
MEASURING COMPLEXITY BY USING REDUCTION TOSOLVE P VS NP AND NC & PHKOBAYASHI KOJI1. Abstra
tThis arti
le prove that NC and PH is proper (espe
ially P is not NP) by usingredu
tion di�eren
e. We 
an prove that NC is proper by using AL0 is not NC. Thismeans L is not P. We 
an prove P is not NP by using redu
tion di�eren
e betweenL and P. And we 
an also prove that PH is proper by using P is not NP.2. NC is properWe use 
ir
uit problem as follows;De�nition 1. We will use the term �ACi�, �NCi� as ea
h 
omplexity de
isionproblems 
lasses. �FACi� as fun
tion problems 
lass of ACi. These 
omplexity
lasses also use uniform 
ir
uits family set that 
ompute target 
omplexity 
lassesproblems. �f ◦ g� as 
omposite 
ir
uit that output of g are input of f . In this
ase, we also use 
omplexity 
lasses to show target 
ir
uit. For example, A ◦ BBwhen A is 
ir
uits family and BB is 
ir
uits family set mean that a ◦ b | a ∈ A, b ∈
B ∈ BB. �R (A)� as subset of reversible NC that in
lude A. Reversible mean that
(

R (A) ◦ (R (A))−1
)

(x) = x. Cir
uits family uniformity is that these 
ir
uits 
an
ompute FAC0.Theorem 2. NL ≤AC0 NC2Proof. Mentioned [1℄ Theorem 10.40, all NC2 are 
losed by FL redu
tion. Thisredu
tion is validity of (c1, c2) transition fun
tion. Transition fun
tion 
hange O (1)memory and keep another memory. Therefore this validity 
an 
ompute AC0 andwe 
an repla
e FL to FAC0. �Theorem 3. ACi has Universal Cir
uits Family that 
an emulate all ACi 
ir
uitsfamily. That is, every ACi has ACi − Complete under FAC0.Proof. To prove this theorem by making universal 
ir
uit family Ai ∈ ACi thatemulate 
ir
uit family {Cj} ∈ ACi by using �depth 
ir
uit tableau�. Universal
ir
uit Uj ∈ Ai have partial 
ir
uit uk,d that emulate all Cj gates gk∈n (in
ludeinput value) and 
onne
ted wires wp,q from gp output to gq input in every depth d.(wp,p always exist)
uv∈n,d have inputs from all uu∈n,d−1 and gu information that meana) validity of uu,d−1b) uu,d−1 output (true if gu output true)
) existen
e of wu,v (true if wu,v is exists)d) negation of wu,v (true if wu,v in
lude not gate)e) gate type of gv (Or gate or And gate)1



MEASURING COMPLEXITY BY USING REDUCTION TO SOLVE P VS NP AND NC & PH 2and outputs to uw∈n,d+1 that meanA) validity of uv,dB) uv,d outputThese uv,d 
ompute output like this;If uu,d−1 a) or 
) input false then uv,d ignore uu,d−1.If uu,d−1 a) and 
) input true then uv,d A) output true and uv,d B) output gkvalue that 
ompute from e), b), d). b), d) in
lude another uw∈n,d−1 b), d).If all a) input false then uk,d A) output false.If all 
) input false then uk,d A) output false.And depth 0 
ir
uit 
ompute additional 
ondition;If uk,0 is Cj input then uk,0 A) output true and ui,d B) output Cj input value,else uk,0 A) output false.This Uj that 
onsists of u emulate Cj . We 
an make every u in FAC0, so that
Ai in ACi.Therefore, this theorem was shown. �Theorem 4. NCi = NCi+1 → NCi − Complete = ACi − Complete = NCi+1 −
Complete.Proof. If NCi = NCi+1, all NCi−Complete, ACi−Complete,NCi+1−Complete
an redu
e ea
h other and NCi −Complete, ACi −Complete,NCi+1 − Completein NCi. Therefore, this theorem was shown. �Theorem 5. NCi ( NCi+1Proof. To prove it using redu
tion to absurdity. We assume that NCi = NCi+1.It is trivial that NCi = ACi = NCi+1 = ACi+1 = · · · .Be
auseNCi = NCi+1 and mentioned above 4, R (

FACi − Complete
)

