
MEASURING COMPLEXITY BY USING REDUCTION TOSOLVE P VS NP AND NC & PHKOBAYASHI KOJI1. Abstra
tThis arti
le prove that NC and PH is proper (espe
ially P is not NP) by usingredu
tion di�eren
e. We 
an prove that NC is proper by using AL0 is not NC. Thismeans L is not P. We 
an prove P is not NP by using redu
tion di�eren
e betweenL and P. And we 
an also prove that PH is proper by using P is not NP.2. NC is properWe use 
ir
uit problem as follows;De�nition 1. We will use the term �ACi�, �NCi� as ea
h 
omplexity de
isionproblems 
lasses. �FACi� as fun
tion problems 
lass of ACi. These 
omplexity
lasses also use uniform 
ir
uits family set that 
ompute target 
omplexity 
lassesproblems. �f ◦ g� as 
omposite 
ir
uit that output of g are input of f . In this
ase, we also use 
omplexity 
lasses to show target 
ir
uit. For example, A ◦ BBwhen A is 
ir
uits family and BB is 
ir
uits family set mean that a ◦ b | a ∈ A, b ∈
B ∈ BB. �R (A)� as subset of reversible NC that in
lude A. Reversible mean that
(

R (A) ◦ (R (A))−1
)

(x) = x. Cir
uits family uniformity is that these 
ir
uits 
an
ompute FAC0.Theorem 2. NL ≤AC0 NC2Proof. Mentioned [1℄ Theorem 10.40, all NC2 are 
losed by FL redu
tion. Thisredu
tion is validity of (c1, c2) transition fun
tion. Transition fun
tion 
hange O (1)memory and keep another memory. Therefore this validity 
an 
ompute AC0 andwe 
an repla
e FL to FAC0. �Theorem 3. ACi has Universal Cir
uits Family that 
an emulate all ACi 
ir
uitsfamily. That is, every ACi has ACi − Complete under FAC0.Proof. To prove this theorem by making universal 
ir
uit family Ai ∈ ACi thatemulate 
ir
uit family {Cj} ∈ ACi by using �depth 
ir
uit tableau�. Universal
ir
uit Uj ∈ Ai have partial 
ir
uit uk,d that emulate all Cj gates gk∈n (in
ludeinput value) and partial 
ir
uit vp−q,d that emulate all wires wp−q from gp outputto gq input in every depth d. Uj use three value {⊤,⊥, ∅}. ∅ is spe
ial value thatall gk ignore this value. All gate in a depth d is ud, all wires that input 
onne
ted
k in a depth d is vk−,d, output 
onne
ted k in a depth d is v−k,d.

vp−q,d input 
onne
ted ea
h up,d output and wp−q. vp−q,d output 
onne
ted ea
h
uq,d+1 input. If wp−q does not exist, vp−q,d output ∅. Else if wp−q have negativethen vp−q,d output uk,d negative value. Else vp−q,d output uk,d positive value.1
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uk,d input 
onne
ted ea
h v−k,d−1 output and gk. uk,d output 
onne
ted ea
h

vk−,d input. If gk is one of Cj input value, uk,d output the input value. Else (gk isAnd / Or gate) uk,d output the gate value that 
ompute from all v−k,d−1 outputvalues. In this 
omputation, uk,d ignore all ∅. If all value are ∅, uk,d output ∅.This Uj that 
onsists of u, v emulate Cj . We 
an make every u, v in FAC0be
ause Cj is uniform 
ir
uit1. Therefore, Ai in ACi and this theorem was shown.
�Theorem 4. NCi = NCi+1 → NCi − Complete = ACi − Complete = NCi+1 −

Complete.Proof. If NCi = NCi+1, all NCi−Complete, ACi−Complete,NCi+1−Complete
an redu
e ea
h other and NCi −Complete, ACi −Complete,NCi+1 − Completein NCi. Therefore, this theorem was shown. �Theorem 5. nc ( nc ◦NC1 | nc ⊂ NCiProof. To prove it using redu
tion to absurdity. We assume that nc = nc ◦NC1 |
nc ⊂ NC. It is trivial that nc = NCi = ACi = NCi+1 = ACi+1 = · · · .Be
ause nc = nc ◦ NC1 and mentioned above 4, R

(

FACi − Complete
)

=

FACi − Complete. Therefore
nc = nc ◦NC1 → ∀A,B ∈ R

(

FACi − Complete
)

∃C ∈ FAC0 (A ◦B = A ◦ C)

