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Abstract

In a 14-dimensional gravidynamic unification model, the spacetime as well as
the internal symmetries of 2 lepton-quark generations would be consolidated in
a 64-component Weyl fermion. Alternatively, the latter fermionic multiplet can
describe 8 charged leptons, with 8 associated neutrinos, and the corresponding
antiparticles. In such a framework, the dynamics of vector bosons, as well as of
Higgs scalars, would be generated at the quantum level via unified couplings to
a vector, an antisymmetric tensor of 3rd rank, and an antisymmetric tensor
of 5th rank. We exhibit the complete SU; structure of the latter couplings.
The underlying SU; would contain a color SUs symmetry, in the case of the
leptons and quarks, or a family SUs symmetry, in the alternative model of
purely leptonic unification. This work begins by writing the Lorentz algebra
of 14 dimensional spacetime in terms of its 4-dimensional Lorentz subalgebra,
and an internal Oy1g factor. The latter is expressed via its Us subalgebra. The
fermionic 64-plet is expressed in terms of 32 Weyl fermions in 4 dimensions.
Likewise, the pertinent vector and the tensors are expressed in terms of vectors
and scalars in 4 dimensions. The emerging picture regarding the fundamental
fermions, and their interactions, would lead to aspects that are describable by
the O1¢ and SUs; unification models, whether the grand unified model of leptons
and quarks, or the purely leptonic unification model.

1 Introduction

An Oq unification algebra, via its 16-component fundamental multiplet, would be able
to consolidate the symmetries and describe the interactions of fundamental fermions in
either of two ways. It is possible to describe the symmetries and associated interactions
of a single lepton-quark generation!!l> P, particles and antiparticles. Alternatively® it
is possible to describe the symmetries of 4 charged leptons, with 4 associated neutrinos,
and their antiparticles. In the first case one encounters a color SUs symmetry, while
in the second case, a family SU3 symmetry is encountered. In either case the SUj is a
subalgebra of SUs, the latter being the maximal subalgebra of Oqq.

In the framework of a higher-dimensional gravidynamic unification, we can embed the
O19 symmetry within a 14-spacetime scheme. The underlying O; 13 symmetry would
consolidate Oy with the 4-spacetime Lorentz symmetry. Both the spin and the internal
quantum numbers would become properties of a single spinorial representation. This
scheme is similar to the embedding of an Oy, internal symmetry in an 18-spacetime
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gravidynamic framework> Pl [0 where the fermionic content describes 4 generations
of leptons and quarks.

Whereas in an 18-spacetime scheme, the symmetries of all fermions are consolidated
in a 256-component Majorana-Weyl spinor that can describe 64 Weyl particles in 4-
spacetime, we can only deal with a Weyl fermion in 14-spacetime, without a Majorana
condition, and where the fundamental Weyl spinor has 64 components, affording to
describe only 32 Weyl particles in 4-spacetime. Whereas the Oy, internal symmetry
of 18-spacetime, via its SU; maximal subalgebra, would account for both, a color SUj
and a family SUs, the Oy internal symmetry of 14-spacetime, via its SUs maximal
subalgebra, would account to a single SUj, the latter being either a color symmetry
or a family symmetry. Hence, in a 14-spacetime gravidynamic model, we can either
describe a lepton-quark model with color or, alternatively, a purely leptonic model with
family structure. In fact, the 32 Weyl fermions emerging from 14-spacetime can either
describe two (rather than one) lepton-quark generations, particles and antiparticles.
Alternatively, they can describe 8 (rather than 4) charged leptons, with associated 8
neutrinos, and their antiparticles.

Our purpose in this article is to treat the O, ;3 algebra of 14-spacetime in the same
manner!® used to treat the 01,14 algebra of 18-spacetime. We shall explore, in detail,
the decomposition of the O 13 symmetry through the 4-spacetime O; 3 symmetry and
the internal O;9 symmetry factor. The structure of the latter will take shape via the
SUj; subalgebra.

In the following section, we shall begin by constructing the O; ;3 algebra in terms of
O13 and Uy structural elements. This will be followed by algebraic techniques for
representing an O; ;3 vector as well as antisymmetric tensors of ranks 3 and 5. In fact,
a vector and antisymmetric tensors of ranks 3 and 5 are the only possibilites for bosons
that can couple to a Weyl fermion in 14-spacetime, apart from the pertinent graviton
field. These bosons would have components that can describe vectors and scalars in
4-spacetime, and their dynamics would be generated by quantum-loop contributions.

In a subsequent section, we shall construct an Oy ;3 algebraic representation of the 64-
component Weyl spinor, and its Dirac conjugate, in terms of O;3 Weyl spinors that
carry SUj tensorial indices. This will be followed by the composition of the vector
and the tensors from fermionic bilinears. This leads the way to the construction of the
couplings of the fundamental fermions to the vector and the tensors.

