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Abstract: We place the author’s earlier work fr¢h3], [14], [15], [16], [17], [18], [19], [20],
[21] into the context of a classical unified figlteory of elementary particle physics, nuclear
and hadron physics, electrodynamics, and gravitatidhis revision contains the unification of
classical Maxwell and Yang-Mills electrodynamicstwmalassical gravitation as represented by
the field equation R=0 of empty space, and explains how this will béhier connected to the
physics of nuclear matter as developed in saidieawork.
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1. Introduction

Since at least the time of the ancient Greeks velie\ed that all of nature was
constructed from the four Platonic elements of, fivater, air and earth [1] to which Aristotle
added aether as a fifth element to explain the stacentral pursuit of scientists and natural
philosophers has been to understand the naturatémnin its most elemental, irreducible form.
But our modern understanding of matter really em@gfarting with Dmitri Mendeleev’s
assembly of what was to become the modern Pericbte of the Elements [2] in which the
various elements were fundamentally distinguishgethbir atomic weights. It would not,
however, be until Rutherford and Chadwick discoddhe proton and neutron in 1917 and 1933
that the foundation was laid for understanding thatatomic weights of the elements are really
driven by their nuclear weights, and that the nunadigrotonsZ which for a non-ionized
element is equal to the number of electrons is whttblishes the basic character of an element,
while the number of neutroMétogether with the total number of nucledsN+Z is what
characterizes the various isotopes of any givemehe.

It also became clear as nuclear science develtg¢@ithough nuclear weights could be
very-closely characterized by the number of protms neutrons in a nuclear isotope, these are
not exactly correlated. Rather, it was found #raall corrections known as the “mass defect”
also exist which reflect the fact that if, for exale one were to fuse two protons together into a
deuteron, the fused deuteron system of two protangd weigh slightly less than the sum of the
two separate protons, and that this slight dimorutf massn could be accounted for by a
commensurate release of fusion endtgy an amount equal tm¢. This mass defect, of
course, is exhibited by all of the nuclides underythe periodic table, and is the basis upon
which rests the ability to produce energy fromdb@mic nucleus. To this day, however, there is
no commonly-accepted understanding at a precisaulgnalevel of exactly why the various mass
defects are what they are. Our best understartdidgte is based on a rough aggregation known
as the “semi-empirical mass formula” (SEMF) [3] aradlious refinements of this formula that
have been made over time, which works well for lexaslements but not for the lighter
elements. Understanding with precision the matectieand related binding energies of the
lightest nuclides on a discrete granular level gioemmple?H, *H, *He, “He and various Li, Be, B,
C, N and O isotopes, remains a very open questiochwthe aggregation approach of the SEMF
is ill-suited to fully explain.

Once it became clear that Mendeleev’s atomic elésngare themselves all constructed
from protons, neutrons and electrons, and thau&rine was also needed to “balance” the
neutron in the same way that the electron balatieeproton, the question naturally arose as to
whether the proton, neutron, electron and neutireathemselves “elementary,” or whether these
could also be further deconstructed into even-nebeerentary constituents. While the
redundancy of weak isospin as between both quathegrton beta-decays has led to some
interest in a variety of “preon” models with a leptpreon plus three colors of quark preon each
being paired with isospin up or isospin down pre@ng. [4], [5], the most important advance on
this question came in 1964 when Gell-Mann [6] ancig [7], [8] proposed that the proton and
the neutron and more generally the class of pagikhown as baryons, all comprise three yet-
more-elementary fermions which Gell-Mann dubbetbhasrks.” Quark theory had its origin in
trying to explain the various “flavors” of baryorhieh Gell-Mann [9] and Ne’eman [10] had
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successfully characterized in 1961 by the “eiglitiwhy.” The eight baryons explained in this
way included the proton and neutron which were wstded to subsist in an octet of a
fundamental SU(3lavor group containing “up,” “down” and “strange” quarks well as a
decuplet of baryons, and an octet of mesons winiclude the pi and K mesons.

Quark theory advanced a year later in 1965 whearaéresearchers proposed the
necessity of a new degree of freedom to resolviaicedifficulties regarding Fermion statistics /
Pauli-Dirac Exclusion that arose from having thierenions in a single baryon system [11].
This came to be known as the “color” degree ofdoge of “chromodynamic” theory and is now
regarded as a fundamental feature of strong irtieratheory based on an exact SW(8plor
symmetry which is separate and distinct from theraxmate SU(3jlavor symmetry from
which quark theory had originated. The interactioediators of this color symmetry are eight
bi-colored massless gluons in the adjoint SH(8presentation, and they too, are separate and
distinct from the eight bi-flavored pi and K mesangshe octet of the original SU(3) flavor
theory. In the meantime, insofar as fermions areerned, the standard view is now that there
are precisely six flavors of quark and six pardl@ors of lepton, each paired into three
generations of weak isospin doublets. The germmratire well-characterized, but to date there is
still no widely-accepted understanding as to thegins, or, as Rabi once quipped upon the
discovery of the muon, “who ordered this?” hasyeitbeen answered by any wide consensus.