⊂ FACi−
Complete. Therefore

NCi = NCi+1 → ∀A,B ∈ R
(

FACi − Complete
)

∃C ∈ FAC0 (A ◦B = A ◦ C)

A is reversible 
ir
uits family. Therefore A have A−1.
NCi = NCi+1

→ ∀A,B ∈ R
(

FACi − Complete
)

∃C ∈ FAC0
(

A−1 ◦A ◦B = A−1 ◦A ◦ C
)

→ ∀B ∈ R
(

FACi − Complete
)

∃C ∈ FAC0 (B = C)This means FAC0 = FACi. But this 
ontradi
t 
ontradi
t AC0 ( NC1 ⊂ ACi.Therefore, this theorem was shown than redu
tion to absurdity. �3. PH is properDe�nition 6. We will use the term �L�, �P �, �P − Complete�, �NP �, �NP −
Complete�, �FL�, �FP � as ea
h 
omplexity 
lasses. These 
omplexity 
lasses alsouse Turing Ma
hine (TM) set that 
ompute target 
omplexity 
lasses problems.We will use the term �∆k�, �Σk�, �Πk� as ea
h Polynomial hierar
hy 
lasses. �f ◦ g�as 
omposite problem that output of g are input of f . �R (A)� as �reversible TM�that equal A. Reversible mean that (R (A) ◦ (R (A))−1

)

(x) = x.Theorem 7. R (Σk) ⊂ Σk, R (Πk) ⊂ Πk.Proof. We 
an redu
e Σk and Πk to another Σk and Πk that have tree graph of
omputation history. (if all 
on�guration keep input, 
omputation history be
ometree graph.) These Σk,Πk are R (Σk), R (Πk) be
ause ea
h 
omputation history of
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h output only rea
h one input. Therefore (

R (A) ◦ (R (A))
−1

)

(x) = x. We 
an
ompute these redu
tion in FP . Therefore, this theorem was shown. �Theorem 8. P ( NPProof. To prove it using redu
tion to absurdity. We assume that P = NP .As we all know that if P = NP then all NP 
an redu
e P − Complete under
FL. And all NP ◦ FP ⊂ NP . Therefore

P = NP → ∀A ∈ NP − Complete∀B ∈ FP∃C ∈ FL (A ◦B = A ◦ C)Mentioned above7, R (NP − Complete) ⊂ NP − Complete. Therefore
P = NP → ∀D ∈ R (NP − Complete)∀B ∈ FP∃C ∈ FL (D ◦B = D ◦ C)
D is reversible fun
tion. Therefore D have D−1.
P = NP

→ ∀D ∈ R (P − Complete)∀B ∈ FP∃C ∈ FL
(

D−1 ◦D ◦B = D−1 ◦D ◦ C
)

→ ∀D ∈ R (P − Complete)∀B ∈ FP∃C ∈ FL (B = C)This means FP = FL. But this 
ontradi
t FL ( FP mentioned above5. There-fore, this theorem was shown than redu
tion to absurdity. �Theorem 9. Πk = Πk+1 → Πk − Complete = Πk+1 − CompleteProof. If Πk = Πk+1, allΠk−Complete,Πk+1−Complete 
an redu
e ea
h other and
Πk − Complete,Πk+1 − Complete in Πk. Therefore, this theorem was shown. �Theorem 10. Πk ( Πk+1Proof. To prove it using redu
tion to absurdity. We assume that Πk = Πk+1. It istrivial that Πk = Πk+1 = Πk+2 = · · · .Mentioned [2℄ Theorem 6.26, Πk − Complete under polynomial time redu
tionexist. Therefore all Πk+1 − Complete 
an redu
e Πk − Complete under FP . Be-
ause Πk = Πk+1 and mentioned above 9, R (Πk − Complete) ⊂ Πk − Complete.Therefore

Πk = Πk+1 → ∀A,B ∈ R (Πk − Complete)∃C ∈ FP (A ◦B = A ◦ C)
A is reversible fun
tion. Therefore A have A−1.
Πk = Πk+1

→ ∀A,B ∈ R (Πk − Complete)∃C ∈ FP
(

A−1 ◦A ◦B = A−1 ◦A ◦ C
)