2 The Algebra O, ;3 in Terms of O;3 and Us

The generators of the Lorentz algebra O ;3 in 14-spacetime may be decomposed into
the following set of generators:

{JmeabaQabaQabaHumH;La} (1)

Here, the symbols (i, v, A, ---) are used to represent vectorial indices in 4-spacetime,
the symbols (a, b, c,---) to represent the indices of complex SUjs vectors. In the above,
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the J,,, being antisymmetric in (x,v), are the generators of the 4-spacetime Lorentz
algebra. The J,” are the generators of Us, the trace part of which is a U; generator,
while the traceless part gives the generators of SUs. The conjugate generators Qg
and Q%, being antisymmetric in (a, b), are in the coset of O14 over Us. The conjugate
generators H,, and H," are in the coset of Oy 13 over Oy 3 and Oy.

We begin by writing the commutators of the O; 3 generators in the form
[y Inpl = (Moadup = Mundvp + Nupdox = Mupdun) (2)
Here 7, is the constant metric of 4-spacetime.

Whereas the generators J,, commute with the generators of Oy, namely, .. Qup, and
Q% we have

[Jyws Hxa) = (muaHpua — NurHya) (3)
(s H)" = (uaH" — nunH,") (4)
The generators J,” of the Us algebra satisfy the commutators:
[Ja", JeT] = (8" Ja® = a7 J") (5)
The commutators of J,° with the Q’s are
[Ja Qea) = (8:"Qua — 64" Qac) (6)
[Jab, ch} _ (5achd _ 5adec) (7)
The commutators of J,* with the H’s are
[Jo", Hye] = 0" Hpa (8)
(7. H,°] = —6,°H," (9)
The commutators of the ()’s among themselves are
[Qap, Qea] =0 (10)
[Qap, Q] = (05T — 8a° D" + 6.0 — 6,7 1) (11)
[Qab’ ch} —0 (12)
The commutators of the (Q’s with the H’s are
[Qaps Hyue) = 0 (13)
[Qab, H] = (6"Hpua — 60" H,up) (14)
Q" Hue] = (0" H}; = 6. H,.") (15)
Q. H, ] =0 (16)
Finally, the commutators of the H’s among themselves are
[Huaa Hub] = _nuuQab (17)
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[Hyas 2] = =1 Ja” = 00" Ty (18)
[H.* H,"] = —1,Q" (19)

We can verify that all Jacobi identiries involving all generators are satisfied, and that
all generators commute with the following quadratic (Casimir) operator:
1

1 1
5‘]}11/‘]1//1, + Jabea + éQabea + §Qabea - H,uaH,ua - H,uaH,ua (20)

3 The Representation of an O, ;3 Vector

In order to represent a vector in 14-spacetime, let us introduce the operators (K, K,, K%).
The commutators of these with the Lorentz generators .J,, are

[JW, K/\] = (nu)\K/L - nuAKu) (21)
[Juws Ka] = 0 (22)
[Jy, K] =0 (23)
The commutators of the Us generators J,° are

[Ja", KA =0 (24)
[Jo", K] = 6" K, (25)
(1.0 K] = =6,°K" (26)

The commutators of (), are
[Qap, Kn] =0 (27)
[Qap, K] =0 (28)
[Qab, KT = (05°Ka — 6a°Ks) (29)

The commutators of Q% are
[Q” K] =0 (30)
Q" K ] = (6."K* — 0."K") (31)
(@ K] =0 (32)

The commutators of H,, are
[Hya K] = —nun K (33)
[H i, K] = 0 (34)
[H;mv KC] = 6acKu (35)

And finally, the commutators of H," are

[, K] = =K (36)
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[H,* K] = 06K, (37)

[H,* K =0 (38)

We can verify that all the Jacobi identities involving any two of the Oy ;3 generators J,,,,
T Qup, Q0. H,, or H,", with either of the operators K, K,, or K, are satisfied.
Moreover any of the O; ;3 generators can be shown to commute with the following

quadratic operator:
K,K,+ K, K+ K°K, (39)

We proceed now to the introduction of the multiplet that can be associated with the
above operator representation, and to the construction of the infinitesimal O, ;3 trans-
formations that act on it. The desired multiplet with components {B,,, B,, B*} can be
introduced by the vector module

B=B,K, + B,K*+ B"K, (40)
Introducing the O, ;3 parameter module,
1 1 1
W = §QWJW + QL+ §Qaan" + §Q“anb + QuaH, "+ Q" H (41)

we can compute the commutator [W,B]. The latter gives a vector module whose
components would define the needed infinitesimal transformations. We obtain

0B, = QuB, + Q.,B* +Q,"B, (42)
6B, = —Q."By + QuyB® — Q,,B,, (43)
6B = W"B" + Q"B, — Q,°B, (44)

We can verify that, for any two vector modules A and B, the above infinitesimal trans-
formations, acting in a like manner on the components of both, would leave invariant
the following bilinear form:

