
Commonsense local realism refutes Bell’s theorem.
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Abstract: With Bell (1964) and his EPR-based analysis contradicted by experiments,
at least one step in his supposedly commonsense theorem must be false. Using com-
monsense local realism — the fusion of local-causality (no causal influence propagates
superluminally) and physical-realism (some physical properties change interactively) —
we make EPR correlations intelligible by completing the quantum mechanical account
in a classical way. Thus refuting the false inequality at the heart of Bell’s analysis and
the false equality at its core, we reinforce the classical mantra — that correlated tests
on correlated things produce correlated results — without mystery. We conclude that
Bell’s theorem and all related experiments negate naive realism, not commonsense local
realism: Einstein’s reasonable thing works.

1 Notes to the Reader

‘In the interest of clearness, it appeared to me inevitable that I should repeat myself
frequently, without paying the slightest attention to the elegance of presentation,’ Ein-
stein (1916). May this essay bring you many happy hours of fun and critical thinking.

a. Pre-reading: EPR and Bell (1964), available on-line, are taken as read; EPR to the start of
page 778, Bell to his equation (15). Other texts are also available via hyperlinks in References B.
b. Terms/notation: See Appendix A. (u,v) = angle between vectors u, v; u·v = inner product.
c. Results: Requiring no loopholes, all results here accord with reputable experimental findings.
d. Errors: Please report errors, typos, etc; critical correspondence is especially welcome.
e. Key words: CLR, dynamic equivalence class, function Q, gedanken-restoration, local realism.

2 Introduction
Embracing commonsense local realism (CLR), the fusion of local-causality (no causal influence
propagates superluminally) and physical-realism (some physical properties change interactively),
we endorse EPR’s (1935:777) condition of completeness: Every relevant element of the physical
reality must have a counterpart in our physical theory. But we reject the naive realism in Bell
(1964; 2004): and the ‘nonlocality’ so often linked to Bell’s theorem and his impossibility proof.

“Bell’s theorem asserts [?] that if certain predictions of quantum theory are correct then
our world is non-local. ‘Non-local’ here means that there exist interactions between
events that are too far apart in space and too close together in time for the events to
be connected even by signals moving at the speed of light,” Goldstein et al. (2011).
NB: We accept that those ‘certain predictions’ are correct! “Indeed it was the explicit
representation of quantum nonlocality [in de Broglie-Bohm theory] which started a new
wave of investigation in this area [of local causality]. Let us hope that these analyses
also may one day be illuminated, perhaps harshly, by some simple constructive model.
However that may be, long may Louis de Broglie continue to inspire those who suspect
that what is proved by impossibility proofs is lack of imagination,” (Bell 2004:167).
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In fact, CLR— a simple constructive model that counters nonlocality and non-realism in full accord
with relativity and Einstein’s ideas — came to mind and was voiced as I read David Mermin’s
(1988:14) ‘impossibility proof’. Indeed, I offered CLR to David by phone the next day.

On one supposition I absolutely held fast; that of local-causality, often called Einstein-
locality: “The real factual situation of the system S2 is independent of what is done with
the system S1, which is spatially separated from the former,” after Einstein (1949:85).

Allowing that natural physical variables and their local interactions alone account for my classical
mantra — correlated results produced by correlated tests on correlated things, without mystery
— I had unknowingly followed Bell (2004:174): Unlike observables, I let natural physical variables
— existents in my old-fashioned terms; bettered by Bell’s beables — be elements of reality, things
which exist, their existence independent of measurement and observation.

Further, I argued: the existents here are revealed by interactions and confirmed by robust
physical experiments and tests. For the gedanken certainties in (3)-(4) below were clear to me.

So, under CLR policy — making weak allowances and taking maths to be the best logic —
let’s now together bring (3)-(4) to the dynamics of EPR’s physics in the context of EPRB [A.1],
the experiment in Bell (1964): and let’s allow those dynamics do the talking from now on.

To commence this task – our common purpose – confidently, let’s cast it in the context of a
wholly mathematical version (2) of Bell’s (1964) theorem. Let’s then identify the false equality at
the core of Bell’s EPR-based analysis therein [4]: the source of his subsequent more famous – but
equally false – inequality (2). Let’s then refute one of the many CHSH inequalities [5].

With these results based on a particle-by-particle analysis, let’s then refute Bell’s theorem using
continuous variables [6]. Thereby enabled, let’s then show that Bell’s indifference is misplaced —

“It is a matter of indifference . . . whether λ denotes a single variable or a set, or even a
set of functions, and whether the variables are discrete or continuous,” Bell (1964:195).