A is reversible 
ir
uits family. Therefore A have A−1.
nc = nc ◦NC1

→ ∀A,B ∈ R
(

FACi − Complete
)

∃C ∈ FAC0
(

A−1 ◦A ◦B = A−1 ◦A ◦ C
)

→ ∀B ∈ R
(

FACi − Complete
)

∃C ∈ FAC0 (B = C)This means FAC0 = FACi. But this 
ontradi
t AC0 ( NC1 ⊂ ACi.Therefore, this theorem was shown than redu
tion to absurdity. �Corollary 6. NCi ( NCi+1Theorem 7. ACi ( ACi+1Proof. If ACi = ACi+1 then ACi = NCi+1 = ACi+1 = NCi+2 = ACi+2 and
ontradi
t mentioned above 5 NCi ( NCi+1. Therefore, this theorem was shownthan redu
tion to absurdity. �Theorem 8. NC = AC ( PProof. To prove it using redu
tion to absurdity. We assume that NC = P . It istrivial that we 
an redu
e some A ∈ P − Complete to B ∈ NC. But B is also in
NCi. Therefore, this mean that NCi = NCi and 
ontradi
t mentioned above 5
NCi ( NCi+1. Therefore, this theorem was shown than redu
tion to absurdity. �Corollary 9. L ( P 3. PH is properDe�nition 10. We will use the term �L�, �P �, �P − Complete�, �NP �, �NP −
Complete�, �FL�, �FP � as ea
h 
omplexity 
lasses. These 
omplexity 
lasses alsouse Turing Ma
hine (TM) set that 
ompute target 
omplexity 
lasses problems.We will use the term �∆k�, �Σk�, �Πk� as ea
h Polynomial hierar
hy 
lasses. �f ◦ g�as 
omposite problem that output of g are input of f . �R (A)� as �reversible TM�that equal A. Reversible mean that (R (A) ◦ (R (A))

−1
)

(x) = x.
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an redu
e Σk and Πk to another Σk and Πk that have tree graph of
omputation history. (if all 
on�guration keep input, 
omputation history be
ometree graph.) These Σk,Πk are R (Σk), R (Πk) be
ause ea
h 
omputation history ofea
h output only rea
h one input. Therefore (

R (A) ◦ (R (A))
−1

)

(x) = x. We 
an
ompute these redu
tion in FP . Therefore, this theorem was shown. �Theorem 12. R (Σk − Complete) ⊂ Σk − CompleteProof. Mentioned above11, it takes atmost O (n) times and spa
es to redu
e Σkinto R (Σk). Therefore this theorem was shown. �Theorem 13. P ( NPProof. To prove it using redu
tion to absurdity. We assume that P = NP .As we all know that if P = NP then all NP 
an redu
e P − Complete under
FL. And all NP ◦ FP ⊂ NP . Therefore

P = NP → ∀A ∈ NP − Complete∀B ∈ FP∃C ∈ FL (A ◦B = A ◦ C)Mentioned above11, R (NP − Complete) ⊂ NP − Complete. Therefore
P = NP → ∀D ∈ R (NP − Complete)∀B ∈ FP∃C ∈ FL (D ◦B = D ◦ C)
D is reversible fun
tion. Therefore D have D−1.
P = NP

→ ∀D ∈ R (P − Complete)∀B ∈ FP∃C ∈ FL
(

D−1 ◦D ◦B = D−1 ◦D ◦ C
)

→ ∀D ∈ R (P − Complete)∀B ∈ FP∃C ∈ FL (B = C)This means FP = FL. But this 
ontradi
t FL ( FP mentioned above5. There-fore, this theorem was shown than redu
tion to absurdity. �Theorem 14. σk ( σk ◦ Σ1 | σk ⊂ ΣkProof. To prove it using redu
tion to absurdity. We assume that σk = σk ◦ Σ1.Mentioned [2℄ Theorem 6.26, we 
an redu
e all σk to Σk −Complete under FP .Be
ause mentioned above 12, R (Σk) ⊂ Σk. Therefore
σk = σk ◦ Σ1 → ∃A ∈ R (Σk − Complete)∀B ∈ Σ1∃C ∈ FP (A ◦B = A ◦ C)
A is reversible fun
tion. Therefore A have A−1.
σk = σk ◦ Σ1

→ ∃A ∈ R (Σk − Complete)∀B ∈ Σ1∃C ∈ FP
(

A−1 ◦A ◦B = A−1 ◦A ◦ C
)

