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Abstract 

In this article, we will prove the Beal’s conjecture by certain usual 

mathematical fundamentals with the aid of proven Fermat’s last theorem, 

and finally reach a conclusion that the Beal’s conjecture is tenable. 
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The proof 

The Beal’s Conjecture states that if A
X
+B

Y
=C

Z
, where A, B, C, X, Y and 

Z are all positive integers, and X, Y and Z are greater than 2, then A, B 

and C must have a common prime factor.  

We regard limits of values of above-mentioned A, B, C, X, Y and Z as 

known requirements, hereinafter.  

First, we must remove following two kinds from A
X
+B

Y
=C

Z
 under the 

known requirements.  

1. If A, B and C are all positive odd numbers, then A
X
+B

Y 
is an even 

number, yet C
Z 

is an odd number, evidently there is only A
X
+B

Y
≠C

Z 
under 

the known requirements according to an odd number ≠ an even number.  

2. If any two of A, B and C are positive even numbers, yet another is a 
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positive odd number, then when A
X
+B

Y
 is an even number, C

Z
 is an odd 

number, yet when A
X
+B

Y
 is an odd number, C

Z
 is an even number, so 

there is only A
X
+B

Y
≠C

Z 
under the known requirements according to an 

odd number ≠ an even number.  

Thus, we reserve merely two kinds of indefinite equation A
X
+B

Y
=C

Z
 

under the known requirements plus each qualification as listed below. 

1. A, B and C are all positive even numbers.  

2. A, B and C are two positive odd numbers and a positive even number.  

For indefinite equation A
X
+B

Y
=C

Z
 under the known requirements plus 

aforementioned each qualification, in fact, it has many sets of solutions of 

positive integers. Let us instance following four concrete equations to 

explain such a viewpoint.  

When A, B and C are all positive even numbers, if let A=B=C=2, X=Y=3, 

and Z=4, then indefinite equation A
X
+B

Y
=C

Z
 is exactly equality 2

3
+2

3
=2

4
. 

Evidently A
X
+B

Y
=C

Z
 has a set of solutions of positive integers (2, 2, 2) 

here, and A, B and C have common even prime factor 2. 

In addition, if let A=B=162, C=54, X=Y=3, and Z=4, then, indefinite 

equation A
X
+B

Y
=C

Z
 is exactly equality 162

3
+162

3
=54

4
. Evidently 

A
X
+B

Y
=C

Z
 has a set of solutions of positive integers (162, 162, 54) here, 

and A, B and C have two common prime factors, i.e. even 2 and odd 3.  

When A, B and C are two positive odd numbers and a positive even 

number, if let A=C=3, B=6, X=Y=3, and Z=5, then, indefinite equation 
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A
X
+B

Y
=C

Z
 is exactly equality 3

3
+6

3
=3

5
. Evidently A

X
+B

Y
=C

Z
 has a set 

of solutions of positive integers (3, 6, 3) here, and A, B and C have 

common prime factor 3. 

In addition, if let A=B=7, C=98, X=6, Y=7, and Z=3, then, indefinite 

equation A
X
+B

Y
=C

Z
 is exactly equality 7

6
+7

7
=98

3
. Evidently A

X
+B

Y
=C

Z
 

has a set of solutions of positive integers (7, 7, 98) here, and A, B and C 

have common prime factor 7.  

Thus it can seen that by above-mentioned four concrete examples, we 

have proved that indefinite equation A
X
+B

Y
=C

Z
 under the known 

requirements plus aforementioned each qualification can exist, but A, B 

and C have at least one common prime factor.  

If we can prove that there is only A
X
+B

Y
≠C

Z
 under the known 

requirements plus the qualification that A, B and C have not any common 

prime factor, then, we precisely proven that there is only A
X
+B

Y
=C

Z 

under the known requirements plus the qualification that A, B and C must 

have a common prime factor.  

Since when A, B and C are all positive even numbers, A, B and C have 

common prime factor 2, therefore, for these circumstances that A, B and 

C have not any common prime factor, they can only occur under the 

prerequisite that A, B and C are two positive odd numbers and a positive 

even number.  