— that the defects in his work are deep and conceptual: For we’ll see how Bell’s adoption of
d’Espagnat’s (1979; 1979a) naive realism leaves him failing to identify EPR’s elements of physical
reality with beables – his own coinage [3]. How he misses a key feature of EPRB particle-pairs –
their unique variety (15). How he confuses ‘causal independence’ with ‘statistical independence’
[7].

Then, demonstrating CLR’s utility in the context of Mermin’s (1990a) 3-particle GHZ-variant
[8] — thereby showing that CLR is equally effective at disentangling the likes of GHZ (1989),
GHSZ (1990), CRB (1991) — we can end with conclusions [9], acknowledgments [10], a technical
appendix [A], references [B].

3 Our theory -vs- Bell’s theorem
λ may denote “any number of hypothetical additional complementary variables needed
to complete quantum mechanics in the way envisaged by EPR,” Bell (2004:242).

Here’s a wholly mathematical version of Bell’s theorem; Bell (1964:(1)-(3), (12)-(14); 2004:14-21):

If A(λ, a) = A± = ±1; B(λ′,b) = B± = ±1 = −A(λ,b);
´
dλ ρ(λ) = 1 : (1)

Then 〈AB〉 ≡
´
dλ ρ(λ)A(λ, a)B(λ′,b) = −

´
dλ ρ(λ)A(λ, a)A(λ,b) 6= −a·b. (2)

〈AB〉 replaces Bell’s P (~a,~b); please see Appendix A for other relevant CLR technicalities.
Introduced in the line below his 1964:(3) and based on the paragraph below his 1964:(15), the

6= in (2) is Bell’s famous inequality. Here’s Bell’s (2004:147) explanation of the background to (2):

“To explain this dénouement without mathematics I cannot do better than follow
d’Espagnat (1979; 1979a).” Our paraphrase of d’Espagnat (1979:166) follows:
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‘One can infer that in every particle-pair [every pair of twins; p(λ), p′(λ′)], one particle
has the property A+ and the other has the property A−, one has property B+ and one
B−, . . . . Such conclusions require a subtle but important extension of the meaning
assigned to our notation A+. Whereas previously A+ was merely one possible outcome
of a measurement made on a particle, it is converted by this argument into an attribute
of the particle itself.’

For us, preferring ‘outcome of a test’ to d’Espagnat’s (1979:166) ‘outcome of a measurement’, and
concluding that Bell’s theorem is based on a restrictive naive realism, we reject any such tamper
with our task. On the contrary — given the fact that such pairs are twins, physically correlated at
birth by their tightly choreographed birth in a spin-conserving decay — here’s our position:

One can infer that in every particle-pair — every pair of twins, per Bell’s abandoned
‘genetic’ hypothesis (Bernstein 1991:84) — one particle has the property λ ∼ +a where
∼ +a is not the outcome A+ of a test but an equivalence revealed by that outcome:

For we allow that A+ reveals a previously-hidden preexisting equivalence relation ∼ on Λ — the
space of λ — see [A.4]. Putting it personally and strongly — to emphasize the difference between
an outcome A+ and a pristine property λ ∼ +a — but still in the context of CLR:

A secret and painful operation on my far-off twin sister Alice will certainly reveal — via the
outcome A+ — that she has the property λ ∼ +a. But it will equally reveal — for we are twins
— that I have the property λ′ ∼ −a′: with related behaviors when I too am tested. Yet I today
remain unperturbed and unbloodied by such a far-off and still unknown-to-me interaction. For:

There are no messages in one system from the other. EPRB correlations do not give
rise to signaling between noninteracting systems. Of course, however, there may be
correlations (eg, those of EPRB) and if something about the second system is given
(eg, that it is the other side of an EPRB setup) and something about the overall state
(eg, that it is the EPRB singlet state) then inferences from events in one system (eg,
A+: an up-counter Yes) to events (eg, B−: a down-counter Yes) or to properties (eg,
p′(λ′ ∼ −a′) in the other system are possible; modifying Bell (2004:208) in our terms:

EPRB correlations allow inferences from A+ to B− and to related facts like those in (A.5)-(A.6).
Thus we arrive at the key to our analysis: we include all the CLR elements of such implications

in the dynamics. For, in the micro-physics here, we allow that there may be ‘no infinitesimals
by the aid of which an observation might be made without appreciable perturbation’ (Heisenberg
1930:63). But we also allow that preexisting pristine properties (ie, beables, properties; such as
being a member of a DEC) may be revealed by such perturbations.

So, for us: If a test on a particle reveals an associated DEC, then its pristine twin is a member of
a related class: For such twins are physically correlated at birth by their birth in a spin-conserving
decay. We therefore endorse EPR’s elements of physical reality, defined as follows:

“If, without any way disturbing a system, we can predict with certainty (ie, with prob-
ability equal to unity) the value of a physical quantity, then there exists an element of
physical reality [a beable] corresponding to this physical quantity,” EPR (1935:777).