A-B=A,B,+ A,B" + A"B, (45)

4 The Antisymmetric Tensor Representation of Rank 3

An O, 3 antisymmetric tensor representation of rank 3 would have the following O 3
and Us covariant components:

{K,u,y)\’ K,uua,u K,uuau K,uab7 Kuabu K,uab7 Kabc’ Kabca Kabcy Kabc} (46)

The symmetries of the above components with respect to their spacetime and SUj
indices should be clear. Notice that the tensor K, could be traded for a single-index
counterpart using the 4-dimensional epsilon symbol €,,,. However, it is convenient to
leave it in this form, at this stage. Likewise, the 3-index SUj tensors can be traded for
2-index tensors using the pertinent epsilon symbol. Again, it is more convenient to leave
them as such. The replacements can be made later after the couplings are constructed.
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In order to be able to write out the infinitesimal transformations of an associated
multiplet, we proceed now to the elaborate task of writing down the commutators of
the above component operators with the generators of the O, ;3 algebra.

For the commutators of J,,,, we have

s
[ Knpol = (muaKyupo + MpKyox + e Kpunp) — (14 v) (47)
(S Knpal = urEppa — MuplKpna) — (1 <> v) (48)
[y Kop®] = (munEpp” — MpKyn") — (1 > v) (49)
[y Kxab) = Mur K pab — MpnKvab (50)
[Juvs Kna”] = 1aKpua” — nunKva (51)
[T KA = 0a K, — B, (52)
The commutators of J,, with K., Ka°, K, and K are vanishing.
Whereas J,* commutes with K s 1ts commutators with the other K's are
(1.0 Kpwe] = 6K e (53)
[T K] = ~0,°K (54)
a8 Kpea) = 0. Kyt — 64" K e (55)
[Jabv K/wd] = 5chuad - 5adKucb (56)
[Jab’ Mcd]:_écK bd+5dK be (57)
[Jab, che} = 0" Kade + 64" Kaee + 0" Koea (58)
[Jo", Kea®] = (0" Kad® — 04" Kae®) — (0aKea”) (59)
[Jab’che} ( SIK de) _ ( dKCbe _ 5aechd) (60)
[Jab7 che} _ (5achde + 8,4 Kbec 6aeKbcd) (61)
The nonvanishing commutators of (), with the K’s are:
[Qaps K] = 0 Ko — 0" Ky (62)
[Qabs K] = 00" Kbe — 6" K jae (63)
[Qabs K.Y = — (0 K" — 06 Ko + 6 Ko — 6. K1) (64)
[Qap, Ked] = (06" Kaca — 60" Kpea) (65)
[Qubs K%)= — (65" Kae® — 8" Kpe" + 00" K" — 6°Ko”) (66)
[Qaba che} _ (5chade + 6,0, + 6beKacd) ~(a s b) (67)
The nonvanishing commutators of Q® with the K’s are:

[Qab WC] =9, bK/wa - 5caK/wb (68)
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[Qab’ K,ucd:| = (5ca udb - 5chuda + 5deuca - 5daKucb)

[Qab>Kucd} — (schuad . 5caKubd

[Qab> che} = (5chdea + 6deeca + 5echda) — (a < b)

[Q™, Ket] = (-0 Kq™ + 04" K:*) — (a 4+ b)
[Qab’ che} _ g ede _ 5 afgbde
The nonvanishing commutators of H,, with the K’s are:

(H o, Kuxp) = — 0w EKopa + MupEKora + 10K pva)
[H,uaa Kz/Ab] = (mVK,\ab - mAKyab)

(Huas K] = (1 Kona” = nurKa”) + (86" Ky

(H o Kubel = =1 Kape

[Hya, Kip“] = =0 Kb + 00" Kb

[y K] = = (i Ka™) = (06" Ko = 00" K ")

[Hpa, K] = 6. K e
[H o, K] = =0 K + 6. K
[HMQ’Kbcd} _ (5abKMcd i 5adKMbc n 5acKMdb)
Finally, the nonvanishing commutators of H,* with the K’s are:

[H, Koapl = = (K" + Mup Kon" + 0K ?)

[Hua, Ko =— (nMVK)\ba — nu)\KI/ba) + (5baKw/)\)
[H," K] = (0w K™ = 1 K,™)

[Hua, Kubc] = - (muKbca) - (5baK,wc — 0" Wb)

[Hua> K] = N Ko™ — 04" K
[ H,e Kybc} = K
(H,", Kbed) = (06" K pea + 0a" Kppe + 6" K uap)
[Huav Kbcd} - (5baKucd — 0" ubd)
[Hua’ Kbcd] = 5K,

83

(83)
(84)
(85)
(86)
(87)
(88)
(89)
(90)
(91)

91

We can verify that all the Jacobi identities involving any two of the Oy ;3 generators J,,,