Although this “inward” advancement from moleculesnprising atoms, to atoms
comprising nuclei and electrons, to nuclei compggprotons and neutrons, to protons and
neutrons and other baryons comprising quarks wapjaar on its surface to be a logical, linear
progression, the final progression from baryonguarks is qualitatively different from all of the
other ones. This is because molecules and atodhsuantei and even individual protons and
neutrons, as well as mesons and leptons, all existe, directly-observable particle statéut
guarks and gluons do nofThese are understood to be “confined” with thetgor and neutron
and other baryons and mesons, and so the prevaiéag which to date is confirmed by
empirical observation, is that quarks and gluong never be directly observed as free particles.

Quarks and gluons being of a qualitatively-diffeérenaracter from molecules and atoms
and nuclei and baryons and mesons and leptons$sasvehat separates the modern discipline of
elementary particle physics, from that of nucleard atomic) physicsSpecifically, although in
colloquial discussion it is commonplace to refefrtoclear and particle physics” as if this is a
single unified discipline, in reality it is not.his is because quarks and gluons are not free
observables, but rather are confined within barymmsmesons which are the free observables,
and because at the present time there is no camnptaihmonly-accepted understanding of how
confinement works or of the dynamical interrelasibips between the physics of quarks as
elementaryconfinedparticles, and the physics of baryons as elemgfee particles.

This fault line which separates nuclear from péetghysics is concisely captured by
Jaffe and Witten when they state at page 3 of Yany-Mills and Mass Gap” problem [12] that:

“. .. for QCD to describe the strong force suchidss. . . It must have ‘quark
confinement,’ that is, even though the theory iscdi®ed in terms of elementary
fields, such as the quark fields, that transform-trovially under SU(3), the



physical particle states—such as the proton, neutnod pion—are SU(3)-
invariant.”

It is this difference between “elementary fieldscls as the quark [and the gluon] fields, that
transform non-trivially under SU(3)” and “the phgal particle states—such as the proton,
neutron, and pion—[which] are SU(3)-invariant,”vasll as the need to give flavor to color-
neutral baryons and understand the origins of pleeiic baryon flavors which are protons and
neutrons, which separates the elementary partioisips of colored quarks and gluons, from the
nuclear physics of the colorless proton- and neudfi@/ored baryons.

The purpose of this paper is to understand, and buiridge across, this fault line
between elementary confined particle fields and freysical particle states, so that that
“Nuclear and Particle Physics” can indeed be depezldnto a fully-unified discipline. To
establish that this bridge is a safe crossing betwericlear and particle physics, we also
demonstrate empirical support based upon the kgrala / or fusion energies of fifteen (15)
distinct light nuclides as well as the proton aedtnon masses themselves.

Some aspects of the development to be presentedhhee been previously published
[13], [14], [15], [16] or preprinted [17], [18], 1, [20], [21] by the author. But this paper will
refine and expand much of this earlier developra@utplace it firmly into the context of a
carefully-elaborated unification of elementary petwith nuclear and atomic physics, using
nuclear mass and binding and fusion energies tHeesstor experimental validation.

We begin our exploration precisely where Albertdi@in ended his pursuit of
electromagnetic and gravitational unification ie final scientific paper of his remarkable life.

2. Einstein’s Final “Hunch”

In the final scientific paper of his life [22] whide introduced in December 1954, Albert
Einstein opened at page 133 by discussing “therigth’ of systems of field equations in
general.” Einstein pointed out that this discussi@s “indispensable” to understanding the
“problem” of non-symmetric fields. But he alsotst} very importantly, that “this discussion is
of intrinsic interest quite apart from the partenutheory presented here.” He then went on to
examine three examples of field strength: First,9balar wave equatia),0’¢=0. Second,
Maxwell’'s equations for empty space which are tleeteic and magnetic charge density
equations0=d_F* and 0=90,F,, +d ,F,  +0,F,,, respectively, with the field strength

o' uv U vo v oou?
denoted ad=*". Third, the gravitational equations for empty sp&;, =0 for which the
gravitational fieldsg,,, also operate as the spacetime metric and so &mgayetricity condition

0 =0 for covariant differentiation.

;O'g/jl/

First pointing out that such a field strength “m@ascan be defined which will even
enable us to compare with each other the stremjtbyggstems whose field variables differ with
respect to number and kind,” Einstein then fourad the number afth-order free coefficients
for the scalar wave equation, asymptotically fogéen, is given by
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Z~(4jﬁ:[4j§ (2.1)
n/n n/n

with a “coefficient of freedom’z =6. He then progressed to find that for the empacsp

Maxwell's equationgnd also identically for the empty space gravitasibequations
asymptotically:

SACHC

with z =12.
Einstein concluded with a remarkable understatermepage 139 that:

“It is surprising that the gravitational equatidns empty space determine their
field just as strongly as do Maxwell's equationgha case of the electromagnetic
field.”