For — given the symmetries in (A.5)-(A.6) — let Alice test A(a, λ) and find A+; ie, λ ∼ +a.
Then, without further ado or disturbance anywhere, Alice can predict with certainty that

B(λ′, a′) = B(−λ, a′) = B(−λ ∼ −a′, a′) = B(λ′ ∼ −a′, a′) = −1 = B− : (3)

a′ distinguishing Bob’s SGD(a′) from Alice’s SGD(a) when a′ = b′ = a; per [A.3].
Now in (3), the first equality has Bell’s backing; see (1) or Bell (1964:(13). And the relation

B(λ′ ∼ −a′, a′) = −1 is CLR’s very definition of equivalence in Bob’s domain. For under these
conditions, for all a′ and any number of such tests, B(λ′ ∼ −a′, a′) equals minus one with certainty:
a central experimental fact.
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Thus, via the equivalence class to which p(λ ∼ +a) in this test belongs, the corresponding EPR
beable in Bob’s test is p′(λ′ ∼ −a′). In other words: p′(λ′ ∼ −a′) — the EPR beable that here
corresponds to the test result B− — allows us to complement EPR with a CLR comment:

Unsurprisingly: Without in any way disturbing particle p′(λ′ ∼ −a′), we can predict
with certainty the result B− = −1 of that particle’s interaction with Bob’s SGD(a′):

ie, p′(λ′ ∼ −a′)⇒ [λ′ → ±a′}(λ′ · a′) = −a′·a′ = −1 = B−. (4)

Moreover, to predict with certainty any particular pristine particle’s interaction with
Bob’s SGD(±b′): we’d let Alice test that particle’s twin with her SGD(∓b); etc.

Differing markedly from the analysis just given, Bell’s naive realism leads to contradictions. For,
under CLR/EPRB — as we’ll soon confirm at (22); refuting (2) — Bell’s 1964:(15) reads thus:

1 + 〈BC〉 = 1− b·c ≥ |a·c− a·b| = | 〈AB〉 − 〈AC〉 | : (5)

a relation restricted by Bell’s acceptance of d’Espagnat’s (1979; 1979a) naive realism; a relation
absurd under EPRB in the domain −π/3 < φ < π/3 if (a,b) = (b, c) = φ and (a, c) = 2φ.

Despite these constraints, Bell (1964:199) concludes:

“In a theory in which parameters [sic] are added to quantum mechanics to determine
the results of individual measurements, without changing the statistical predictions,
there must be a mechanism whereby the setting of one measuring device can influence
the reading of another instrument, however remote. Moreover, the signal involved must
propagate instantaneously, so that such a theory could not be Lorentz-invariant.”

To the contrary, we will show that a CLR counter-conclusion prevails:

In a theory in which hidden properties, revealed by tests, are found to determine the
results of individual interactions: there must be a function that accurately tracks the
factual inferential consequences of such tests without changing the statistical predic-
tions. Such a theory will be Lorentz-invariant.

Our case against Bell thus foreshadowed, we next refute Bell’s (1964) analysis: from fundamental
first principles — the CLR custom — and therefore beyond dispute.

4 Bell’s 1964 analysis refuted
To derive (5), his 1964:(15), Bell goes beyond our (1)-(2) and invokes a third unit-vector c in
unnumbered equations that follow his 1964:(14). If we number them Bell’s (14a) to Bell’s (14c),
Bell — suspiciously, in our view — equates (14b) to (14a).

In anticipation, let’s reveal our hunch — the restriction required for Bell’s ‘equality’ here to go
through: For his equality to hold here, Bell’s theorem will be limited to sock-like entities!

Since A,B,C are discrete, let’s replace Bell’s integrals with sums and Bell’s 1964:(14a) with
discrete variables. For generality, let λ be a random variable in R3; with a uniform distribution
and consequent probability zero that two λs or two particle-pairs are the same. Then, with index
i uniquely numbering each pair, let n be such that, to an adequate accuracy hereafter:

Bell’s (14a) = 〈AB〉 − 〈AC〉 = − 1

n

n∑
i=1

[A(a, λi)A(b, λi)− A(a, λn+i)A(c, λn+i)] (6)

=
1

n

n∑
i=1

A(a, λi)A(b, λi)[A(a, λi)A(b, λi)A(a, λn+i)A(c, λn+i)− 1]. (7)
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(7) is the correct discrete form of Bell’s (14a). And Bell’s (14c) is a valid conclusion from his (14b).
So, if Bell’s (14b) = Bell’s (14a), the related components of (7) and Bell’s (14c) should be equal.
Let ?

