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Raising the many-dimensional vector spaces to the rational power 
M/L. 
 
                                   Vyacheslav  Telnin 
 
                                           Abstract 
      If  N - dimensional vector space W can be represented as the tensor 
      product of  L identical n – dimensional vector spaces V, then we can 
      say, that V is the W raised to the power 1/L. If we take the tensor 
      product of  M vector spaces V, then we get the vector space R. And 
      we can say that R is the W raised to the power M/L. 
 

1) Vector  spaces W and V. 
 

    Let us consider W – N-dimensional generalization of our 4-dimentional vector 
space. And we call W as basic vector space. If we choose N such as Ln , then we 
can represent W as the tensor product of L identical n-dimensional vector spaces 
V: 
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2) Metric tensors. 
 

If µer - basis of W, αnr - basis of V, then their connection can be expressed so: 
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and so: 
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If  νµνµ = gee ),( rr - the metric tensor for W, and βαβα = qnn ),( rr - the metric tensor for V, 
then the scalar multiplication of (5) and (6) gives : 
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And we can write: 
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3) Algebraic tensors. 
 
Algebraic tensor defines the algebra of basis vectors of vector space. 

Let us introduce the algebraic tensors for W and for V by this way: 
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From (4), (10), (11) we can derive: 
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4) Vector space R. 
 
Now we form new vector space R so:      )13(21 VVVR M⊗⊗⊗= K  

M here is any integer number. Then dimension of R is Mn . And we can write: 
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If we denote the basis of R as dmr , then  
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Metric tensor in R is bdr : 
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Algebraic tensor in R is bd
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then we can find the metric and algebraic tensors for R: 
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5) Curved W. 

 
Let W be curved. And baη - metric tensor in uncurved space. Then 
                        )21(ba
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and if cb

aϕ -algebraic tensor in uncurved space, then 
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     If metric tensor asymmetric and space is curved, then we use another formula - 
(27) – (more general)  for the algebraic tensor. 
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   (25) :        ,  ∙         +         ∙        ,  +        ,  ∙         +         ∙        ,  = 
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Let us contract (26) by s and k : 
        ,  ∙         +         ∙        ,  +        ,  ∙         +         ∙        ,  = =          ,  ∙         +         ∙        ,  +        ,                                        (27) 
 
Christoffel symbols for asymmetric metric tensors you can take from 
http://vixra.org/abs/1302.0072   
 
 

6)  New term. 

And the question of naming. 
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we will name as “COBASIC”.  
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