Jab, Qup, Q, H,, or H,", with either of the operators K, K va, - -
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Moreover any of the O; ;3 generators can be shown to commute with the following
quadratic operator:

(1

gK;u/AKMVA

1 a 1 a
+§K,LLI/CLK,LLI/ + §K,u,1/ K,LLI/CL

(92)
+%KuabKuab + %KuabK/wb - KuabKuba

+%Kachabc + %Kuchabc + %Kachcab + %Kachbca

\

We proceed now to the introduction of the multiplet that can be associated with the
above operator representation, and to the construction of the infinitesimal O; ;5 trans-
formations that act on it. The desired multiplet with components { B, Buva, - - - } can
be introduced by the tensor module

%B,UJ/AKMVA + %B,uuaKuua + %BMVGKMVG
B=1{ +iB,wK,"” + Bu"Ku" + 1B, K,u (93)
_’_%Bachabc + %Bachcab + %Bachbca + %Bachabc
Introducing the O, ;3 parameter module,
1 bra 1 ab 1 ab a a
W = §Q,UVJ#V + Qa Jb + §QabQ + 59 Qab + Q,uaHu + Q'u H;La, (94)

we can compute the commutator [W,B]. The latter gives a tensor module whose
components would define the needed infinitesimal transformations.

For By, we obtain
Q/\pBqu - QupBAVp + QVpBAup
0By = +QaBa" — Qua B + B (95)
+ 0" Buva — 2,°Byve + Q,Bija

For B,.., we obtain

_Q)\aBAp,V - Q)\;J,B)\l/a + Q)\VB)\/.LG
6Buua = _'_QVbB,uab + QabBuub - QubBZ/ab (96)

_Qabe,l/b + QubBllab - QubBuab
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For B,,“, we obtain

QB — 0B, ™ + QB
+Q)\VB)\,ua - Q)\,uB)\ua + QbaB,uub

~ 0By + QLB — Q0B
For B, we obtain
QuBrab — Qa By + iy Blva
+eBap® — Qe B 4 QaeB©
+Q0.°Bpe — 0 Blae + 0, Bape

— QB pe — Qe Ba" + Qe B,
5Buab = +anB;wb + Q,u,l/Buab - QacBucb

For Bwb, we obtain

b c c b b
+Qc B,ua + Qu Bac - QI/ Buua
For B,ﬁb, we obtain

QB + QB + QB
_QacB#Cb o QCaB#bc + QCbB#aC

Quchab . QVaB/J,l/b + QVbBuVa
For B,,., we obtain

_QuaBp,bc + Qubeac - Q;L(:Bp,ab
+chBabd - deBacd + Qadecd

_Qadecd + deBacd - chBabd
For B¢, we obtain

QByyg — QpaBa + QaaBy™
5Babc = _Q,u,bB;Lac + Q,uaBp,bC + QadedC
_deBadc + QdCBabd - QMCBMab
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For B,%, we obtain

Qadecd _ QMGBMbC o chBgd A
0B, = ¢ +02"B" — QB — Q" B, (103)

cp bd b c c b
1B — O, Bt + O, B |
Finally, for B¢, we obtain

chBdab _ deBdac + QadBdbc )

§B% = ¢ +Q4°B" — Q' B + QB (104)

_QuaBubc + QubB/Lac o QucBuab )

We can verify that, for any two tensor modules A and B, the above infinitesimal trans-
formations, acting in a like manner on the components of both, would leave invariant
the following bilinear form:

%A,U,VABMV)\ + %A,uuaBuua + %AuuaBuVa
A-B={ +34,uB.," — A’Bu" + A4, Buay (105)

+%AachabC + %AabCBcab + %Aachbca + %Aachabc

5 The Antisymmetric Tensor Representation of Rank 5

An O, 3 antisymmetric tensor representation of rank 5 would have the following O 3
and Us covariant components:

( a
K;uz)xpa ) Kuw\p )

b ab
K,Lw)\aba K,uu)\a ) K,ul/)\ )
c be abc
K;uzabca Kuuab ) Kw/a ; Kul/ ) (106)
d cd bed abed
KuabcdaK,uabc 7K,uab 7K,ua 7K,LL )

e de cde bede bed,
KabcdeyKabcd 7Kabc 7Kab aKa aKa e

\ Vs

The symmetries of the above tensorial components with respect to spacetime and SUj;
indices should be clear. Notice that tensors with 4 vectorial indices (uvAp) could be
traded for zero-vectorial-index counterparts using the 4-dimensional epsilon symbol
€.w2p, and tensors with 3 vectorial indices (urA) could be traded for a single-vectorial-
index counterparts, again, using the epsilon symbol. However, it is more convenient to
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leave them in the present form, at this stage. We now proceed to the elaborate task of
writing down the commutators of the above component operators with the generators
of the Oy ;5 algebra.