→ ∀B ∈ R (Πk − Complete)∃C ∈ FP (B = C)This means Πk = FP . But this 
ontradi
t 
ontradi
t mentioned above8. There-fore, this theorem was shown than redu
tion to absurdity. �Theorem 11. ∆k ( Σk,Σk 6= ΠkProof. Mentioned [2℄ Theorem 6.12,
Σk = Πk → Σk = Πk = PH

∆k = Σk → ∆k = Σk = Πk = PHThis 
ontraposition is,
(Σk ( PH) ∨ (Πk ( PH) → Σk 6= Πk

(∆k ( PH) ∨ (Σk ( PH) ∨ (Πk ( PH) → ∆k 6= ΣkFrom mentioned above 10,
Σk ( Πk+1 ⊂ PHTherefore, ∆k 6= Σk,Σk 6= Πk.Mentioned [2℄ Theorem 6.10,
Σk ⊂ Σk+1, Πk ⊂ Πk+1,∀k ≥ 1 (∆k ⊂ (Σk ∩ Πk) ⊂ (Σk ∪ Πk) ⊂ ∆k+1)Therefore, ∆k ( Σk,Σk 6= Πk . �



MEASURING COMPLEXITY BY USING REDUCTION TO SOLVE P VS NP AND NC & PH 4Theorem 12. Πk 6⊂ Σk,Σk 6⊂ ΠkProof. To prove it using redu
tion to absurdity. We assume that Πk ⊂ Σk. Thismeans that all Σk = Πk is also Σk.
Πk ⊂ Σk → ∀A ∈ Σk

(

A ∈ Πk ⊂ Σk

)Mentioned [2℄ Theorem 6.21, all Σk are 
losed under polynomial time 
onjun
tiveredu
tion. We 
an emulate these redu
tion by using Π1. That is,
∃B ∈ Σk∀C ∈ Σk∃D ∈ Π1 (B ◦D = C)Therefore,
Πk ⊂ Σk

→ ∃B ∈ Σk∀C ∈ Σk∃D ∈ Π1∀A ∈ Σk (B ◦D = C) ∧
(

A ∈ Πk ⊂ Σk

)

→ ∃B ∈ Σk∀C ∈ Σk∃D ∈ Π1 (B ◦D = C) ∧
(

B ∈ Σk

)

→ ∃B ∈ Σk∀C ∈ Σk∃D ∈ Π1 (B ◦D = C) ∧ (B ∈ Πk)Therefore Σk ⊂ Πk be
ause B◦D ∈ Πk. But this means Σk = Πk and 
ontradi
t
Σk 6= Πk mentioned above 11. Therefore Πk 6⊂ Σk.We 
an prove Σk 6⊂ Πklike this.Therefore, this theorem was shown than redu
tion to absurdity. �Theorem 13. ∆k ( ΠkProof. To prove it using redu
tion to absurdity. We assume that ∆k = Πk.Mentioned [2℄ Theorem 6.10,

Σk ⊂ Σk+1, Πk ⊂ Πk+1,∀k ≥ 1 (∆k ⊂ (Σk ∩ Πk) ⊂ (Σk ∪ Πk) ⊂ ∆k+1)Therefore
∆k = Πk

→ ∆k = Πk ⊂ (Σk ∩ Πk) ⊂ Σk ⊂ (Σk ∪ Πk) ⊂ ∆k+1

→ Πk ⊂ ΣkBut this result 
ontradi
t mentioned above 12.Therefore, this theorem was shown than redu
tion to absurdity. �Theorem 14. Σk ( ∆k+1,Πk ( ∆k+1Proof. To prove it using redu
tion to absurdity. We assume that Σk = ∆k+1.Mentioned [2℄ Theorem 6.10,
∀k ≥ 1 (∆k ⊂ (Σk ∩ Πk) ⊂ (Σk ∪ Πk) ⊂ ∆k+1)Therefore
Σk = ∆k+1

→ ∆k ⊂ (Σk ∩Πk) ⊂ Πk ⊂ (Σk ∪ Πk) ⊂ Σk = ∆k+1

→ Πk ⊂ ΣkBut this result 
ontradi
t mentioned above 12. Therefore Σk ( ∆k+1.We 
an prove Πk ( ∆k+1 like this.Therefore, this theorem was shown than redu
tion to absurdity. �Referen
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