The above is conspicuously understated becausbddast several decades of his life, Einstein
worked tirelessly to try to unify classical electragnetic field theory as represented by

0=90,F* and 0=90,F, +d,F, +0,F,, invacug with gravitational theory for which the

u' vo v oou

vacuum equation i® , =0. Viewed in this context, such an expression afpsise” was

nothing if not a masterful understatement of wHarestein’s own mortality finally ended his
guest for classical electromagnetic/gravitatiorafication. In all areas of human life, deathbed
statements are accorded special weight and atter@inal Einstein’s statement set forth above
ought to be no exception. It is a bequeathal gigyay to pick up the work of this classical
unification at the exact place where Einstein veasdd to set it down, and it communicates two
very important points about where Einstein’s inatand his mathematical tools had delivered
him to as his earthly stamina approached expiration

First, this statement articulates Einstein’sluiately-inexplicit “hunch” that Maxwell’s
system of equatiomaight in fact, in some way, lmne and the samas the gravitational vacuum
equationR,, =0. For, while Einstein did not prove the mathensdterjuivalence of these

equations, he did prove that although Maxwell'srsetfree system utilizes two tensor equations
0=0,F* and 0=90,F, +d,F, +0,F, while the gravitational systerR,, =0 uses a single

o' uv U vo
tensor equation, and that although their “fieldiafales differ with respect to number and kind,”
these two systems of equations do “determine fleddt just as strongly” as one another. Had
Einstein been more explicit, he may well have Shpbssess the strong intuitive feeling that
Maxwell’'s equations might find some unification vgravitational theory, and might be written
with identical physical content, in the simple foofiR,, =0. But now, near the end of my life,

| have only been able to prove with mathematicetbaety thatin vacuq z =12 for each of



these systems of equations. Posterity should carthis pursuit to see if there something more
to this than merely a ‘surprising’ coincidence.hig is, in essence, the deathbed statement of the
grandmaster of 20century physics about the most cherished preoticupaf the final decades

of his life.

Second, it is very consequential that in seekintgompare with each other the strengths
of systems whose field variables differ with redgemumber and kind,” and specifically by

comparing thewo tensor equation=0,F* and 0=9,F,, +d F, +9,F,, with thesingle

o' uv H vo
tensor equatiorR , =0 and finding that these are equivalent equatiomsaat insofar as the

strength with which they determine their fields eocerned, Einstein was implicitly thinking
about the question of what would happen if one i@@mbine both of Maxwell’'s equations
together into a single tensor equation. While“fiedd variables [do] differ with respect to
number and kind” as between Maxwell’'s equations Rpd=0, this observation motivates one

to pose the highly-related question which is sintplg: what would it look like, and what would
the physics content be, if one were to be able aoenfioth of Maxwell’s tensor equations
together into a single tensor equation, dmutheir own termsjsing the same number and same
kind of field variables?

Specifically, prior to 1905, Maxwell's equationgre understood to be a system of four
differential equations:

p =0
J=0xB-0E/ot
0=0[B
0=0OxE+0B /ot

(2.3)

But in 1905 [23], Einstein himself showed thatemsor form the former two and latter two
equations, in view of the Lorentz symmetry relatspgce and time, may be consolidated into the
two equations:

J¥ =9, F*
B . (2.4)
0=0,F,, +0,F, +0,F,,

So from this view, the question Einstein was imglicconsidering at the end of his life was
whether there is some way to take the next stéfpisrhistorical progression that he had initiated
at the opening of his scientific life, by combinibgth of these tensor equations intsiagle

tensor field equation.

The difficulty one confronts in trying to furtheombine these two equations (2.4) into a
single equation in terms of the antisymmetric et@oagnetic fields=*", rather than the
symmetric gravitational fieldg,,, and the vacuum field equatidg),, =0, stems from the fact

that the magnetic monopoles@+9,F,, +d F, +0,F,, are zero. Butthisinturnis a



consequence of the fact that the field strerfggh in Maxwell’s electrodynamics is specified in
relation to the gauge field / vector potent| according to thabelianequation:

F* =G =94G’ - 9" G* (2.5)

which via the Riemann tenspd. 0, |G, = R’,,, G, and the first Bianchi identity

auv o
R ¥ = R + R + R*? =( drives the monopole to zero via:
P = JOEH 4+ JHEY 49V EH
=07 (0%G" -9 G*)+9* (0" & -9 G" ) +0" (07 &' -0 &)
=[07,0" |G" +[9",0" |G" +[8",0” | G
:(R{VU‘U+ RU'UV + R'WU) G=0

(2.6)

In (2.5) and (2.6) above we have introduced theitaonally-covariant derivative (;) by which
these equations then may be applied in curved 8paee

Yang-Mills gauge theories, on the other hand, whvelne developed by C. N. Yang and
R. Mills in the same year of 1954 [24] when Einstennounced [22], engender no such
limitation, because in these theories, the fietdrsith is related to the gauge fields by tioe-
Abelianrelationship:

F# =DWGY =946 -9 G ~IG'G +iG' @' =0* G -0" G- [ &, G], 2.7)

where the gauge-covariant derivatiize’ =0'* —iG*. Because Yang-Mills replaces all
gravitationally-covariant derivative$” by gauge-covariant extensiogs — D* =9 —iG*,
and becausg G*,G" | # 0, the monopoles,,, = D, F,, + D, F,, + D,F,, of Yang Mills

0 uv U Vo
become non-vanishing. Consequently, the quesfiocorbining the Yang-Mills extensions of
(2.4), namely:

JH = D;UFU# = D;a D[;UG#]
P :D;JF,UV+D F +D;VFU/1:[);UD[;NGI]+Dﬂq;VGOj + Dv I:BO'GH

uvo U Vo

(2.8)

into a single tensor equation, is a live and viahlestion that one may explore, precisely
because the monopoles are no longer vanishingaodrgain real physical content.