We have treated the above tensorial multiplet of 5th rank exactly in the same manner
by which we have treated the 3rd rank counterpart. However, the associated formalism
is too extensive to be presented here. Interested readers can request the pertinent
material if they think it would be useful for their work.

We now move to the treatment of the spinorial fermionic multiplet, being the most
essential part of our development.

6 The Dirac-Weyl Spinorial Representation of O; ;3

A Dirac spinor in 14-spacetime has 27 = 128 components. A Weyl (chiral) constraint
would reduce this to 64 components. We cannot have an additional Majorana constraint
for fermions in 14-spacetime. In order to construct a corresponding multiplet of Weyl
spinors in 4-spacetime, with components that are described by Us tensors, we introduce
the following set of operators:

{Ra LaaRab7Lab7Ra7L} (107)

The above objects are alternately right-handed and left-handed Weyl spinors of the
4-spacetime. As before, the symbols (a, b, c,...) do pertain to SUs, with the 2-index
objects antisymmetric. We now write the commutators of the above operators with the
generators of the O 13 algebra.

For the commutators with J,,, the generators of the 4-spacetime Lorentz algebra, all
the foregoing operator elements would satisfy commutators like this:
1

[J,uw R] = _§V;WR (108)

In the above, v, is a member of the Dirac algebra, being equal to % [Yus Y] in terms of
the Dirac matrix operators v, that satisfy {v,,7.} = 2n,...

For the commutators with .J,°, the generators of Us, we have

(1.0, R] = —%5,}’3 (109)

(1.0 L] = 0."Ly — %MLC (110)

[J.", Rea] = (6."Radg — 64" Rac) — %aﬁRcd (111)
[J.0, LY = — (0,°L" — 6,°L") + %ML“Z (112)
(1.0, R] = —0,°R" + %5}36 (113)
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b Loy
[J.° L] = 50 L (114)
For the commutators with ()4, we have
[Qab; R] = Rab (115)
1
[Qaba LC] = §€abcdeLde (116)
[Qaba Rcd] - 6abcdeRe (117)
[Qabu LCd} - (5a05bd - 5b05ad) L (118)
[Qap, R} =0 (119)
(Qap, L] =0 (120)
For the commutators with Q. we have
(@, R] =0 (121)
(@, L] =0 (122)
[Q®, Rea) = = (8:204" — 6.°04%) R (123)
[Qab’ LCd} — _ea,bcdeLe (124>
1
[Qab’ Rc] — _§€abcdeRde (125)
Q¥ L] = —L* (126)
For the commutators with H,,, we have
1
[H,a, R = —E%La (127)
1
[Huaa Lb] = EPYuRab (128)
1
[Hya, Roc] = _mea”cde’wde (129)
C 1 C C
[Hya L] = — (6."R° — 6,°R") (130)
1
[Hya, Y] = = 0:",L (131)
(H,q, L] =0 (132)
For the commutators with H,“, we have
[H, Rl =0 (133)
The SUs Structure of 14-Dimensional Unification by N.S. Baaklini 12
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[H,.", Ly] = %&%R (134)

(1,2 B = == (8L = 6.° L) (135)
[ H, Lbc] _ 2_\1/§ cabedey Ry (136)
[H, R"] = %%L“b (137)

[H,, L] = ==, " (138)

V2
We can verify that all the Jacobi identities involving any two of the O; ;3 generators
Juw, Tb Qup, Q0 H,., or H,”, with any of the operators R, L,, Rap, L%, R%or L, are
satisfied.

7 The Dirac Conjugate Spinorial Representation of O; ;3

In order to be able to write Lagrangian terms for fermionic fields we must introduce
the conjugate spinorial representation. This can be done with the operator set

{R,L*,R™, La, R,, L} (139)

All these are Dirac conjugate spinors. We now write the commutators of all the Oy ;3
generators with the elements of the above set.

First, all the above set of operators, being all Dirac conjugate spinors, would have
commutators with J,,, the 4-spacetime Lorentz generators, that are like this:

_ 1_
|:J/u/a R:| = ERP}/;U/ (140)

For the commutators with J,°, the Us generators, we have

(1.0, R] = %5}1‘% (141)

(7.0, L] = —6,°L" + %(Lf’LC (142)

[Jab; Rcd} - _ ((SaCRbd . 5adec) + %dlecd (143)
[Jaby Z—/cd] = (5chad - 5dbEac) - %5achd (144)
[ R = 6.Re — 50, (145)

