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Abstract

In a series of papers written over the period 1944-1948, the great Austrian physicist Erwin Schrödinger pre-
sented his ideas on symmetric and non-symmetric affine connections and their possible application to general
relativity. Several of these ideas were subsequently presented in his notable 1950 book Space-Time Struc-
ture, in which Schrödinger outlined the case for both metric and general connections, symmetric and oth-
erwise. In the following discussion we focus on one particular connection presented by Schrödinger in that
book and its relationship with the non-metricity tensor Dλgµν . We also discuss how this connection over-
comes a problem that Hermann Weyl experienced with the connection he proposed in his failed 1918 theory
of the combined gravitational-electromagnetic field. A simple physical argument is then presented demonstrat-
ing that Schrödingers’s formalism accommodates electromagnetism in a more natural way than Weyl’s theory.

1. Introduction

In early 1918 the German mathematician Hermann Weyl proposed a generalization of Riemannian geometry in
an effort to unify the two forces of Nature then known, gravitation and electromagnetism. Weyl developed his
theory by relaxing one of the tenets of Riemannian geometry, the invariance of vector magnitude or length
under parallel transport. This required that the covariant derivative of the metric tensor gµν not vanish, which
resulted in Weyl’s introduction of a new vector quantity that he identified as the electromagnetic four-vector Aµ.
The theory failed, but it produced a non-Riemannian geometry that is still of considerable interest today.

The main problem with Weyl’s geometry can be traced to its inability to accommodate fixed-length vectors
under parallel transfer. As is well known, Einstein seized upon this aspect of the theory to argue that certain
physical quantities would vary arbitrarily under a local scale of scale, with the result that phenomena such as
the spacing of atomic spectral lines would depend on their history. A related problem concerned the fact that
vectors such as the four-momentum pµ and even the unit vector d xµ/ds itself would vary in time and space — a
clearly non-physical presumption.

2. Notation

Following Adler et al., we denote ordinary partial differentiation with a single subscripted bar, while covariant
differentiation is denoted using double subscripted bars. Schrödinger’s connection is representated by the
symbol Γ, while its representation in Riemannian space is the usual Christoffel bracket. Thus, the covariant
derivative of the mixed tensor Fλα is given as

Fλα||β = Fλα|β − Fλµ Γ
µ

αβ
+ Fµα Γ

λ
µβ

while for Riemannian space we make the substitution

Γµ
αβ
→
�

µ
αβ

�

where
�

µ
αβ

�

=
1

2
gµν
�

gαν |β + gνβ |α − gαβ |ν
�

The metric tensor gµν is taken to be symmetric in its lower indices.
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3. The connection idea

The connection in differential geometry is normally introduced using either the notion of a constant vector whose
components are fixed in some given coordinate system, or an arbitrary vector that is unchanged in direction
under parallel transport. Either of these approaches can be used to define the familiar process known as
covariant differentiation. Historically, Cartan and Weyl pioneered the concept of parallel transfer by assuming
that the infinitesimal change in an arbitrary vector ξµ under physical transport is proportional to the transport
interval d x and the initial vector at point x ,

δξµ =−Γµ
αβ
ξαd xβ , (3.1)

such that the quantity ξµ +δξµ represents the “unchanged” or parallel vector at the point x + d x . Noting that
the vector will physically change by the amount dξµ after transport, where

dξµ =
∂ ξµ

∂ xλ
d xλ,

we can then define the covariant derivative of the vector as

ξ
µ

||λ = lim
d xλ→0

(ξµ + dξµ)− (ξµ +δξµ)
d xλ

or
ξ
µ

||λ = ξ
µ

|λ +Γ
µ

αλ
ξα (3.2)

Note in the above that the connection Γ is, to a considerable extent, completely arbitrary. Assuming no
particular symmetry of the indices, there are 43 = 64 independent components in the connection term in four
dimensions.