If A, B and C have not any common prime factor, then any two of them 
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have not any common prime factor either. Because on the supposition that 

any two of them have a common prime factor, namely A
X
+B

Y
 or C

Z
-A

X
 

or C
Z
-B

Y
 have the prime factor, yet another has not it, then, this will lead 

to A
X
+B

Y
≠C

Z 
or C

Z
-A

X
≠B

Y
 or C

Z
-B

Y
≠A

X 
according to the unique 

factorization theorem for a positive integer.  

Such being the case, provided we can prove that there is only inequality 

A
X
+B

Y
≠C

Z
 under the known requirements plus the qualification that A, B 

and C have not any common prime factor, then the Beal’s conjecture is 

surely tenable, otherwise it will be negated.  

Unquestionably, following two inequalities together can wholly replace 

A
X
+B

Y
≠C

Z
 under the known requirements plus the qualification that A, B 

and C have not any common prime factor.       

1. A
X
+B

Y
≠2

Z
G

Z
 under the known requirements plus the qualification that 

A, B and 2G have not any common prime factor, where 2G=C.   

2. A
X
+2

Y
D

Y
≠C

Z
 under the known requirements plus the qualification that 

A, 2D and C have not any common prime factor, where 2D=B.  

We again divide A
X
+B

Y
≠2

Z
G

Z 
into two kinds, i.e. (1) A

X
+B

Y
≠2

Z
, when 

G=1, and (2) A
X
+B

Y
≠ 2

Z
G

Z
, where G has at least an odd prime factor >1.  

Likewise divide A
X
+2

Y
D

Y
≠C

Z
 into two kinds, i.e. (3) A

X
+2

Y
≠C

Z
, when 

D=1, and (4) A
X
+2

Y
D

Y
≠C

Z
, where D has at least an odd prime factor >1.   

We will prove that aforesaid four inequalities under the known 

requirements plus their qualifications are on the existence.  
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On purpose of the citation for convenience, let us first prove E
P
+F

V
≠2

M
, 

where E and F are two positive odd numbers without any common prime 

divisor, and P, V and M are integers >2. Since E and F have not any 

common prime factor, so there is E
P
≠F

V
 according to the unique 

factorization theorem for a positive integer, then let F
V 

>E
P
.  

In other words, let us Prove that indefinite equation E
P
+F

V
=2

M
 has not a 

set of solutions of positive integers, where P, V and M are integers >2.  

We know that when P is an integer >2, indefinite equation E
P
+1

P
=2

P 
has 

not a set of solutions of positive integers according to proven Fermat’s 

last theorem [REFERENCES], thus E is not a positive integer. 

In the light of the same reason, when V is an integer >2, indefinite 

equation F
V
-1

V
=2

V
 has not a set of solutions of positive integers, so F is 

not a positive integer either.  

Next, two sides of equal-sign of E
P
+1

P
=2

P 
added respectively to two sides 

of equal-sign of F
V
-1

V
=2

V
 make E

P
+F

V 
=2

P
+2

V
.  

For indefinite equation E
P
+F

V
=2

P
+2

V
, when P=V, 2

P
+2

V
=2

P+1
, so 

E
P
+F

V
=2

P+1
. Let P+1=M, there is E

P
+F

V
=2

M
, but E and F at here are not 

two positive integers according to preceding two conclusions. If enable E 

and F into two positive odd numbers, then, there is only E
P
+F

V
≠2

M
.  

However, when P≠V, 2
P
+2

V
≠2

M
, then E

P
+F

V
=2

P
+2

V
≠2

M
, i.e. E

P
+F

V
≠2

M
, 

where E and F at here are not two positive integers according to 

preceding two conclusions. If let E and F turn into two positive odd 
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numbers, then, whether multiply E
P
+F

V
 by a corresponding no positive 

integer such as µ, or E
P 

added to a corresponding no positive integer such 

as ζ, and F
V
 added to a corresponding no positive integer such as ξ, so 

whether must multiply 2
P
+2

V 
by µ, or 2

P
+2

V
 must add to ζ + ξ on another 

side of the equality. Then, a result on another side can only be (2
P
+2

V
) µ 

or 2
P
+2

V
+ζ+ξ, and either result ≠2

M
, thus when E and F are two positive 

odd numbers, there is still E
P
+F

V
≠2

M
.   

In a word, we have proven E
P
+F

V
≠2

M
, where E and F are two positive 

odd numbers without any common prime divisor, and P, V and M are 

integers >2.    

On the basis of proven E
P
+F

V
≠2

M
, we just set to prove aforementioned 

four inequalities, one by one, thereinafter.  