The SUs Structure of 14-Dimensional Unification by N.S. Baaklini 13
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S
[J.° L] = 50a'L (146)
For the commutators with ()., we have
[Qap, R] =0 (147)
[Qap, L] = 0 (148)
[Qus, B] = (8,56 — 6,°6,%) R (149)
[Qab; ch} = EabcdeEe (150)
_ 1 _
[Qaba Rc] = 5‘50LbcdeRd6 (151)
[Qab, L] = Lap (152)
For the commutators with Q, we have
[Q®, R] = —R* (153)
[Qab7 Ec] — _%GabcdeLde (154)
[Qab’ Rcd} — _eabcdeé6 (155)
Q. Lea] = — (5.0, — 6.26,%) L (156)
Q" R.] =0 (157)
Q. L] =0 (158)
For the commutators with H,,, we have
[H,uaa R:| =0 (159)
_ 1 _
[H,., L] = —E%bR% (160)
(H0 B"] = _% (6.°L¢ — 6,°T) v, (161)
_ 1 _
[H,uaa Lbc] - _meabcdeRde'Yu (162)
_ 1 _
[Hyuo, Ry = ELQM (163)
_ 1 _
[Ho, L] = ——2Ra% (164)
For the commutators with H,“, we have
[, R = %L"% (165)
The SUs Structure of 14-Dimensional Unification by N.S. Baaklini 14
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[H. L] = %R"b% (166)

[H,° R*] = ﬁea‘w%de% (167)
[H,", Ly.| = —% (6" Re — 6" Ry) v (168)
[H," Ry] = %&,aiw (169)
[H,* L] =0 (170)

We can verify that all the Jacobi identities involving any two of the Oy 3 generators
s T2 Qap, Q, H,,, or H,”, with anyone of the operators R, L%, R® La, R, or
L, are satisfied.

Having constructed the manifestly 4-spacetime Lorentz covariant, as well as the Usj
covariant, algebraic representations for a fundamental O, ;3 spinor, and its Dirac con-
jugate, we can verify that all generators J,,, T Qup, QO H,q, or H,", of O3 do
commute with the following quadratic operator:

_ I 1_ _ _
LL — R,R* — éLabL“b — §R“bRab — L°L,+ RR (171)
We now proceed to construct the spinorial multiplet modules, giving the infinitesimal

transformations of the components, and the invariant bilinear.

8 Fundamental Spinorial Multiplet

We introduce an SUj covariant multiplet of Weyl spinors in 4-spacetime, represented
by the following module:

- _ 1- 1- - _
W= L€+ Rox" + S Laf™ + SR xar + L0 + Ry (172)

Notice that the ¢’s are right-handed Weyl spinors, while the x’s are left-handed. We
also introduce the Dirac conjugate module:

_ _ 1- 1 _
U = &L+ Yo R + §§abL“b + §>—<abRab + &L, + xR (173)

Now, with the O, ;3 parameter module,

1 1 1
W = §QWJW + Q0T + §QabQ“b + iﬂaanb + QuaH, " + Q" H o (174)

we can compute the commutators [W, ¥] and [W, \i/] These give the corresponding
spinorial modules whose components define the Oy ;3 infinitesimal transformations.
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For the infinitesimal transformations of the ¥ components, we obtain

1 1 1 1
5:_91/ V__Qaa __Qa ab _Qa “
5 4,11’7#5 9 5 2 bg +\/§ pua YuX
%QNV’Y/U/XG + Qbaxb - %beXa
ox* =
_ieadeechXde + %Qub%;gab - \/LiQ,ua’yug
12w — Q€+ Q6 — 305
5 = | =™ Quabe + Q€ + FLme ™ QX e
_\%Qub,yuxa + %Qua,}/‘uxb
%QMV,YMVXQI) + QaCXbc - QbCXac + %QCCXab
6Xab = _Qabx + %eabcdeQCd ‘= %be/y,uga
+10 & — 1 QO c 5de
V2 paYuSh Qﬂeabcde w T
iQyurYuuga - Qabgb + %bega
0&, =
“‘ieabcdegbcfde + \/%QWMX + %Qub’VuXab
1 1 1 1
ox =~ v v _Qaa _Qab ab — —=0,° a
X= g X+ 58+ 50 e = 75 i Tk

For the infinitesimal transformations of the ¥ components, we obtain
_ 1 _ 1 S - 1
06 =—-Q v v _Qaa _Qab ab — —0 aia
5 4,116’7;1 +2 5"‘2 gb \/E/AX/YM
_LllQ/LVXCL’y}U/ - Qab>_(b + %beXa

6)2(1 =
"‘ieabcdeﬂbcxde + \%Quaéylz + \%Qubgalﬂ/u

_%Q,uygabfhw + Qacgbc - chgac + %Qccgab

55—ab = _Q“bg + %EabcdeQCdge - \%Qubia’w

+\/L§Qua>zb7u - ﬁieabcdeﬂucide’)ﬁ
12 X — QX QX — 30X

5>—<ab _ _%EchdeQCdXe + Qabx + ﬁﬁ€abcdeQuC€dequ
bea agl
—%Q“ f T + %Qu éb’y,u
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_%Q/ﬂ/gafy;tu + Qbagb - %bega

- _ (185)
—%Eadeechgde + %Q#biab%“ B %Q#airyﬂ
~ 1 B 1 a— 1 —ab 1 ca
OX =~ X = 58"X = 58X+ Tt )