= identify our suspicion of Bell’s equality under these conditions. Then,

from Bell’s (14c): 〈BC〉 ≡ − 1

n

n∑
i=1

A(b, λi)A(c, λi) = − 1

n

n∑
i=1

A(b, λn+i)A(c, λn+i) (8)

?
= − 1

n

n∑
i=1

A(a, λi)A(b, λi)A(a, λn+i)A(c, λn+i); from (7). (9)

To support Bell’s (14a) = Bell’s (14b) — and remove our ? from (9) — we require the impossible
λi = λn+i: Impossible because by definition, physical context, and from Bell’s own λ-license;
λi 6= λn+i. So here’s a new — and the first valid — Bell-inequality:

Bell 1964 : (14b) 6= Bell 1964 : 14(a) (10)

∵
1

n

n∑
i=1

A(a, λi)A(b, λi)A(a, λn+i)A(c, λn+i) 6=
1

n

n∑
i=1

A(b, λi)A(c, λi) (11)

in general. Of course, a stable cohort of n classical objects — like Bertlmann’s socks (Bell 2004:139-
158) — would allow a non-destructive test and a follow-up non-destructive retest of the cohort so
that: n+ i denoted another run of n tests on the same set as the i-series of tests; and in the same
order. Then (9) and (11) would be unfettered equalities. For then

A(a, λi)A(b, λi)A(a, λn+i)A(c, λn+i) = A(a, λi)A(b, λi)A(a, λi)A(c, λi) = A(b, λi)A(c, λi). (12)

So classical objects like socks satisfy Bell’s inequality: and we have here the source of those famous
— but soon to be shown erroneous — inequalities in (2) and elsewhere. The source too of the
error in the CHSH family of inequalities, as we show next.

5 CHSH inequality refuted
Based on Peres’ (1995:164) version of the CHSH (1969) inequality, let Aj, Bj, Cj, Dj independently
equal ±1 randomly. Then, in our terms – see (6) and [A.2] – the following conditional truism does
not hold in general under EPRB:

ie, Aj(Bj −Dj) + Cj(Bj +Dj) ≡ ±2 does not ensure that (13)

AiBi +Bn+iCn+i + C2n+iD2n+i − A3n+iD3n+i = ±2 [sic]; (14)

nor that | 〈AiBi〉+ 〈Bn+iCn+i〉+ 〈C2n+iD2n+i〉 − 〈A3n+iD3n+i〉 |≤ 2 [sic]; (15)

for (14) is a false relation over particle-pairs indexed by wn + i; see [A.2]. And (15) is absurd in
the domain −π/2 < φ < π/2 if (a,b) = (b, c) = (c,d) = φ and (a,d) = 3φ.

Of course, under the same conditions that deliver equality (12), truism (13) will hold; as it will
under gedanken-restoration similar to that at [A.6]. But real experiments are conducted under
LHS (14) and LHS (15): refuting such facile analyses as (13).

So — though naive realism and Bertlmann’s socks will wash in (13) — all naively-realistic
EPR-based Bell inequalities fall to our CLR particle-by-particle analysis: thanks to that family of
unique twins p(λwn+i), p′(λ′wn+i). And, thanks to them and their first-principle examples, we now
move to refute Bell’s theorem.
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6 Bell’s theorem refuted
Pedagogy moving us to take the opposite tack to Bell in (1) — to show the utility of CLR; it
makes no difference to the results — let’s here focus on λ′. Allowing λ′ to be a random beable
uniformly distributed over R3, λ′ will be perturbed by p′(λ′)’s interaction with Bob’s SGD(b′): for
“each [pristine] particle, considered separately, is unpolarized here,” Bell (2004:82). Representing
that interaction by [λ′ → ±b′}, we’ll find λ′ ∼ ±b′ equiprevalently (ie, with equal prevalence). So,
expanding (1) in our terms and then constructing LHS (2):

A(λ, a) = [λ→ ±a}(λ·a) = ±a·a = ±1, (16)

B(λ′,b′) = [λ′ → ±b′}(λ′·b′) = (±b′)·b′ = ±1, (17)
ˆ
dλ ρ(λ) =

1

4π

4πˆ

0

dΩ = 1. (18)

∴ 〈AB〉 =
1

4π

4πˆ

0

dΩ [λ→ ±a}(λ·a)[λ′ → ±b′}(λ′·b′); (19)

where Ω is a unit of solid-angle. The function-set of Q-functions and response-functions under the
integral is therefore

{[λ→ ±a} (λ·a) [λ′ → ±b′} (λ′·b′)} (20)

Now, working with functions, any Q may be applied to any element in its domain, in any order,
to derive 〈AB〉. However, since there is just one independent variable in EPRB — from λ+λ′ = 0
— one Q is superfluous. So, focussing on λ′, the progressively reduced function-sets after (20) are:

{(−λ′·a) [λ′ → ±b′} (λ′·b′)} ⇒ {(−λ′·a) [λ′ → ±b′} (±1)} ⇒ {(∓b′ · a) (±1)} ⇒ {−b′·a} : (21)

or, equivalently, completing (19):

〈AB〉 =
1

4π

4πˆ

0

dΩ (−λ′·a)[λ′ → ±b′}λ′·b′ = (±1)(∓b′)·a = −b′·a = −a·b. QED: � (22)

Bell’s theorem – represented in (2) consistent with Bell’s formulation – is refuted.
In passing: Since the outputs of (20)-(22) are identical, we see that Q eliminates the need for

normalizing integrals in expressions like (22): for Q is a normalizing function when, as here, its
arguments are normalized.

(22) is the first in a series of correct ‘disentangling’ CLR results that include GHZ (1989),
GHSZ (1990), CRB (1991). But before showing CLR’s utility in that department at [8] — via
Mermin’s (1990; 1990a) 3-particle GHZ-variant — we next refute one of Bell’s false opinions.

7 Bell’s ‘statistical independence’ refuted
“One general issue raised by the debates over locality is to understand the connection
between stochastic independence (probabilities multiply) and genuine physical inde-
pendence (no mutual influence). It is the latter that is at issue in ‘locality,’ but it is
the former that goes proxy for it in the Bell-like calculations. We need to press harder
and deeper in our analysis here,” Arthur Fine, in Schlosshauer (2011:45).

In that CLR is devoid of subjective beliefs and non-physical entities, we take ‘probable’ and
its derivatives to be loaded terms here; though we have no problem with technical terms like
impossible, probability zero or probability one. However, to minimize confusion, we allow that P
denotes the normalized prevalence (aka objective probability).

6



Let Z denote EPRB and let P (AB = +1|Z) denote the normalized prevalence of AB = +1
given Z. Then, equating (22) to the standard prevalence relation for binary (±1) outcomes:

〈AB〉 = −a·b = (+1)P (AB = +1|Z) + (−1)[1− P (AB = +1|Z)]. (23)

∴ P (AB = +1|Z) = (1− a·b)/2 = sin2 1
2
(a,b); P (AB = −1|Z) = cos2 1

2
(a,b). (24)

∴ P (A+B+|Z) 6= P (A+|Z)P (B+|Z); etc., (25)

when A+ and B+ are causally independent; ie, causally independent in the sense that neither exerts
any direct causal influence on the other. That is, just like the apple and pear crop, we expect
a dynamic (and hence a mathematico-logical) connection because of the common-cause physical
correlation between them. Just as here, with our Q, we expect DECs to be related because of the
physical correlations between closely-related (here, twinned) particles.

In this way (from first principles), we refute Bell’s opinion (2004:243) and his move there from
his (9) to his (10): that causal independence should equate to statistical independence, seen as a
consequence of local causality.

Thus, derived from first principles, (25) responds to Fine’s urgings and delivers this result:
Given EPRB physical correlations, statistical independence does not equate to causal indepen-
dence under local causality : nor with pear and apple crops. Rather, like apple and pear crops,
there is a physical correlation and hence a consequential dynamical (and therefore a mathematico-
logical) relation between them. Just as, with our Q, we have physical correlations and consequent
equivalence relations in our maths/logic.

However, in full accord with reciprocal causal independence and local-causality (ie, no causal
influence propagates superluminally), two CLR boundary conditions follow: Causally independent
of SGD(b′), B±, λ

′ : A± may be causally dependent on any property of SGD(a) or λ. Causally
independent of SGD(a), A±, λ: B± may be causally dependent on any property of SGD(b′) or λ′.

With (25) another sound result from first principles, we finally demonstrate Q’s utility in
analyzing and disentangling multiparticle experiments.

8 Understanding Mermin’s 3-particle experiment
Einstein argues that ‘EPR correlations can be made intelligible only by completing the
quantum mechanical account in a classical way,’ after Bell (2004:86). Let’s see.

Consider experiment M : Mermin’s (1990; 1990a) 3-particle GHZ-variant. Respectively: Three
spin-half particles with spin beables λ, µ, ν emerge from a spin-conserving decay such that

λ+ µ+ ν = π. (26)

Any pristine beable may thus be represented in terms of its siblings — eg, as (26) is used below in
the reduction (30)-(31) or in the transition (32)-(33) — thereby allowing still-relevant Q-functions
to supply relevant facts re relevant beable properties.