One immediate consequence of this formalism is the notion of a geodesic. Consider the case where the vector in
question is the unit vector d xµ/ds. We might properly assume that this vector should be unchanged under
parallel transfer, which means that its covariant derivative vanishes:

�

d xµ

ds

�

|λ
+ Γµ

αλ

d xα

ds
= 0

Multiplying by d xλ/ds and summing, we have
�

d xµ

ds

�

|λ

d xλ

ds
+ Γµ

αλ

d xα

ds

d xλ

ds
= 0

or
d2 xµ

ds2 + Γ
µ

αλ

d xα

ds

d xλ

ds
= 0

Here we see that the issue of symmetry in the covariant indices of the connection is irrelevant, since any
antisymmetry is canceled out in the second term. For a symmetric connection in four dimensions, the number of
arbitrary, independent components is then reduced to 4 · 4 · (4+ 1)/2= 40.

4. Metricity

Riemannian geometry is characterized by a condition known as metricity, meaning that the covariant derivative
of the metric tensor gµν vanishes:

gµν ||α = gµν |α − gµλΓ
λ
να − gλνΓ

λ
µα = 0

Metricity thus requires that the lower indices of the connection be symmetric. By an appropriate permutation of
the above expression, it also provides a means for uniquely identifying all 40 components of the connection in
terms of the metric tensor and its first derivatives:

Γαµν =
�

α
µν

�

=
1

2
gαβ
�

gµβ |ν + gβν |µ − gµν |β
�
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Metricity is usually assumed on the basis of either simplicity or physical validity (Einstein’s general relativity
theory does work, after all) or by demanding that all quantities in an invariant product be parallel-transfer
invariant themselves. For example, the magnitude of the unit vector, given by

gµν
d xµ

ds

d xν

ds
= 1

represents such a product and, since the unit vector itself is transfer-invariant, we might assume the same to be
true for the metric tensor as well.

5. Weyl’s theory as an example of non-metricity

The non-vanishing of the metric covariant derivative is called non-metricity, and gµν ||α is called the
non-metricity tensor. Over the years it has been investigated by legions of physicists searching for an alternative
to Riemannian geometry, usually in the guise of unified field theory. To date none of these investigations has
been successful.

In his 1918 theory, Weyl abandoned the notion of invariance of vector length, and was thus led to a geometry
involving non-metricity. Weyl also rejected the assumption that the metric tensor parallel-transferred to itself
and, with vector length defined by L2 = gµνξ

µξν , he arrived at

2L d L = gµν |αξ
µξνd xαd xα − gµνξ

µδξν − gµνξ
νδξµ

Using the transport law (3.1) and relabeling indices, this becomes

2L d L =
�

gµν |α − gλνΓ
λ
µα − gµλΓ

λ
να

�

ξµξνd xα

= gµν ||αξ
µξνd xα

(5.1)

Since Weyl had no idea what comprised the connection term, he reasonably surmised that, like the vector
transport law, the differential change in length d L was also linear with respect to the vector and the distance.
He thus wrote

d L = Lφµd xµ (5.2)

where φµ was some as yet undefined vector quantity. With the use of (5.2) Weyl was able to express the
non-metricity tensor as

gµν ||α = 2gµνφα (5.3)

He also noted that the resulting expression for the change in length d L = Lφµd xµ could be immediately
integrated to give

L = L0 e
∫

φµd xµ (5.4)

where L0 is the initial vector length. Thus, in Weyl’s geometry the length of a vector depends inherently on the
vector field φµ, which Weyl subsequently identified as the four-potential Aµ of electromagnetism.

Weyl’s assumed identity for the non-metricity tensor (5.3) allowed him to uniquely identify the components of
his connection. By taking cyclic permutations of the expanded form

gµν ||α = gµν |α − gµλΓ
λ
να − gλνΓ

λ
µα

Weyl was able to show that

Γαµν =
�

α
µν

�

−δανφµ −δ
α
µφν + gαβ gµνφβ (5.5)

Historically, it was (5.4) that Einstein had difficulty with, for no matter how small the Weyl field φµ is taken the
length of a vector would change continuously and arbitrarily from place to place and from time to time. For
example, the free-space momentum and Compton wavelength vectors

pµ = mc
d xµ

ds
,

pµ =
mc

ħh
d xµ

ds
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would vary in Weyl’s theory, in contradiction to both reason and observation. In fact, the length of any vector
quantity would undergo a change in magnitude in Weyl’s theory, the simplest example being the unit tangent
vector d xα/ds itself. Given the invariant line element ds2 = gµνd xµd xν , the length of the unit vector d xµ/ds
would thus change in the presence of Weyl’s φ-field — a nonsensical prediction.