Having written the infinitesimal transformations, we can use them to show that the
following kinetic spinorial bilinear is invariant:

) E(iry - D)€ — Xaliy - D)X — 5Ean(i7y - D)E™
V(iy-0)¥ = ) (187)
+%)_(ab(i7 ' a)Xab + §a<i7 ' a)ga - X(W ' 8)X

9 The Composition of a Vector Mutiplet
from Fermionic Bilinears

Here we give the composition of an Oy 13 vector multiplet with components {V,,, V,, V*}
from the y and & components of a fundamental spinorial multiplet:

1 é’}/uf + Xa’YMXa - %@b%ﬁab
Vo= 188
A (188)

XY Xab + EVuba + XX

_ 1 _
‘/:1 - - (Xa€ + Sabxb - Zeabcdeibcgde + ngab + Xga) (189)
_ 1 _ _
Vo= (&x“ — X" = € e — X + 5“><) (190)

Using the Oq 13 infinitesimal transformations of the components on both sides, we can
verify that the above expressions are identities, in the sense that they are constructed
properly to be covariant with respect to the full O, 3 algebra.

10 The O, ;3 Couplings of a Vector to a Weyl Fermion

Using the forgoing composition of an Oy 13 vector in terms of the components os a Weyl
fermion, we can now construct the couplings. Starting with a bilinear invariant of two
vector modules V and W,

VW =V, W, + V,We 4+ VW, (191)

we then replace the components W, W,, and W, by their compositions in terms of
the x and the £ fermionic fields, and obtain the following manifestly Lorentz invariant,
as well as Uy invariant, coupling terms. These will be given according to the associated
bosonic component.
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First for the couplings to the vector V,,, we have

1 57u€ + XaVuX* — %gab”ﬁngab

V. ox — 192
Ve =X VuXab + EVuba + XVuX o
For the couplings of the scalar 5-plet V,, we have
X <§Xa — X" — iﬁadeefchde — X6+ éaX) (193)
For the couplings of the conjugate scalar 5-plet V¢, we have
Ve x <—Xa§ —&aX” + i%bcdeXbcfde & Xab — Xfa) (194)

11 The Composition of a 3rd Rank Tensor Multiplet
from Fermionic Bilinears

Here we give the composition of an Oy ;3 tensor multiplet of 3rd rank with components
Vierxs Viwa, Vi®, ete., from the x and the { components of a fundamental spinorial
multiplet: B -
1 frﬂwké + Xa VA X" — %gab'Y,uukfab
v/u/)\ - _ (195)
_% f)/,uu)\Xab + §a7puA£a + Xfy,uz/)\x

Xafy;wf + X’Yﬂufa + Eab”}’;wXb

w/a = T = B (196)
\/_ +£b’YuVXab - }Leabcdexbcqﬁufde
1 fa”YWX + équl/Xa - Xab’)/uugb
V' = —= B (197)
\/§ _)Zb,yuygab _ ZllEabcdeéﬂbc,ywjxde
- - 1 ~C de 1 —cd e
Vuab = _fab')/ug + XVuXab + éeabcdeg ’yuf - éeabcdex TuX (198)
(E7ua — XaVuX’ + Eacrul® — X*VuXac)
Via' = EVuE + XeuX© = 5Eed V€™ (199)
+504" _
FEXYuXed = EVpe — XX
a - a —a 1 abcde ¢ 1 abcde
Vi b= (_5’)/#5 b+ X quX + 55 bed EedVpe — 56 bed XCVuXde) (200)
abc — \/_Eabcde ( Xdef é de _ dee) (201)
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([ (—EabX 4 EXab — €abaer X9 )

1

Var® = — b6 + X&b —(a < D) (202)
NoR 5.

+&ax® — E9Xbd + Lebderg X €T

(_S(bcga + Xagbc + %edeefgadXef)

1 _ —
Vb = c_ ge — (b« 203
\ —Xal + X — iECdefggdeng )
_ _ 1
Vebe = —y/eabede (fXde — EdeX — §Xd§e) (204)

Using the infinitesimal O ;3 transformations of the components on both sides, we can
verify that the above expressions are identities, in the sense that they are constructed
properly to be covariant with respect to the full O, ;3 algebra.

12 The O, ;3 Couplings of a 3rd Rank Tensor
to a Weyl Fermion

Using the foregoing composition of a 3rd rank O; ;3 tensor in terms of the components
of a Weyl fermion, we can now construct the couplings. Starting with the bilinear
invariant ¥V - W of two tensor modules V and W, we would replace the components of
W by their compositions in terms of the y and ¢ fermionic components. We obtain the
manifestly 4-spacetime Lorentz invariant, and Uj invariant, coupling terms. These will
be given according to the associated bosonic field component.

