Raising our 4-dimensional uncurved space W to the power ½.

Vyacheslav Telnin

Abstract

The application of the (1402.0167, 1402.0170 viXra.org) to our 4 – dimensional vector space W when M = 1, L = 2. Cobasics are chosen so that V has simple algebraic and metric tensors.

Let the basis of W is $\stackrel{\Gamma}{e}_{\mu}$. $W = V \otimes V$

$$V = W^{\frac{1}{2}} \tag{2}$$

 $V = W^{\frac{7}{2}}$ (2) The basis of V is $\overset{\mathbf{r}}{n_{\alpha}}$. $\overset{\mathbf{r}}{e_{\mu}} = e_{\mu}^{\alpha\beta} \cdot \overset{\mathbf{r}}{n_{\alpha}} \otimes \overset{\mathbf{r}}{n_{\beta}}$ (3)

Here $e_{\mu}^{\alpha\beta}$ are the cobasics. We choose the cobasics so :

$$\stackrel{\mathbf{r}}{e_1} = 1 \cdot \stackrel{\mathbf{r}}{n_1} \otimes \stackrel{\mathbf{r}}{n_1} \tag{4}$$

$$\stackrel{\mathbf{r}}{e}_2 = i_1 \cdot \stackrel{\mathbf{r}}{n}_2 \otimes \stackrel{\mathbf{r}}{n}_1 \tag{5}$$

$$\stackrel{\mathbf{1}}{e}_3 = i_2 \cdot \stackrel{\mathbf{1}}{n}_1 \otimes \stackrel{\mathbf{1}}{n}_2 \tag{6}$$

$$\begin{array}{ll}
\mathbf{r} \\ e_1 = 1 \cdot \mathbf{n}_1 \otimes \mathbf{n}_1 \\ e_2 = i_1 \cdot \mathbf{n}_2 \otimes \mathbf{n}_1 \\ e_3 = i_2 \cdot \mathbf{n}_1 \otimes \mathbf{n}_2 \\ e_4 = i_1 \cdot i_2 \cdot \mathbf{n}_2 \otimes \mathbf{n}_2 \\ \end{array} (5)$$

New hypercomplex numbers i_1 and i_2 are introduced here:

 $i_1 \cdot i_1 = -1$ (8) $i_2 \cdot i_2 = -1$ (9) $i_1 \cdot i_2 = -i_2 \cdot i_1$ (10) $i \cdot i = -1$ (11) $i \cdot i_1 = i_1 \cdot i$ (12) $i \cdot i_2 = i_2 \cdot i$ (13)

In order to $\stackrel{\bf r}{e}_{\mu}$ consist quaternion algebra, $\stackrel{\bf r}{n}_{\alpha}$ must satisfy such algebra : $[\stackrel{\bf r}{n}_1 \times \stackrel{\bf r}{n}_1] = \stackrel{\bf r}{n}_1$ (14) $[\stackrel{\bf r}{n}_1 \times \stackrel{\bf r}{n}_2] = \stackrel{\bf r}{n}_2$ (15) $[\stackrel{\bf r}{n}_2 \times \stackrel{\bf r}{n}_1] = \stackrel{\bf r}{n}_2$ (16) $[\stackrel{\bf r}{n}_2 \times \stackrel{\bf r}{n}_2] = \stackrel{\bf r}{n}_1$ (17)

And the same with the scalar product: $(\vec{n}_1, \vec{n}_1) = 1$ (18) $(\vec{n}_1, \vec{n}_2) = 0$ (19) $(\vec{n}_2, \vec{n}_1) = 0$ (20) $(\vec{n}_2, \vec{n}_2) = 1$ (21)

 $(\stackrel{\mathbf{r}}{n_{\alpha}}, \stackrel{\mathbf{r}}{n_{\beta}}) = q_{\alpha\beta} \quad (22) \qquad [\stackrel{\mathbf{r}}{n_{\alpha}} \times \stackrel{\mathbf{r}}{n_{\beta}}] = \stackrel{\mathbf{r}}{n_{\gamma}} \cdot f^{\gamma_{\alpha\beta}} \quad (23)$

So we have for V : $q_{\alpha\beta}$ - metric tensor, $f^{\gamma}{}_{\alpha\beta}$ - algebraic tensor.

Input finished 08.08.2011 Abstract 6/11 - 2011.