6. Schrödinger’s affine connection

In his early work on connections Schrödinger assumed metricity, but he also considered non-symmetric
connections as well. In his book Space-Time Structure he uses cyclic permutations of the metricity condition

gµν |α − gµλΓ
λ
να − gλνΓ

λ
µα = 0

to show that

Γαµν =
�

α
µν

�

+ gαβ
�

gλνΓ
λ
µβ− + gµλΓ

λ
νβ−

�

+Γαµν−

where

Γαλβ− =
1

2

�

Γαλβ −Γ
α
βλ

�

, Γαλβ+ =
1

2

�

Γαλβ +Γ
α
βλ

�

, Γαµν = Γαµν+ +Γ
α
µν−

Noting that the first two terms on the right are symmetric and that the equations of the geodesics (3.2) cancel
any antisymmetry in the overall connection, Schrödinger at this point decides to simply omit the last term,
producing a purely symmetric connection composed of the metric tensor and its first derivatives and two skew
terms that together comprise a new tensor of rank three, which Schrödinger calls Tβµν . He thus writes

Γαµν =
�

α
µν

�

+ gαβTβµν (6.1)

Schrödinger notes that while the T -tensor is completely arbitrary, it has interesting symmetry properties:

Tβµν = Tβνµ and

Tβµν + Tνβµ + Tµνβ = 0
(6.2)

Careful consideration of these symmetry properties shows that the number of independent components for Tβµν
in ndimensions is n(n2 − 1)/3, or 20 components in four dimensions.

In his book Schrödinger asserts that (6.1) represents the widest possible class of connections compatible with an
arbitrary given gµν . More importantly it is probably the simplest connection that can be written, with the
exception of the Christoffel symbol itself.

7. Non-metricity and Schrödinger’s connection

Although Schrödinger assumed metricity of the geometry from the beginning, it can be shown that this
assumption is not necessary. Returning to our derivation for the change in vector magnitude (5.1), we note that
Weyl’s presumed identity for the non-metricity tensor gµν ||α = 2gµνφα is the reason why there cannot be any
fixed-length vectors in the Weyl theory. If we repeat the same analysis for the unit vector d xµ/ds, we have

2Ld L = gµν ||α
d xµ

ds

d xν

ds
d xα

But this must be identically zero if fixed-length vectors such as this are to be transfer-invariant. Thus,

gµν ||α
d xµ

ds

d xν

ds
d xα = 0

or, equivalently,
gµν ||αd xµd xνd xα = 0

This indicates that either the non-metricity tensor vanishes identically or it satisfies the cyclic symmetry
condition

gµν ||α + gαµ||ν + gνα||µ = 0 (7.1)
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We can now show that this condition in fact leads to Schrödinger’s connection. If we subtract

gµν ||α = gµν |α − gµλΓ
λ
να − gλνΓ

λ
µα

from its two cyclic permutations, we have

gµν ||α + gαµ||ν − gνα||µ = 2gαλ

�

α
µν

�

− 2gαλΓ
α
µν

or, in view of (7.1),

Γαµν =
�

α
µν

�

+ gαβ gµν ||β (7.2)

Comparing this with (6.1), we see that Schrödinger’s T -tensor and the non-metricity tensor have identical
symmetry properties. In view of the naturalness of its derivation, it seems completely plausible to conclude that
the T -tensor and gµν ||β are the same quantity. Thus, the most general connection sought by Schrödinger is
(7.2). More importantly, this connection automatically accommodates fixed-length vectors in the formalism.

8. Schrödinger’s connection and electromagnetism

Weyl was able to relate gravitation and electromagnetism through a vector field φµ that was responsible for the
non-metricity of his theory. Under a scale (or conformal) transformation of the metric tensor gµν → Ω2(x)gµν ,
Weyl determined that his vector field simultaneously transformed according to φµ→ φµ + logΩ|µ. The
similarity of this transformation with the familiar gauge transformation property of the electromagnetic
four-potential Aµ led Weyl to believe he had unified gravitation with electromagnetism, particularly since his
connection was fully invariant to a change in the metric scale.

