order 
pα) again in the case of Smarandache semigroup. This forces us to define 
Smarandache p-Sylow subgroups of the Smarandache semigroup.  
 
Definition 7. Let S be a finite Smarandache semigroup. Let p be a prime such 
that p divides the order of S. If there exists a subgroup A in S of order p or pt (t 
>1) we say that S has a Smarandache p-Sylow subgroup. 
  
Note. It is important to see that pt needs not to divide the order of S, that is 
evident from Example 5, but p should divide the order of S. 
 
Example 6. Let Z16 = {0, 1, 2, ... , 15} be the Smarandache semigroup of order 
16 = 24.  The subgroups of Z16 are A1 = {1, 15}, A2 = {1, 3, 9, 11}, A3 = {1, 5, 
9, 13}, and A4 =  {1, 3, 5, 7, 9, 11, 13, 15} of order 2, 4, and 8 respectively. 
Clearly the subgroup A4 is the Smarandache 2-Sylow subgroup of Z16.  
 
The Sylow classical theorems are left as open problems in case of 
Smarandache p-Sylow subgroups of a Smarandache semigroup.  
 
Problem 1. Let S be a finite Smarandache semigroup. If p/|S| and S has 
Smarandache p-Sylow subgroup. Are these Smarandache p-Sylow subgroups 
conjugate to each other?  
 
Problem 2. Let S be a finite Smarandache semigroup. If p divides order of S 
and S has Smarandache p-Sylow subgroups. How many Smarandache p-Sylow 
subgroups exist in S?  
 
Let S be a finite Smarandache semigroup of order n. Let a ∈ S now for some r 
> 1, if ar = 1 then in general r does not divide n.  
 
Example 7. Let S = {1, 2, 3, 4, 5} be the set with 5 elements S (5) be the 
semigroup of mappings of S to itself. S(5) is a Smarandache semigroup for 
S(5) contains S5 the permutation group of degree 5. Clearly |S(5)| = 55. Now 
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but 4 does not divide |S(5)| = 55. Thus we define Smarandache Cauchy 
element.  
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Definition 8. Let S be a finite Smarandache semigroup. An element a ∈ A, A 
⊂ S, A the subgroup of S, is said to be a Smarandache Cauchy element of S if 
ar = 1 (r ≥ 1), 1 unit element of A, and r divides the order of S; otherwise a is 
not a Smarandache Cauchy element.  
 
Problem 3. Can we find conditions on the Smarandache semigroup S so that 
every element in S is a Smarandache Cauchy element of S?  
 
Problem 4. Let Zn be the Smarandache semigroup under usual multiplication 
modulo n. Is every element in every subgroup of Zn is a Cauchy element of Zn? 
(n is not a prime.)   
 
Remark: Zn = {0, 1, 2, ..., n-1} is a Smarandache semigroup under 
multiplication. Clearly every x in Zn is such that xr = 1 (r > 1), but we do not 
whether every element in every subgroup will satisfy this condition. This is 
because the subgroups may not have 1 ∈ Zn as the identity element.  
 
Definition 9. Let S be a finite Smarandache semigroup, if every element in 
every subgroup of S is a Smarandache Cauchy element; then we say S is a 
Smarandache Cauchy semigroup.  
 
Theorem 10. Let S(n) be the Smarandache semigroup for some positive 
integer n. S(n) is not a Smarandache Cauchy semigroup.  
 
Proof:  Clearly Sn is a subgroup of S (n). We know |S (n)| = nn and |Sn| =  n . 
But Sn contains elements x of order (n-1), and (n-1) does not divide nn. So S (n) 
is not a Smarandache Cauchy semigroup.  
 
Thus we see the concept of the classical theorem on Cauchy group cannot be 
extended to finite Smarandache semigroups.  
 
Theorem 11. There does not exist in general a one-to-one correspondence 
between any two Smarandache right cosets of A in a Smarandache semigroup 
S.     
 
Proof:  We prove this by the following example. Let S = Z10 = {0, 1, 2, ...,9}. A 
= {1, 9} is a subgroup of S. A2 = {2, 4, 6, 8} is a subgroup of S. 3A = {3,7} 
and 5A = {5}. Also 5A2 = {0} and 3A2 = A2. So there is no one-to-one 
correspondence between Smarandache cosets in a Smarandache semigroup.  
 
Theorem 12. The Smarandache right cosets of A in a Smarandache semigroup 
S does not in general partition S into either equivalence classes of same order 
or does not partition S at all.  
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Proof:  Consider Z10 given in the proof of Theorem 12. Now for A = {1, 9} the 
subgroup of Z10 that is the coset division of Z10 by A are {0}, {5}, {1, 9}, 
{2,8}, {3, 7} and {4, 6}. So A partitions S as cosets the Smarandache 
semigroup into equivalence classes but of different length. But for A2 = 
{2,4,6,8} is a subgroup of Z10. 6 acts as the identity in A2. Now the coset of 
division of Z10 by A2 is {2,4,6,8} and {0} only. Hence this subsets do not 
partition Z10.  
 
Problem 5. Does there exist any Smarandache semigroup S such that there is 
one-to-one correspondence between cosets of A in S?  
 
Now we proceed to define Smarandache double cosets of a Smarandache 
semigroup S. 
 
Definition 13. Let S be a Smarandache semigroup. A ⊂ S and B ⊂ S be any 
two proper subgroups of S. For x ∈ S define AxB = {axb / a ∈ A, b ∈ B}. AxB 
is called a Smarandache double coset of A and B in S.   
 
Example 8: Let Z10 = {0, 1, 2, ..., 9}. A = {1, 9} and B = {2, 4, 6, 8} be 
subgroups of the commutative Smarandache semigroup of order 10. Take x = 5 
then AxB = {0}. Take x = 3 then AxB = {2, 4, 6, 8}. For x = 7, AxB = {2, 4, 6, 
8}. Thus Z10 is not divided into equivalence classes by Smarandache double 
cosets hence we have the following theorem.  
 
Theorem 14. Smarandache double coset relation on Smarandache semigroup S 
is not an equivalence relation on S.  
 
Definition 15. Let S be a Smarandache semigroup. Let A be a proper subset of 
S that is a group under the operations of S. We say A is a Smarandache normal 
subgroup of the Smarandache semigroup S if xA ⊆ A and Ax ⊆ A or xA = {0} 
and Ax = {0} for all x ∈ S if 0 is an element in S.  
 
Note. As in case of normal subgroups we cannot define xAx-1= A for every x ∈ 
S, x-1 may not exist. Secondly if we restrict our study only to the subgroup A it 
has nothing to do with Smarandache semigroup for every result is true in A as 
A is a group.  
 
Example 9.   Let Z10 = {0, 1, 2, ..., 9} be a Smarandache semigroup of order 10. 
A = {2,4,6,8} is a subgroup of Z10 which is a Smarandache normal subgroup of 
Z10. It is interesting to note that that order of the normal subgroup of a 
Smarandache semigroup needs in general not to divide the order of the 
Smarandache semigroup. So if we try to define a Smarandache quotient group 
it will not be in general a group.  
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Definition 16. Let S be a Smarandache semigroup and A a Smarandache 
normal subgroup of S.  The Smarandache quotient group of the Smarandache 

semigroup S is { }Sx/Ax
A

S ∈= .  

 

Note.
A

S
 in general is not a group, it is only a semigroup. Further, as in classical 

group theory, the number of elements in 
A

S
 or in A or in S look in general not 

to be related. Earlier example of Z10, |Z10| = 10, |A| = 4, and 
A

Z10  = 2, proves 

this note. 
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