The particles separate along three straight lines in the y-z plane to interact with SGDs that
are orthogonal to the related line of flight. Let a, b, c denote the azimuthal angles of each SGD’s
principal-axis relative to the positive x-axis; let the test results be A,B,C. Then, extending
(16)-(17) appropriately with ⊕ = xor:

A(a, λ) = A± = [λ→ a⊕ a+ π} cos(λ− a) = ±1, (27)

B(b, µ) = B± = [µ→ b⊕ b+ π} cos(µ− b) = ±1, (28)

C(c, ν) = C± = [ν → c⊕ c+ π} cos(ν − c) = ±1. (29)

The function-set of Q-functions and response-functions is therefore

{[λ→ a⊕ a+ π}; cos(λ− a); [µ→ b⊕ b+ π}; cos(µ− b); [ν → c⊕ c+ π}; cos(ν − c)}. (30)
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Now, working with functions, any Q may be applied to any element in its domain in any order
to derive 〈ABC〉. However, since there are just two independent variables – see (26) – one Q is
superfluous. So, taking just one example: (30) may be reduced to:

{[λ→ a⊕ a+ π}; cos(λ− a); [µ→ b⊕ b+ π}; cos(µ− b); cos(π − λ− µ− c)}. (31)

So, as a physically significant shortcut, (31) will yield 〈ABC〉 correctly. It being understood that
– as with any function – each and every Q-function properly maps its domain to its codomain;
and consequently onto the domain of every relevant response-function.

For now, bypassing the shortcut, we employ functions (27)-(29) ordered per (30):

〈ABC〉 = [λ→ a⊕ a+ π} cos(λ− a)[µ→ b⊕ b+ π} cos(µ− b)[ν → c⊕ c+ π} cos(ν − c) (32)

= [λ→ a⊕ a+ π} cos(λ− a)[µ→ b⊕ b+ π} cos(µ− b)[ν → c⊕ c+ π} cos(π − λ− µ− c) (33)

= [µ→ b⊕ b+ π} cos(µ− b)[ν → c⊕ c+ π} cos(π − a− µ− c)⊕− cos(−a− µ− c) (34)

= [ν → c⊕ c+ π} cos(π − a− b− c)⊕− cos(−a− b− c)⊕− cos(−a− b− c)

⊕ cos(−a− b− c− π) (35)

= cos(π − a− b− c)⊕− cos(−a− b− c)⊕− cos(−a− b− c)⊕ cos(−a− b− c− π) (36)

= − cos(a+ b+ c). QED.� (37)

∴ P (ABC = +1 |M) = sin2 1
2
(a+ b+ c); (38)

P (ABC = −1 |M) = cos2 1
2
(a+ b+ c). (39)

(37) is the correct result for experiment M , Mermin’s (1990a:733) ‘crucial minus’ sign properly
delivered: from (37), 〈ABC〉 = −1 when a + b + c = 0. Thus, consistent with the ordinary rules
for functions, we classically deliver intelligible EPR correlations. And (31) does the same.

9 Conclusions
Employing commonsense local realistic (CLR) first-principles and elementary functions, we have
refuted Bell’s theorem and all the Bell-supporting arguments known to us; in our view, beyond
dispute. We have also explained ‘entanglement’ in CLR terms.

We conclude that Bell’s theorem and related experiments negate naive realism, not common-
sense local realism: for that famous inequality at the heart of Bell’s analysis is false. Moreover,
with every relevant element of each studied physical reality included in our physical theory —
with no other elements, subjective or otherwise — we show that our classical mantra holds true:
correlated tests on correlated things do produce correlated results without mystery.

We also show that, for us at least, mathematics is the best logic. For, though associated with
hidden-variables, the now discovered dynamic equivalence classes (DECs) are physically real and
wholly amenable to mathematical analysis and experimental confirmation. We further note that
the antipodean dichotomies associated with the DECs here are powerful discriminators.

Then, making EPR correlations intelligible by completing the quantum mechanical account in
a classical way, our CLR theory also corrects the view — eg, Bell (2004:243) and Bell’s move there
from his (9) to his (10) — that causal independence should equate to statistical independence, seen
as a consequence of local causality. For a chain of equivalence, based on physical correlations —
not causal influences — links the causally independent outcomes in (1) and in (16)-(17) and in
(27)-(29) to the appropriate local-realistic expectations 〈.〉.

