MEASURING COMPLEXITY BY USING REDUCTION TO
SOLVE P VS NP AND NC & PH

KOBAYASHI KOJI

1. ABSTRACT

This article prove that NC and PH is proper (especially P is not NP) by using
reduction difference. If L is not P, we can prove P is not NP by using reduction
difference between logarithm space and polynomial time. Like this, we can also
prove that NC is proper by using ALO is not NC1. This means L is not P. Therefore
P is not NP. And we can also prove that PH is proper by using P is not NP.

2. Pi1s Nor NP 1r L 1s NOT P

Definition 1. We will use the term “L”, “P” “P — Complete”, “NP”, “NP —
Complete”, “FL”, “FP” as each complexity classes. These complexity classes also
use Turing Machine (TM) set that compute target complexity classes problems. “ fo

g as composite TM that accepting configurations of g are starting configurations
of f.

Theorem 2. LC P+ P C NP

Proof. To prove it by using contraposition P = NP — L = P.

As we all know that if P = NP then all NP can reduce P — Complete under
FL.

P=NP —VAe€ P —Complete, Be NP — CompletedC € FL(AoC = B)

NP — Complete that reduce by F'P is also NP — Complete because

P=NP - FP'=FP

— NP — Complete <pp NP — Complete = NP — Complete o FP

NP — Completeo FNP C NP — Complete

Therefore

P=NP

— VD € P—Complete, E € NP—Complete, F € RFP3G € FL(DoG=FEoF)

If P= NP, {1} € NP — Complete and some NP — Complete can reduce {1}
under some RFP.

P=NP —VYD e P—CompletedG € FL(D oG = {1})

This means L = P. Therefore, this theorem was shown. O

3. NC 1S PROPER
We use circuit problem as follows;

Definition 3. We will use the term “AC?’, “NC? as each complexity decision

problems classes. “FAC® as function problems class of “AC?”. These complexity

classes also use uniform circuits family set that compute target complexity classes

problems. “f o ¢* as composite circuit that output of g are input of f. In this case,
1
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we also use complexity classes to show target circuit. For example, Ao BB when A
is circuits family and BB is circuits family set mean that aob|a € A;b € B € BB.
Circuits family uniformity is that these circuits can compute FACP.

Theorem 4. NL < 400 NC?

Proof. Mentioned [1] Theorem 10.40, all NC? are closed by FL reduction. This
reduction is validity of (c1, ¢2) transition function. Transition function change O (1)
memory and keep another memory. Therefore this validity can compute AC® and
we can replace FL to FAC?. O

Theorem 5. AC® has Universal Circuits Family that can emulate all AC? circuits
family. That is, every AC* has AC* — Complete.

Proof. To prove this theorem by making universal circuit family A° € AC? that
emulate circuit family {C;} € AC? by using “depth circuit tableau”. Universal
circuit U; € A® have partial circuit uy 4 that emulate all C; gates gre,, (include
input value) and connected wires w, 4 from g, output to g, input in every depth d.
(wp,p always exist)

Uyen,d have inputs from all uyepn g—1 and g, information that mean

a) validity of wy g1

b) wy,q4—1 output (true if g, output true)

c) existence of w,,, (true if w,, , is exists)

d) negation of w,, (true if w, , include not gate)

e) gate type of g, (Or gate or And gate)

and outputs to wyen,a+1 that mean

A) validity of uy g

B) wy, 4 output

These u,,q compute output like this;

If wy,q—1 @) or ¢) input false then u, 4 ignore wy, q—1.

If uy 4—1 @) and c) input true then w, 4 A) output true and u, q B) output g
value that compute from e), b), d). b), d) include another wyepn,a—1 b), d).

If all a) input false then wuy 4 A) output false.

If all ¢) input false then wuy 4 A) output false.

And depth 0 circuit compute additional condition;

If ug,o is C; input then ugo A) output true and u; ¢4 B) output C; input value,
else ug o A) output false.

This U; that consists of u emulate C;. We can make every u in FACY, so that
A'in AC".

Therefore, this theorem was shown. (I

Theorem 6. NC' C NC*!

Proof. To prove it using reduction to absurdity. We assume that NC* = NC**!,
It is trivial that NC* = AC" = NC**! = AC*™H = ...

Mentioned above 5, all AC* — Complete can reduce AC* — Complete under AC?.
Therefore if NC* = NC*! then all NC? — Complete can reduce NC* — Complete
under ACY.

NC' = NC"*! VA, B € NC* — Complete3C € AC? (Ao C = B)

NC" — Complete that reduce by NC' is also NC?* — Complete because

NC' = NC#H!