As the author has already shown in [13] and [8&¢ especially [9.1] of [21], the
combining of the two tensor equations (2.8) ingirayle tensor equation yields a magnetic

monopoleP,,, which has all of the color symmetries of a baryafnwhich the proton and the

neutron are the two most important flavored exasplgo the short answer to the question
“what happens if we combine both of Maxwell’'s gawogeariantly-extended equations (2.8) into
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a single equation using the same field variables®3imply this: the magnetic monopoles are
found to be baryons. So, once we can find a wadtb“flavor” to these baryons and develop
them into protons and neutrons, we discover thatt\Eimstein wrote about for posterity in his
final paper [21] which is “of intrinsic interest @ apart from the particular [non-symmetric

field] theory presented here” was no less thanriagipoard to a unification not only of classical
gravitational theory with classical electrodynamiast a further unification of these two theories
with nuclear physics, and of elementary particlggats with nuclear physics as was discussed in
the introduction.

On a personal historical note, the author makesaidrd that this connection of
Einstein’s final paper [22] to all of these unifilcans is not merely an afterthought to the authors’
own results in [13] and [21]. In fact, Einsteinlevelopment of the concept of “the ‘strength’ of
systems of field equations in general” was the &eynitio motivating factor which eventually
brought the author to the results in [13] and [2R¢r, after studying Einstein’s paper [22] in
1984, the author emerged with two questions forémawind: First,under what conditions
Einstein’s finding that Maxwell’'s equations and &iastein equatiom vacuoboth havez =12

more than a “hunch” that these might be the samgsigdl equations, and in fact an indication
that thesare identical equations merely represented with daffier‘field variables [which] differ
with respect to number and kind"? Second, wh#tesphysics that results from combining
Maxwell’s two equations together into one equatemg can that physics be empirically
validated?

Almost 30 years of pursuing these two questiongHedauthor to two conclusions: As to
the first question, for Maxwell's equations to beeand the same &, =0 there must be exist

both electric and magnetic sources. That is, Mdlismequations must havgoth non-vanishing
electricand magnetic sources, such as in the form of (2.8)e fiddle ground (2.4) between
“source-free” and “source-full” electrodynamics,vimich one has non-vanishing electric
sources yet vanishing magnetic sources, doégield an equivalence between Maxwell’s
equations an®R, =0. As will be shown in section 6leetric and magnetic source symmetry is

the essential element required to establish theébiconnection between Maxwell’'s equations
and R, =0. This is a result that the author obtained in mpublished paper in 1984 [25] that

became the starting point for further developmenatr the next three decades. This symmetry,
first developed by Reinich [26] later elaboratedVidgeeler [27], and which uses the Levi-Civita
as laid out in [28] at pages 87-89, is commonlgmefd to as “duality.”

Thus, what we shall show here is that Einsteinignth” that there is some equivalence
and thus unification to be found between Maxwedljmations and the empty-space equations
R, =0 can only be proved if the physical universe corgtanagnetic charges addition to

electric charges. But Maxwell’'s electrodynamicspiiys a notorious absence of so-called
“magnetic monopoles,” which have been pursued swee the time of Maxwell but never once
validated as physically-observed entities. Sortw Einstein’s “hunch,” one must go beyond
classical electrodynamics to study theories in Wiite magnetic monopoles are non-vanishing.
And, for such theories to lphysically-rea] one must ultimately show that these magnetic
monopoles exist in the real world in some defiglwobservable form. That is, one must
establish that there truly is an electric / magnetiality with both types of souraa, the real
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physical universe This is what motivated the author over a peab80 years to intensely study
magnetic monopoles, and — because Yang-Mills theadyachieved demonstrable success in
describing weak, electroweak and strong interastioto thoroughly study Yang-Mills theory as
perhaps the most natural way to bring about thevamishing magnetic monopoles needed to
supply the electric / magnetic source duality syrmynequired to validate Einstein’s final hunch
and ultimately be connected to observed physicaqhenology.

As to the second question, the author concludediathat results from combining
Maxwell’s two equations together into one equatismg the same field variables are — via
Yang-Mills theory — magnetic monopoles which argybas, which are but a flavor-introducing
step removed from the protons and neutron we obserauclear physics. So, by building the
bridge first from particle physics to baryon phgsiand then from baryon physics to nuclear
physics, and finally by showing that the resultmgrlear physics can be used to explain multiple
observed light nuclide binding and fusion energigsvell as the proton and neutron rest masses,
we validate not only the existence of magnetic npahes in nature, but the electric and
magnetic charge symmetry required to show thahtimeh which Einstein articulated in the very
last scientific paper of his life was a correct tlunvhich pointed to way to a complete classical
unification among all of gravitational, electromagjo, nuclear, and elementary particle physics.