Here we give the couplings of the fundamental fermions to the bosonic component V,,,»,
1 EVunné + XVuaX — 2EapVuné™
— Vi X (205)
12 - a ca 1. ab

+Xa’7,uu)\X +§ ’Yul/)\ga - §X YurAXab

Notice that the tensor V,,\ can be traded for a vector using the epsilon symbol of 4-

spacetime, and likewise, the Dirac matric 7, can be traded for «,vs. This should be
done in practical applications.

Here we give the couplings to the bosonic components V,,,,. The latter are a 5-plet of
field-strength-like tensors. We have

1 fwyxa - Xb/Y,uugab + @W’WX

—=Viwa X - (206)
2\/§ _)_Cab’)//u/fb - %Eadeegbc’YuVXde
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Here we give the couplings to the conjugate 5-plet,

1 X’y;wfa + gab’)/uuxb + Xa/yuug

__Vyax 207
5V (207

+5b'7;anb - %Eabcde)_(bcry,uugde

Here we give the couplings to the components V,,q;. These are a 10-plet of vector bosons
that lie in the coset of Oy over Us. We have

1 - a —a 1 abcde ¢ 1 abcde —
év,uab X (_57#5 b + X b’YHX + 56 bed gcd'y,uge - 56 bed Xc’y,uXde) (208)
Here we give the couplings to the conjugate 10-plet V%,
i
1 ab - - 1 ~C de 1 —cd e
§Vu XN\ XYuXab — gab%z& + Eeabcdef ’7u€ - éeabcdex YuX (209)

Here we give the couplings to the components V#ab. These are the vector bosons of Us.
We have ) _ _
V,ua X ()Zb%Xa - ga,yugb + XGCVMXIJC - gbc’Yugac)

EVu€ — XX — € + XX (210)
_lv @«
2ope 1b 15 . b
+3 X YuXbe — 580V
Notice that we can decompose the Us tensor Vuab into a trace part V,," and a traceless
part, corresponding respectively to U; and SUs.

Here we give the couplings to the components V..,

— —— " Vpe X (Egex — e + 2Ya€e 211
\/§3!€ b (fd X — &Xd Xa§ ) (211)
Notice that the 3-index antisymmetric SUs tensor V. can be traded for a 2-index

antisymmetric tensor, using

1
5e“b“’evabc = /de (212)

These represent a conjugate 10-plet of scalars.

Here we give the couplings to the conjugate components V¢,
11
V23!

Also, we can make the replacement,

1
geabcde‘/abc = V;ie (214)

eabcdevabc X ()Zdef - dee - QEdXC) (213)
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Here we give the couplings to the components V,;,

%‘/abc X (Xcgab - Xabgc + %EabdefgcfXde)
V2 (215)

+%‘/abb % (gxa _ gaX + Xacgc _ )_Ccéac _ iEGCdeféchef)
Finally, we give the couplings to the conjugate components V,*,

%Vabc X (gaXbc - gcha - %Ebcdefxadé-ef)
v e (216)
FAVL (X6 — b€+ EXbe — EbeX® — F€beder XU )

13 Discussion

In this article, we have explored the structure of the fundamental spin—% fermionic SUj
multiplets that constitute a Weyl spinor in a 14-spacetime gravidynamic unification.
We displayed the structure of the bosonic multiplets. These are spin-1 and spin-0
particles that could arise from the quantum contributions to the effective action. We

have decomposed the pertinent fundamental couplings in the unified scheme.

At this point, the scheme could be decomposed further to display either the color SU;
or the family SUjs structure of the particles and the couplings. The subsequent steps
can easily be done if we follow the work donel® in this regard, in connection with Oy
and Us. The features and phenomenolgy discussed there, pertaining to quark color, or
lepton family, with particular emphasis on the family structure of the W-like particles
in the leptonic model, would all be applicable here. And we should remember that the
14-spacetime extension has duplicated the number of fermions with respect to Oqp.

Again, we promise to return, in other articles, to the important problem of symmetry
breaking in the effective action framework. We should give particular concern to the
role that would be played by the scalar particle components in selecting the track of
symmetry breaking via their mass-generating vacuum components.

As we have remarked in discussing the SU3 family symmetry that appears in an SUj
or Oy leptonic unification model®, the important question is whether the observed
three generations of leptons would correspond to this triplet structure, and whether the
new (heavier) singlet leptons do exist. Now, in the 14-spacetime model treated in this
paper, where we have a duplication of Oyy fermions, it is important to contemplate
the role played by the new triplet and the new singlet (electron-like and neutrino-like)
particles, especially in connection with their possible role in hadronic structure, recalling
that the spectrum of hadrons can very well be described by utilizing leptonic varieties
of particles/ ¥l with integral electric charges. Whether the gauge and geometrical
structure of the extra-dimensional theory could have a role in generating solitonic, or
magnetic-like, interactions that can help understand hadronic physics, all pertains to
interesting speculations, and should be the subject of further contemplation.
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