By comparison, Schrödinger’s connection is not scale invariant (although it can be shown that the contracted
form Γµαµ is invariant), and there seems to be little to be gained by trying to make a conformal theory of gravity
from it, much less tie it to electromagnetism. Consequently, Schrödinger’s connection should not be seen as
“unifying” anything. However, it is interesting to note that Schrödinger’s Γ appears to at least accommodate
electromagnetism, which we will now demonstrate with the following simple exercise.

We consider the geodesic equations again,

d2 xα

ds2 +Γ
α
µν

d xµ

ds

d xν

ds
= 0

Using Schrödinger’s connection, we can write this as

d2 xα

ds2 +
�

α
µν

�

d xµ

ds

d xν

ds
=−gαβ gµν ||β

d xµ

ds

d xν

ds

The non-metricity term on the right-hand side would appear to be a Lorentz force term f α. For a particle of
mass m and charge q, the Lorentz force is known to be

f α =
q

mc
Fαβ

d xβ

ds

This implies that
q

mc
Fαβ

d xβ

ds
=−gαβ gµν ||β

d xµ

ds

d xν

ds
,

or, equivalently,
q

mc
Fαβ

d xβ

ds
=−gµν ||α

d xµ

ds

d xν

ds
This can be considerably simplified using several convenient identities. Using (7.1), we see that

gµν ||α
d xµ

ds

d xν

ds
=−2gµα||ν

d xµ

ds

d xν

ds
, (8.1)
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while from the equations of the geodesics themselves we have the simple and useful identity
�

d xµ

ds

�

||ν

d xν

ds
= 0 (8.2)

Another is obtained via covariant differentiation of the length of the unit vector

1= gµβ
d xµ

ds

d xβ

ds

Differentiation with respect to xα gives

0= gµβ ||α
d xµ

ds

d xβ

ds
+ 2 gµβ

�

d xµ

ds

�

||α

d xβ

ds

or

gµβ

�

d xν

ds

�

||α

d xβ

ds
=−

1

2
gµβ ||α

d xµ

ds

d xβ

ds
(8.3)

Using (8.1) and (8.2), we can then write

q

mc
Fαβ

d xβ

ds
= 2
�

gµα
d xµ

ds

�

||β

d xβ

ds
(8.4)

We cannot cancel the common unit vector d xβ/ds from both sides of this expression, as we expect Fαβ to be
antisymmetric in its indices. However, it is easy to show that, with the use of (8.3),

q

mc
Fαβ =
�

gµα
d xµ

ds

�

||β
−
�

gµβ
d xµ

ds

�

||α

=
�

gµα
d xµ

ds

�

|β
−
�

gµβ
d xµ

ds

�

|α

(8.5)

which reduces to (8.4) when multiplied by d xβ/ds. Using the symmetry properties of the Riemann-Christoffel
tensor R µ

αβλ
, it is a straightforward exercise to show that this definition also satisfies the homogeneous Maxwell

equations
Fαβ ||λ + Fλα||β + Fβλ||α = 0

The similarity of (8.5) to the familiar Fαβ = Aα|β − Aβ |α is evident. If we set

Aα =
q

mc
gµα

d xµ

ds
,

then it would appear that the Schrödinger connection does indeed accommodate electromagnetism. But again,
it is emphasized that this by no means represents a unification of geometry and electromagnetism, since the
tensor Fαβ had to be introduced into the formalism from the outside.

9. Last remarks

Researchers have investigated many types of affine connection over the years, the most notable beginning with
Weyl in 1918 and Eddington in 1921. A surprising number of these efforts resulted in connections that today
seem overly complicated and even bizarre. Einstein himself explored connections for many years, and his final
effort to produce a consistent unified field theory in 1954 consisted of a non-symmetric variant. Schrödinger
appears to have joined the game fairly late in his career, and in the 1940s he examined many connection forms,
along with non-symmetric variants of the metric tensor itself.

Perhaps because of its simplicity, Schrödinger’s connection as presented in Space-Time Structure seems to have
been overlooked. It is hoped that this elementary re-examination of his efforts to find the fundamental
connection of the world will rekindle renewed interest in this lesser-known work of the Father of Wave
Mechanics.
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