PART I: CLASSICAL UNIFICATION OF MAXWELL’S AND YANG-
MILLS’ ELECTRODYNAMICS, WITH EINSTEIN’S GRAVITATIONAL
THEORY IN EMPTY SPACE

3. A Brief Review of Local Energy Conservation in Maxwell’s
Electrodynamics

In electrodynamics, the energy tensor faparce-freeelectromagnetic field is, of
course, given by the Maxwell stress energy tensamq the oft-employed coefficiedrr):

Taa MaxweII: - Fa,u FU/I +%JHJ Fyv Fuv . (31)
As has already been noted in (2.5), (2.6), thetided”F** +9*“F" +0"F%* =0, which is
Maxwell’'s equation for vanishing magnetic chargasses if and only if the field strength*” is
related to the gauge field3” by the abelian relationship*’ =ad'“G". But because the local
conservation of energy depends upon the ze®’ir*" +3*F" +d"F* =0, this in turn means
that the local conservation of the energy densitgrgin (3.1) is integrally-dependent upon the
vanishing of the magnetic monopoles, as we shall mview. And this in turn means that for a

theory in which the magnetic monopoles ao@-vanishing 0’ F* +0“F" +0"F* #£0, or
really, the Yang-Mills monopoleBD“F* + D*F" + D"F% # 0 which the author has shown

[13], [21] are synonymous with baryons, one needsite special attention to how the energy
remains locally conserved, because the usual abeépendent recipe simply does not apply.



Specifically, in any general relativistic theotlye local conservation of energy is
specified and enforced by requiring thiafT#, =0 for whatever energy tensor one has under

consideration. So as a general methodology, arleslor expressions which are identically-
equal to a vector of zeroes, which expressionsheeequates td. T#, =0. For example, in

Riemannian geometry, one starts witpR™ , +9., R“ , +0, R?, =0, which is the second
Bianchi identity. This is a fifth rank tensor adrbes, but it is easily contracted along two
indexes, say,V. So one contract8 ,R*  +0 ,R", +0d,6 R" =-0, R-20 K, =0 which
then yields the identityaw(R”V -10%, R) =0, in well-known fashion. One then equates this

vector of zeroes viaxd T, =0, ( R, —1J%, R) =0 to the local conservation of energy and

momentum, and upon integration sans cosmologicateat, arrives at Einstein’s gravitational
equation-«T#, = R, =15 R

In electrodynamics, one starts wdh F , +0.F,+9d,F,, =0. But, as noted, this is

U vo
only identically equal to zerbecause of the abelian field relatlonsrﬁpi” =9“G"! which

causes the magnetic monopoles to vanish. Muitiglthrough by: F“*, one then writes
Maxwell's vanishing monopole equation && * ( oFu,+0,F, +0. VFW) 0. This is now

another identity for a vector of zeroes with a firsdex o , just like aw( s 30", R) =0. So

this is what one now equates to the energy consemnvialationshipd.,T?, =0, in the form of:

a o uv U Vo v oou

9,T°,=4F"(0,F,+d,F, +0,F,)=0. (3.2)

One then advances this abelian-dependent identttyei following manner:

0=9,T°,=4F"(0,F, +d,F, +d,F,)

0 uv U Vo v oou

=—-F*9 F, +1F"d F

o v

_F F 4167 FF , (3.3)
a’ oy al uv

= _a:a (FH#FJ/J) +%5aga;a (F'W F,uv)+ Fwa;apnﬂ
=0, (-F¥F,, +15° F*F, )+ F,0,F*

making use ofF“’9. =30, (F”“FW) and-F%o_F, =-0, (F"”Fw)+ F,.0.F% and

a,uv

index renaming as required.

Of course,J” =0.,F™ is Maxell's equation for the density of an electhargel”,
which is uncovered in the terff, 0.,F®. So, as Einstein first taught at [29] page 155,
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K, = FWJ” = Fwa;a F (3.4)

“is a covariant vector the components of whichexgeal to the negative momentum, or,
respectively, the energy which is transferred ftbmelectric masses to the electromagnetic field
per unit of time and volume. If the electric masaee free, that is, under the sole influence of

the electromagnetic field, the covariant vectkgrwill vanish.” Therefore, (3.3) in view of both
(3.1) and (3.4) may be written as:

0=0,T%, =0,T° +k,=0. (3.5)

o Maxwell

Thus, equation (3.5), “ik,, vanishes, is” the equation of conservation forghergy-momentum

of the Maxwell tensor. In essence, (3.2) throg)b) are simply another way of presenting what
Einstein initially developed at pages 155 and 15@29).

From the heart of (3.3), one may extract the wsgful identity:

lev(a F +6 F +0. F ) aa(_FaﬂFﬂﬂ-’_%éaaFwav)_i-Fﬂﬂa;aFW (3'6)

o v R 7}

which applies irall circumstances, whether we employ the abelianioelstip F* = d“G"! or
the non-abeliarF*’ = D*G" of (2.7), and whether or nat, = F, 0. F* vanishes. Thus, we

ou”a
may somewhat invert the analysis of (3.2) throug)b)(in the manner presented by Misner,
Thorne and Wheeler in §20.6 of [28], as follows:

Starting with (3.6), if the fields are abeliadf*’ = 0"“G", then the monopoles vanish,
J,F,+0 F,+0,F, =0 andso (3.6) goes to zero to yield:

0=0,, (-F™F,, +10" F*"F, )+F,0,F". (3.7)

Then, once we identify the expressieR “F,, +4 5, F*'F,, with the Maxwell tensor
T, vawer @Nd impose the conditiod, T\ .ei= 9. ( F¥F,, +30%, F* FW) =0 for the local
conservation of energy, (3.7) will further reduoe t

K,=F,J*=F,0,F%=0, (3.8)
which is equation [20.38] of [28].