    

Firstly, let A
X
=E

P
, B

Y
=F

V
, and 2

Z
=2

M
 for proven E

P
+F

V
≠2

M
, we get 

A
X
+B

Y
≠2

Z
 under the known requirements, where 2 is a value of C.  

   

Secondly, let us successively prove A
X
+B

Y
≠2

Z
G

Z
 under the known 

requirements plus the qualification that A, B and 2G have not any 

common prime factor, where 2G=C, and G has at least an odd prime 

factor >1.   

To begin with, multiply each term of proven E
P
+F

V
≠2

M
 by G

M
 is 

E
P
G

M
+F

V
G

M
≠2

M
G

M
.   

For any positive even number, either it is able to be expressed as A
X
+B

Y
, 
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or it is unable. No doubt, E
P
G

M
+F

V
G

M 
is a positive even number.  

If E
P
G

M
+F

V
G

M
 is able to be expressed as A

X
+B

Y
, then there is 

A
X
+B

Y
≠2

M
G

M
.   

If E
P
G

M
+F

V
G

M
 is unable to be expressed as A

X
+B

Y
, then it has nothing to 

do with proving A
X
+B

Y
≠ 2

M
G

M
.  

Under this case, there are still E
P
G

M
+F

V
G

M
≠A

X
+B

Y 
and E

P
G

M
+F

V
G

M
≠ 

2
M

G
M

, so let E
P
G

M
+F

V
G

M
 equals A

X
+B

Y
+2b or A

X
+B

Y
-2b, where b is a 

positive integer. Also use sign “±” to denote sign “+” and sign “-” 

hereinafter, then we get A
X
+B

Y
±2b≠2

M
G

M
, i.e. A

X
+B

Y
≠2

M
G

M 
± 2b. 

Since 2b can express every positive even number, then 2
M

G
M

±2b can 

express all positive even numbers except for 2
M

G
M

.  

For a positive even number, either it is able to be expressed as 2
K
N

 K
, or it 

is unable, where K is an integer >2, and N is a positive integer which has 

at least an odd prime factor >1.   

On the one hand, where 2
M

G
M

±2b=2
K
N

K
, there is A

X
+B

Y
≠2

K
N

K
. On the 

other hand, where 2
M

G
M

±2b≠ 2
K
N

K
, 2

M
G

M
±2b has nothing to do with 

proving A
X
+B

Y
≠2

K
N

K
. 

That is to say, for E
P
G

M
+F

V
G

M
≠2

M
G

M
, if E

P
G

M
+F

V
G

M
 is unable to be 

expressed
 
as A

X
+B

Y
, we can deduce A

X
+B

Y
≠2

K
N

K
 too, elsewhere.  

Hereto, we have proven A
X
+B

Y
≠2

M
G

M
 or A

X
+B

Y
≠2

K
N

K
 on the existence.  

Since either M or K is to express an integer >2, also either G or N is a 

positive integer which has at least an odd prime factor >1, therefore both 
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can represent from each other.  

 

Thirdly, we proceed to prove A
X
+2

Y
≠C

Z
 under the known requirements 

plus the qualification that A and C are two positive odd numbers without 

any common prime factor, where 2 is a value of B.  

In the former passage, we have proven E
P
+F

V
≠2

M
, where F

V
>E

P
, so let F

V
 

=C
Z
, then there is E

P
+C

Z
≠2

M
.   

Moreover, let 2
M

>2
3
, then there is 2

M
=2

M-1
+2

M-1
.  

So there is E
P
+C

Z 
> 2

M-1
+2

M-1
 or E

P
+C

Z 
< 2

M-1
+2

M-1
.  

Namely, there is C
Z
-2

M-1
>2

M-1
-E

P
 or C

Z
-2

M-1
<2

M-1
-E

P
.    

In addition, there is A
X
+E

P
≠2

M-1
 according to proven E

P
+F

V
≠2

M
.  

Then, we deduce 2
M-1

-E
P
>A

X
 or 2

M-1
-E

P
<A

X
 from A

X
+E

P
≠2

M-1
.     

Therefore, there is C
Z
-2

M-1
>2

M-1
-E

P
>A

X
 or C

Z
-2

M-1
<2

M-1
-E

P
<A

X
.  

Consequently, there is C
Z
-2

M-1
>A

X
 or C

Z
-2

M-1 
< A

X
.   