It follows that our foreshadowings in Section 3 represent valid conclusions, expressed in a
different way. And with (24) and (38)-(39) typifying our work on EPRB correlations: we associate
the 1

2
in our trigonometric arguments with the intrinsic spin s = 1

2
of the spin-half particles. Similar

analysis with photons — eg, in Aspect (2002) — yields s = 1.
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Finally, working from first principles, showing that Bell’s work is limited by his naive realism,
we also eliminate the source of Bell’s discomfort (expressed in Bernstein 1991:84). So, refuting
Bell at every step and honoring Einstein similarly, we here rephrase and reverse Bell’s lament:

Perfect quantum correlations demand something like the ‘genetic’ hypothesis: like the
triplets linked by λ, µ, ν in (26). It’s so reasonable to assume that the particles carry
with them programs, correlated in advance, telling them how to behave. This is so
rational that when Einstein saw that, and the others refused to see it, he was the
rational man. The others were burying their heads in the sand. So it’s great that
Einstein’s idea of a classical locally-causal reality works. The reasonable thing works.
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A Appendix

A.1 EPRB under CLR

Alice}A±=±1=(a·λ){±a←λ]⇐p(λ)·〈λ+λ′=0〉·p′(λ′)⇒ [λ′→ ±b′}(λ′·b′)=±1=B±{Bob.
(A.1)

(A.1) depicts the totality of EPRB under CLR— nothing relevant missing, nothing irrelevant found
— every relevant element of the subject physical reality having its counterpart in the theory. In
that CLR and Einstein’s (1949:85) local-causality require neither superluminal signaling nor action-
at-a-distance: they’re not there.

In this way we dismiss such views as: “... it might be that we have to learn to accept not so
much action at a distance, but [the] inadequacy of no action at a distance,” Bell (1990:6); “... that
is the dilemma. We are led by analyzing this situation to admit that in somehow distant things
are connected, or at least not disconnected,” Bell (1990:7).

In (A.1), with its gedanken (mind’s eye) block-time view, we see a spin-conserving decay/birth
with twins flying apart⇐ p(λ)·〈λ+ λ′ = 0〉·p′(λ′)⇒ en-route to their destiny with gedanken Stern-
Gerlach devices (SGDs): function-machines, each built from a squeeze-function Q = [.→ ±·} and
a response-function R = (., ·). We see the relevant printed outputs (A± = ±1/B± = ±1) recording
each Up/Down output; appropriately observed by Alice/Bob.

There’s also the ability to turn the Rs into diagnostic-functions: from reporting the output of
an SGD to analyzing its behavior; etc. As we’ll see at [A.4] below.

A.2 λ and λ′

In (A.1), primes (′) show p′(λ′) and other elements in Bob’s domain. λ, λ′ are index-suppressed
twinned antiparallel beables from the set of twinned particles

{p(λwn+i), p′(λ′wn+i) | w = 0, 1, 2, ..; i = 1, 2, .., n};w = run-number when required, eg (14). (A.2)

λ and λ′ are thus spin-half related CLR beables; separable hidden-variables: λ, λ′ ∈ Λ ⊂ R3.

A.3 The use of primes (′)

It is generally helpful to have primes (′) distinguish elements in Bob’s domain from similar elements
in Alice’s domain. In (A.1), parameter a represents the principal-axis alignment of Alice’s Stern-
Gerlach device SGD(a), a freely and independently chosen by Alice. Parameter b′ represents
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the principal-axis alignment of Bob’s Stern-Gerlach device SGD(b′); b′ freely and independently
chosen by Bob.

So, when required, SGD(a′) means that Bob’s setting (indicated by the prime) is equal to
Alice’s setting (indicated by the a). In other words: Bob and Alice have identical settings with
a′ = b′ = a; agreeing, from their common perspective, on Up/Down. They have antiparallel
settings with −a′ = b′ = −a; agreeing, from a particle perspective, on Up/Down (since λ, λ′ are
themselves antiparallel).

However, in many ways, a fact over-riding such considerations is this: Bob – alone and indepen-
dent of anything that Alice might do – can prove p′(λ′ ∼ −a′). To do so, Bob simply tests p′(λ′)
with SGD(a′), revealing λ ∼ −a′ directly! To thus make p′(λ′ ∼ −a′) his own; as well as ours.
Then, via gedanken-restoration, he reverts p′(λ′ ∼ −a′) to its pristine state — ie, to p′(λ′ ∼ −a′)
— and continues on, unabated and undisrupted, with his own independent experimental program.

Under CLR, CLR gedanken-restoration is allowable and acceptable because, under CLR gedanken-
analysis, we clearly understand the particle-dynamics. See [A.5] for further discussion.

A.4 SGD(a), Q-function Q(±a) ≡ [λ→ ±a}, DECs

Each SGD is a composite function-machine: squeeze-function Q feeds response-function R. In the
context of Alice’s device SGD(a): Q(±a) = [λ→ ±a}; R(a) = (λ·a): with related print-out (±1).