— NC' — Complete <00 NCHL — Complete = NC* — Complete o NC?!
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NC' = NC*! — NC* — Completeo NC' ¢ NC**! = N(C*
Therefore

NC'= NC*' VD, E € NC'~Complete, F € NC'3G € AC°(DoG =EoF)
We can repeat this log’ n times. Therefore

NC'= NC*! - V¥D,E € NC'*—~Complete, F € NC'3G € AC°(DoG = EoF)
NC'* — Complete can reduce {1} by using NC?.

NC' = NC"*' - VD € NC* — CompletedG € AC® (Do G = {1})

This means AC? = AC?. But this contradict contradict AC® ¢ NC! c AC".
Therefore, this theorem was shown than reduction to absurdity. O

4. P 1s NoT NP
Theorem 7. P # NP

Proof. Mentioned above 2, L. C P — P C NP. And mentioned above 6, L C
NC? ¢ NC*! c P. Therefore P C NP. O

5. PH 1S PROPER
Theorem 8. II; C Il 0

Proof. To prove it using reduction to absurdity. We assume that II; = [Ix4o. It is
trivial that Il = gyo =1gyy =---.

Mentioned [2] Theorem 6.26, II;, — Complete under polynomial time reduction
exist. All II; can reduce Il — Complete under F'P. Therefore if 11, = IIj;42 then
all ITg42 — Complete can reduce 11, — Complete under FP.

Iy = g4o — VA, B € Il — CompletedC € FP(AoC = B)

I — Complete that reduce by ¥y o II; is also Il — Complete because

Iy = Hgqo — I — Complete <p 42 — Complete = I, — Complete o ¥ oIy

Iy = 4o — I — Complete o 31 o 11y = 40 = 1

Therefore

Iy =Mg4o — VD, E € Iy — Complete, F € £10I[;3G € FP(DoG=EoF)

We can repeat this k times. Therefore

Iy = Uyyo — VD, E € 11, — Complete, F € 1I;,3G € FP(DoG=FEoF)

IT;, — Complete can reduce {1} by using IIj.

I, = 4o — VD € II, — Complete3dG € FP (Do G = {1})

This means F'P = II;. But this contradict contradict FP C NP C II; men-
tioned above7.

Therefore, this theorem was shown than reduction to absurdity. ([

Theorem 9. Ay, C Xy, X # Il

Proof. Mentioned [2] Theorem 6.12,
=1, = X, =11, = PH
Ak:ZkaAk:Ek:Hk:PH
This contraposition is,

(Ek C PH)V (I C PH) — X £ 1

(Ak - PH)\/(Ek C PH)V (Il C PH) = A #£ X
From mentioned above §,

Yk - HkJrl Cc PH

Therefore, Ak 75 Ek, Ek # Hk.

Mentioned [2] Theorem 6.10,
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Y C Xpt1, g C Hk+1,Vk >1 (Ak C (Zk n Hk) C (Ek U Hk) C AkJrl)
Therefore, Ak g Ek, Ek # Hk - O

Theorem 10. II; & X, X & I,

Proof. To prove it using reduction to absurdity. We assume that II C Xx. This
means that all ¥ = IIj, is also Zy.

Iy CSp > VAe S, (Aelly CXy)

Mentioned [2] Theorem 6.21, all ¥, are closed under polynomial time conjunctive
reduction. We can emulate these reduction by using IIy. That is,

AB € XxVC € 533D €11, (Bo D = C)

Therefore,

Il C X

— 3B e 5,VC € 533D €e VA € 5 (Bo D =C) A (A €11, C i)

=3B eNVC e Xp3D €1y (Bo D =C) A (B € %)

— 3B € 3%,VC € Xx3D €11y (Bo D = CO) A (B € IIy)

Therefore ¥, C 11 because Bo D € II;. But this means >, = II; and contradict
¥ # Il mentioned above 9. Therefore I ¢ .

We can prove X ¢ IIilike this.

Therefore, this theorem was shown than reduction to absurdity. O

Theorem 11. A, C Il

Proof. To prove it using reduction to absurdity. We assume that Ay = IIj.
Mentioned [2] Theorem 6.10,
Y C Ypt1, Uy C g,V > 1 (Ak C (Ek NIl) C (Ek U Hk) C Akt1)
Therefore
Ak =11,
— A, =1l C (Ekﬁﬂk) C Y C (EkUHk) C Ak-‘,—l
— Il C X
But this result contradict mentioned above 10.
Therefore, this theorem was shown than reduction to absurdity. O

Theorem 12. ¥, C Apyq, i C Apyy

Proof. To prove it using reduction to absurdity. We assume that X = Agyq.
Mentioned [2] Theorem 6.10,
Vk > I(Ak C (Ek n Hk) C (Zk @] Hk) C Ak+1)
Therefore
Y =Ap
— A, C (Ekﬂﬂk) c Il C (EkUHk) C Xk :Ak-i-l
— Il C X
But this result contradict mentioned above 10. Therefore ¥ C Ag41.
We can prove II, C Ay like this.
Therefore, this theorem was shown than reduction to absurdity. O
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