Closely related, for source-free electrodynamit$=0, and so one has the field
equations:
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0=0d F%*
_ 5 : (3.9)
O - a;O'F,UV +a;/1FVO' +a;l/ FO'/J
As already discussed, Einstein showed in [22] these have a coefficient of freedan=12

“surprisingly” equal to that oR, =0, see (2.2) et seq. For the source-free (3.9), one will

automatically also have (3.8) which then implies(@&) thatd., T, ,.we= 0, Which locally

conserves the Maxwell tensor. But whilé =0 plus the abelian relatioR*’ = 0"“G"} implies
that x, =0 and thus tha , T* =0, the converse is nalwaystrue. As noted in exercise

o Maxwell—
20.8 of [28],k, =0 will only conversely implyJ* =0 when one doesot haveE [B =0 over
an extended region of spacetime. But for the “genase ¢ ([28] page 472, ninth text line)
T, wawer tOgether withd., T¢ =0 do lead to0=0.,F* as an “equation of motion.” It is

o Maxwell ™
for these reasons that’ ..., in (3.1) is often referred to as the stress energy téassource-

freeelectromagnetic fields, meaning, specifically, fieldsah are free of both magneand
electric charges as in (3.9).

Specifically, in all cases, for source-free electrodymran(.9),«, =0 in (3.8), thus
2,1 =0 asin (3.5), sA“, ,...we IS locally conserved in the same manner that

o Maxwell
-kT#, =R, —3J% Ris connected to conserved energy &hp( R, —-30%, R) =0. Thatis, in
source-free electrodynamics, the Maxwell stress enertgot (3.1) is always locally-conserved.

But the source free electrodynamics of (3.9) is, ofs®ua mathematical idealization,
and applies physically only to fields*” passing through charge-free and baryon-free ([13],
[21]) regions of spacetime. In the real world we calyapbserved” #0 all the time, and in
today’s days and age, most of the technology wesuBased on the harvesting of the electrons
that underlieJ” 0. Further, because the magnetic monopoles of Yang-Bilge theory
P =D_F _ +D,F_+D,F #0 are non-vanishing, and especially if these are obseénvibe

auv oy U vo W ou

form of baryons as the author has shown in [13], [2n we also observE,, # 0 all the time,
even though this has only recently become known.

So, if we wish to consider the energy tengdy for J“ #0 generally, and especially for
k,#0 andP_, #0 which comes about from tl®n-abeliangauge fields of Yang-Mills

auv

theory, then we will need to find an identity othean P, , =0.,F , +0. ,F,+d,F, =0 as the

v A U Vo

basis for locally conserving energy \g, T#, =0, because this identity relies on being zeroed

out via F* =0"“G" as in (3.3) and (3.7). To fully develop “source-fullvat than “source-
free” electrodynamics, we will need to use the fornmalcf electric / magnetic duality. And it is
through this approach, that we will be able validatestein’s final hunch in [22] about a
“surprising” “strength” equivalence between the Makwgstem of equations and the empty
space equatioR,, =0.

12



4. A Brief Review of Electric / Magnetic Duality

Edward Witten begins an examination of electnzagnetic duality at page 28 of [30]

“_ .. with a piece of late-19century physics. The vacuum Maxwell equations
for the electric and magnetic fiel@sandB . . . have a symmetry under

E - B,B - —E that has been known for nearly as long as the Mtbeguations
themselves. This symmetry is known as duality.

The symmetry still holds in the presence of chargnd currents if one
adds both electric and magnetic charges and carrémtnature, such symmetry
seems to be spoiled by the fact that we obsenatrigleharges but not magnetic
charges (which are usually called magnetic mon®)dle

“More fundamentally,” Witten observes . . .

“the symmetry seems to be violated when we ddheemagnetic field
from a vector potentiaP , with B=[xA , while representing the electric field
(in a static situation) as the gradient of a scalar

“But,” he points out . . .

“the vector potential is not just a conveniencsaotving Maxwell
equations. It is needed in"2@entury physics for three very good purposes:
» To write a Schrédinger equation for an electroa magnetic field.
* To make it possible to derive Maxwell's equatioresti a Lagrangian.
» To write anything at all for non-Abelian gauge theavhich — in our
modern understanding of elementary particle physissthe starting point
in describing the strong, weak and electromagneteractions.”

Indeed, in the late 19century, the German physicist Hermann von Helnzhiodtlieved that that
the vector potential was an unnecessary elemdvibafvell’s theory, what was later belied for
the reasons Witten lays out.