We now turn to R in its role as a diagnostic-function: If R = (λ·a) = ±1, then λ =
±a⊕ λ ∼ ±a. So, since ∼ is the weaker equivalence, we adopt it as the diagnostic message; in full
accord with our CLR policy of weak allowances, and ignoring the fact that P (λ = ±a | Z) = 0. It
follows that:

a+ ≡ {λ ∈ Λ ⊂ R3|λ ∼ +a ∈ V ⊂ R3}, a− ≡ {λ ∈ Λ ⊂ R3|λ ∼ −a ∈ V ⊂ R3}; (A.3)

where a± denotes a dynamic equivalence class (DEC); termed dynamic because subject to such
transformations as Q(±b) : a± → b±, or Q(±a) : b± → a±, with relevant prevalencies.

(A.3) shows that Λ is partitioned dyadically under the mapping [λ → ±a}. So ∼ on the
elements of Q’s domain denotes: “Has the same output/image under Q.” With [+a → +a} =
[λ → +a} — allowing that a could be an element of Λ — [. → a} is well-defined under ∼ on
Λ. The quotient set is a set of two diametrically-opposed extremes: Λ/ ∼= {a+, a−}, a maximal
antipodean discrimination.

A.5 The fundamental experiment of CLR

p(λ1)⇒ [λ1 → ±vk}(λ1·vk) = ±1 = x : y = ±1 = (−v′

k·λ′1){∓v
′

k ← λ′1]⇐ p′(λ′1) :

xy = +1 : for all k = 1, 2, ..,ℵ0, (A.4)

for all unit-vectors vk ∈ V ⊂ R3 and any number of tests: an important proof of exactness.
That is: In (A.4) we take a single pristine particle-pair p(λ1), p′(λ′1) and we test and re-test

them in pristine condition. A feat possible using CLR’s gedanken-restoration program ... — before
you bin this essay, shouting angrily, “You can’t do that! Once you test a particle it’s destroyed! —
please read this continuation: ... under CLR gedanken-analysis! Please read the findings:

A.6 The fundamental findings of CLR

Under (A.4): (a) Q-functions are proven to be such: it is impossible to map one spin-beable to
two different outputs/images. (b) The equivalence relation ∼ on Λ holds: spin-related beables are
equivalent if Q maps them to the same output/image.

So p(λ) = p(λ ∼ +a) = p(a+) reveals the previously-hidden (but related) DEC of its unper-
turbed and still-pristine correlate: ie, in general;

p(λ) = p(λ ∼ ±a) = p(λ ∈ a±) = p(a±) implies (A.5)
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p′(λ′) = p′(λ′ = −λ) = p′(λ′ ∼ ∓a′) = p′(λ′ ∈ a′
∓

) = p′(a′∓); and vice-versa, etc : (A.6)

a range of properties (physical facts) suited to many analytic situations.
More formally: Q : Λ → V ⊂ R3 by assigning every object λ ∈ Λ to exactly one element

Q(λ) ∈ V where V is the space of 3-vectors. Experimental proof of the exactness here is provided
thus: The product of the paired outputs (±1) from SGD(±a) on p(λ) and SGD(∓a′) on p(λ′) —
for all a and any number of tests — equals one.

Allowing λ, λ′ to be antiparallel random beables, it follows that the mutually-exclusive collectively-
exhaustive equiprevalent outputs are here ∼ ±a and ∼ ±b; to thus highlight the symmetries in
EPRB.

A.7 CLR dynamics

CLR dynamics deliver the results of local SGD/particle interactions as well as their factual im-
plications ; updating facts re pristine correlates with a mathematical If . . . : Then . . . : Converting
the source of our inferences (physical facts) to relevant physical properties (other physical facts)
via the mathematical transmission of such facts; independent of vague words and conjectures.

‘Surely the big — SGD(a) — and the small — p(λ) — should merge smoothly with one
another? And surely in fundamental physical theory this merging should be described
not just by vague words but by precise mathematics?’ after Bell (2004:190).

“The concept of ‘measurement’ becomes so fuzzy on reflection that it is quite surprising
to have it appearing in physical theory at the most fundamental level. . . . does not any
analysis of measurement require concepts more fundamental than measurement? And
should not the fundamental theory be about these more fundamental concepts? One
line of development towards greater physical precision would be to have the [quantum]
‘jumps’ [or mergings] in the equations and not just in the talk — so it would come
about as a dynamical process in dynamically defined conditions,” Bell (2004:117-118).

In the context of EPRB, we take transformation to be a concept ‘more fundamental than measure-
ment’. Requiring such transformations/mergings in our equations – and not just in the talk – we
allow that local interaction between SGD(a) and p(λ) transforms both the particle and the device:
transforming hidden beables and revealing DECs; eg, λ ∈ a+. Importantly, a pristine correlate
will have a related DEC: ie, λ′ ∈ a− in this example; with a certain confirmatory λ′ ∈ a′− by Bob’s
direct pre-, ‘simultaneous’ or post-testing of that correlate.
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