In a word, there is C
Z
-2

M-1
≠ A

X
, i.e. A

X
+2

M-1
≠C

Z
.  

For A
X
+2

M-1
≠C

Z
, let 2

M-1
=2

Y
, we get A

X
+2

Y
≠C

Z
.  

  

Fourthly, let us last prove A
X
+2

Y
D

Y
≠C

Z
 under the known requirements 

plus the qualification that A, 2D and C have not any common prime 

factor, where 2D=B, and D has at least an odd prime factor >1.  

For the sake that distinguish between differing cases, we need to start 

using another inequality H
U
+2

Y
≠K

T 
in the light of proven inequality 

A
X
+2

Y
≠C

Z
, where H and K are two positive odd numbers without any 
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common prime factor, and U, Y and T are integers>2.  

Then, there is K
T
-H

U
≠2

Y
. Like that, multiply each term of K

T
-H

U
≠2

Y
 by 

D
Y
 is K

T
D

Y
-H

U
D

Y
≠2

Y
D

Y
.   

For any positive even number, either it is able to be expressed as C
Z
-A

X
, 

or it is unable. Undoubtedly, K
T
D

Y
-H

U
D

Y
 is a positive even number.  

If K
T
D

Y
-H

U
D

Y
 is able to be expressed as C

Z
-A

X
,
 

then
 

there is 

C
Z
-A

X
≠2

Y
D

Y
, i.e. A

X
+2

Y
D

Y
≠C

Z
.  

If K
T
D

Y
-H

U
D

Y
 is unable to be expressed as C

Z
-A

X
, then K

T
D

Y
-H

U
D

Y
 at 

here has nothing to do with proving A
X
+2

Y
D

Y
≠C

Z
. Under this case, there 

are still K
T
D

Y
-H

U
D

Y
≠C

Z
-A

X 
and K

T
D

Y
-H

U
D

Y
≠2

Y
D

Y
.   

Let K
T
D

Y
-H

U
D

Y
 equals C

Z
-A

X
±2d,

 
where d is a positive integer.  

Then, there is C
Z
-A

X
±2d≠2

Y
D

Y
, i.e. C

Z
-A

X
≠2

Y
D

Y
±2d. 

Since 2d can express every positive even number, then 2
Y
D

Y
±2d can 

express all positive even numbers except for 2
Y
D

Y
.  

For a positive even number, either it is able to be expressed as 2
S
R

S
, or it 

is unable, where S is an integer>2, and R is a positive integer which has 

at least an odd prime factor >1.  

On the one hand, where 2
Y
D

Y
±2d=2

S
R

S
, there is C

Z
-A

X
≠2

S
R

S
, i.e. 

A
X
+2

S
R

S
≠C

Z
. On the other hand, where 2

Y
D

Y
±2d≠ 2

S
R

S
, 2

Y
D

Y
±2d has 

nothing to do with proving A
X
+2

S
R

S
≠C

Z
.   

That is to say, for K
T
D

Y
-H

U
D

Y
≠2

Y
D

Y
, if K

T
D

Y
-H

U
D

Y
 is unable to be 

expressed
 
as C

Z
-A

X
, we can deduce A

X
+2

S
R

S
≠C

Z
 too, elsewhere.  
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Thus far, we have proven A
X
+2

Y
D

Y
≠C

Z
 or A

X
+2

S
R

S
≠C

Z 
on the existence.  

Since either Y or S is to express an integer >2, also either D or R is a 

positive integer which has at least an odd prime factor >1, therefore both 

can represent from each other.     

 

To sun up, we have proven every kind of A
X
+B

Y
≠C

Z 
under the known 

requirements plus the qualification that A, B and C have not any common 

prime factor.  

Previous, we have proven A
X
+B

Y
=C

Z
 under the known requirements plus 

the qualification that A, B and C have at least a common prime factor, it 

has certain sets of solutions of positive integers.   

Overall, after the compare between A
X
+B

Y
=C

Z
 under the known 

requirements and A
X
+B

Y
≠C

Z 
under the known requirements, we have 

reached inevitably such a conclusion, namely an indispensable 

prerequisite of the existence of A
X
+B

Y
=C

Z
 under the known requirements 

is that A, B and C must have a common prime factor.  

The proof was thus brought to a close. As a consequence, the Beal 

conjecture is tenable.   
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