The mathematical formalism used to most efficieatudy electric / magnetic duality
was first proposed by Reinich in [26] and latebelated and popularized by Wheeler in [27]. It
makes liberal use of the Levi-Civita tensgy, which is totally antisymmetric in all spacetime

indexes, and for which the covariant (lower-indesjnponents,,,, =+1. Because indexes in
flat Minkowski spacetime are raised and Ioweredwuiilag(/yw) = (+ 1-1- 157 ). the

0123 0123 _

contravariante™ = = -1 and sog,,,£ = -1 is negatively-signed. This duality formalism is

further elaborated by Misner, Wheeler and Thronéxarcises 3.13 and 3.14 of [28], and as
developed in chapter 4 of [28], is of fundamentdity in the differential forms through which
one is able to write Maxwell’'s equations in genlgrabvariant integral form via Gauss’ /
Stokes’ theorem.
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For any contravariant vectaY’ , second-rank antisymmetric tendef® and third-rank

antisymmetric tensoB**, the respective duals (*) are defined as in [3&1R8], by (here we
useP rather tharB to denote the third rank tensor because we shsil to associate this with
the magnetic monopole / baryons of Yang-Mills gatigory):

*J :(_g)~5£ww‘]r; * K :%(_g)'sgowv Fm’ * P:%(_ g)-5£WGT PWU' (41)

uvo v T

where from [8.10a] of [28], see also equation [4fl[27], we include the(—g)'5 factor which is

needed in curved spacetime and which is equalitg, l.(ﬁ-g)'5 =1, in flat spacetime. A double

application of duality yields a sign reversdi,F = —F for the second-rank duals, while it
restores the sigh* J =J and** P=P. Itis a good warm up exercise to show explidiyw
these double-dual relationships are obtained.

For second rank duals, one writes the relationsbip (4.1) twice over, as
*Fop =4(-9)" €5 F™ and*F* = 4(-g)"° " F,,, see equation [8.10a] of [28].
Combining, one then writes:

L = :i(_g)'5 £k |

— 1 oaBuv
2! ap =3¢ 3

oraf

F. (4.2)

This introduces the summed expressiﬁf‘i’“gmﬁ, which sorts of expressions are frequently
encountered in the identities of the duality fonsral. In this instance, (see [3.50i] in [28]):

g g

oraB

=Py = =0 g = 2107 (4.3)

oraf —

with the sign reversal ie**¢,,, = =3"" ., originating in the relatiorg,,,£** = -1 noted
above. The fourth-rank Kronecker delta in turgiien by (see [3.50l] in [28]):

o* =o' &, -0, (4.4)
so that using (4.3) and (4.4) in (4.2) yields:
*% F/Il/ :%gaﬁyvgamﬂl:a'r - __;5,UV0TFOT - _—;(Jﬂgd‘/r _5/1T5VJ) FUT - _F,UV , (45)

which is the relatiorf* F =-F . Since **=-1 and ****=+1, each * is in the natugé the
imaginary numbei = J-1.

For the first rank]”, we similarly combine the two expression,,, =(-g)° &, J"

and*J° =4(-g) & J,,, as such:
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30 =1(-g) e I, =L, T (4.6)

3! muvo
Now, we have the summed Levi-Civita expression [3€#j] in [28]):

g = —gWTe =W =215 =317 4.7)

uvo Tuvo
Used in (4.6) one immediately discerns:

*% ]9 :%gﬂvmg J’ :50’TJT =J, (4.8)

uvo

which is the relatiortf* J =J. Here, since **=1, each * is in the nature of mus sign.

For third-rankP**, we combine: P* :(—g)_'5 P and*P :é(—g)'g’g P

a Hvoa

*x P = (_g)--S £9%% p

a

=1 gNg  po (4.9

Hvoa

Now the Levi-Civita summation is (see [3.50h] i8]R

adp ¢ — _gMa g = 5"

uvoa uvoa uvo !

£ (4.10)

in which the sixth-rank Kronecker delta is given by
5"”M = 5‘;5&5”0 + Jdvéygd”y + 5"05Vy5”v - 5‘5;,5{,5”” —5"05VV5”y —5‘5V5Vy5”g. (4.112)
Upon using (4.10) and (4.11) in (4.9) and reducing find that:

> PN =Lee P =307, P = P (4.12)

3! uvoa
With /—g =1, this is the relatiori* P=P.

Now let us look at Maxwell's equations in viewtbe duality formalism, but extended
via Yang-Mills gauge theory. We start with the gaMills magnetic monopole equation from

(2.8), which in view of the non-Abelian relationghr** = D'*G"! of (2.7), is non-vanishing. If

we write the monopole duality relationship fromiftas*P™ = £(-g) ™ &' P, and then
multiply the monopole in (2.8) through tg/(—g)"“" """, one obtains:
P =3(-9) "e" "R, =3(-9 """ (D, F, + D, F,+ D, F,)

(4.13)

= i’ (_g)_l5 ( D;U‘SWOT F/Jv + D;,u‘gwm Fva + D;Vfwm Fﬂﬂ)
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One may then apply the second-rank expression (fob) in the form2(—g)'5 *RE =g E
three times over with suitable index renaming tdenmhe above as:

P =4(-0) °(D,e""F, + D,&""F, + D,&""F,)
=3(-0) (0, {(-9)™ F7)+ 0, ((-9)* F) 0, ((-9* 7))
=(-a)* b, ((~9)* F")

=D, *F”

(4.14)

The g =det(g,, ) term drops out in the final line, because if orpands the gauge- and
gravitationally-covarianD,, - d, -iG, , the resultingd , (-g)° =-.5(-g) "d,g=0 by

virtue of the metricity conditiod.,g,, =0, and then the remainir(g—g)"S(—g)'5 =1 offsets to
1. Then we simply reassemhig, -iG, -~ D.,. So putting the above together with the Yang-
Mills electric charge equation from (2.8) as wallthe non-abelian relationship (2.7), we find

that the Maxwell equations for Yang-Mills gaugedhg expressed via duality, are:
JH = D;UFU'U - D;a D[:UG/J]

o (4.15)
*PH = D.U* F = D-a* Do GH

*P' =3-9"" P, is the first rank dual of the magnetic monopole barfgy , and in Yang-
Mills gauge theory, it is clearly non-vanishing.