→ ∀B ∈ Σ1∃C ∈ FP (B = C)This means Σ1 = FP . But this 
ontradi
t mentioned above13. Therefore, thistheorem was shown than redu
tion to absurdity. �Corollary 15. Πk ( Πk+1,Σk ( Σk+1Theorem 16. ∆k ( Σk,Σk 6= ΠkProof. Mentioned [2℄ Theorem 6.12,
Σk = Πk → Σk = Πk = PH

∆k = Σk → ∆k = Σk = Πk = PHThis 
ontraposition is,
(Σk ( PH) ∨ (Πk ( PH) → Σk 6= Πk

(∆k ( PH) ∨ (Σk ( PH) ∨ (Πk ( PH) → ∆k 6= ΣkFrom mentioned above 14,
Σk ( Πk+1 ⊂ PH
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Σk ⊂ Σk+1, Πk ⊂ Πk+1,∀k ≥ 1 (∆k ⊂ (Σk ∩ Πk) ⊂ (Σk ∪ Πk) ⊂ ∆k+1)Therefore, ∆k ( Σk,Σk 6= Πk . �Theorem 17. Πk 6⊂ Σk,Σk 6⊂ ΠkProof. To prove it using redu
tion to absurdity. We assume that Πk ⊂ Σk. Thismeans that all Σk = Πk is also Σk.
Πk ⊂ Σk → ∀A ∈ Σk

(

A ∈ Πk ⊂ Σk

)Mentioned [2℄ Theorem 6.21, all Σk are 
losed under polynomial time 
onjun
tiveredu
tion. We 
an emulate these redu
tion by using Π1. That is,
∃B ∈ Σk∀C ∈ Σk∃D ∈ Π1 (B ◦D = C)Therefore,
Πk ⊂ Σk

→ ∃B ∈ Σk∀C ∈ Σk∃D ∈ Π1∀A ∈ Σk (B ◦D = C) ∧
(

A ∈ Πk ⊂ Σk

)

→ ∃B ∈ Σk∀C ∈ Σk∃D ∈ Π1 (B ◦D = C) ∧
(

B ∈ Σk

)

→ ∃B ∈ Σk∀C ∈ Σk∃D ∈ Π1 (B ◦D = C) ∧ (B ∈ Πk)Therefore Σk ⊂ Πk be
ause B◦D ∈ Πk. But this means Σk = Πk and 
ontradi
t
Σk 6= Πk mentioned above 16. Therefore Πk 6⊂ Σk.We 
an prove Σk 6⊂ Πklike this.Therefore, this theorem was shown than redu
tion to absurdity. �Theorem 18. ∆k ( ΠkProof. To prove it using redu
tion to absurdity. We assume that ∆k = Πk.Mentioned [2℄ Theorem 6.10,

Σk ⊂ Σk+1, Πk ⊂ Πk+1,∀k ≥ 1 (∆k ⊂ (Σk ∩ Πk) ⊂ (Σk ∪ Πk) ⊂ ∆k+1)Therefore
∆k = Πk

→ ∆k = Πk ⊂ (Σk ∩ Πk) ⊂ Σk ⊂ (Σk ∪ Πk) ⊂ ∆k+1

→ Πk ⊂ ΣkBut this result 
ontradi
t mentioned above 17.Therefore, this theorem was shown than redu
tion to absurdity. �Theorem 19. Σk ( ∆k+1,Πk ( ∆k+1Proof. To prove it using redu
tion to absurdity. We assume that Σk = ∆k+1.Mentioned [2℄ Theorem 6.10,
∀k ≥ 1 (∆k ⊂ (Σk ∩ Πk) ⊂ (Σk ∪ Πk) ⊂ ∆k+1)Therefore
Σk = ∆k+1

→ ∆k ⊂ (Σk ∩Πk) ⊂ Πk ⊂ (Σk ∪ Πk) ⊂ Σk = ∆k+1

→ Πk ⊂ ΣkBut this result 
ontradi
t mentioned above 17. Therefore Σk ( ∆k+1.We 
an prove Πk ( ∆k+1 like this.Therefore, this theorem was shown than redu
tion to absurdity. �Theorem 20. PH ( PSPACEProof. To prove it using redu
tion to absurdity. We assume that PH = PSPACE.It is trivial that we 
an redu
e some A ∈ PSPACE − Complete to B ∈ PH . But
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B is also in ∆k. Therefore, this mean that ∆k = ∆k+1 and 
ontradi
t mentionedabove 1819 ∆k ( ∆k+1 . Therefore, this theorem was shown than redu
tion toabsurdity. �Referen
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