Based on (4.13) through (4.15), it is easy to see witfepeating this calculation how the
source-free electrodynamic equations (3.9), when writsémg duality, become:

0=0,F%=0,0"G"

_ , (4.16)
0= a;g o = a;g* oloGH

and “have a symmetry undér - B,B — —E " as excerpted from Witten’s [30] at the outset of
this section, cycling in the same mannei‘as +1 . And, it is readily seen as well how

electrodynamics with electrical sources as represdnt¢d.4) may be written using duality as:
J7=0,F*=09,0"G"

S (4.17)
0= a;a L = a;a* oleGgH

which highlights, per Witten, how this symmetry gpbiled by the fact that we observe electric
charges but not magnetic charges.” But most imptytéor the present purposes, we see how
the Yang-Mills extensions of Maxwell, (4.15), do restibre duality symmetry of the source-free
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equations (3.9), or in the words of Witten, howe‘symmetry still holds in the presence of
charges and currents if one adds both electriav@eghetic charges and currents.”

One other useful exercise before concluding #nsew of duality, is to develop the
third-rank electric current sourcd .. We start bylefining

*J,o=-(D,* F, +D* F, +D* F,). (4.18)

uva op

T — =5 _uvor
We keep in mind from (4.1) with a symbol renamipg- Jthat*J l( g) N
Because **=1 for first and third rank duals, thisans that)” =** J° :—(—g)"5 SN

the current density”. And also from (4.1), we know thafk , :%(—g) WVF"/] So we
combine all of this with the definition (4.18) taive:

v ] vo au

I3 =4(-g) " *J,,=-%(-9 "™ (D,* F,+D* F,+ D} E,)
0 (0 [0 e ) (0 )0 (0

)) (4.19)

As in (4.14) the(—g)'5 terms can be extracted from the derivatives becatithe metricity

d.,9,, =0 and are then cancelled vﬁag)_'s(—g)'5 =1. As to the Levi-Civita tensor

contractions, one has the three relationshipgfdf e, , and £ ¢4, , each with

slightly-varied indexes. So using (4.3) and (4vith simple reindexing, the balance of the
calculation to reduce (4.19) proceeds as follows:

e

apvo

3 ==54(-0) " (D, (~0) 60 F7)* B, (-9 " P )+ B, ((- 9 ", )

=72 3'(‘EWW EopnDoF 7 + €7 8,5,,D,F7 +6%e,,,D, Faﬁ) (4.20)
:é((b’”adfﬁ—b'”ﬁdra)D;gF“ﬁ +(0",87, - 8" 407, ) D, F” +(5ﬂa5’ﬂ—5ﬂﬂdra)DwF“ﬁ)
=D _F”

g

This is equivalent to the Yang-Mills electric chardensityJ” = D, F* of (4.15), and so

establishes that definition (4.18) is just anotley of writing J* = D, F*. This is an example

of why Misner, Thorne and Wheeler state after [Bd&#228] that these various tensors and their
duals “contain precisely the same information.”

So, while (4.15) is one way to write the Yang-MiMaxwell equations, another way to
do so combines (4.18) with the latter of (2.8), &nther with (2.7), as:
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T e =B Ry # B R+ DS R, =D DLG D RUG DL RG
Puwo = D;JF/JV +D,Fo+ D;VFU/I = D;UD[;//GV] + D,#E?:l/Gai + Dv [BUGA

o U vo

(4.21)

While equivalent in information to (4.15), thesttida expressions (4.21) lend themselves most
conveniently to differential forms, in which theseawritten with the three-formsandP as:

—*J=D* F=D* DG
P, = DF = DDG

uvo

(4.22)

The minus sign is required for consistency with D, F? as shown in (4.18) through (4.20).

But in combination with the fact that **=1 for firand third rank duality, as noted after (4.8), the
*in —*J acts as an offsetting “quasi-minus sign” to mamtansistency with)* = D_F”".

5. Several Important Duality Identities, Carried over to Yang-Mills
Gauge Theories

With these preliminaries, there are two dualitgntities that will be of great interest here,
which hold for any two antisymmetric tensdrsandB in spacetime. First, from footnote 19 on
page 239 of [27]:

A.B"-*A,* B" =13’ A B". (5.1)

Second, from footnote 22 on page 251 of [27], fpas®g indexes i B”* = —* B* to match
the index structures in (3.3) and (3.4):

1A%(3.,B,,+0,B,+0,B,)+* Ad,* B" =0. (5.2)

B ua M ap

The first identity (5.1) is best reviewed by e\atlng the product A * B. From (5.1)

we may write *A . = 4(-0)’&,,,, A" and*B" =4(-g) " £#B,,. This means that:

*A*BY=lg

otua

PN, (5.3)

We have already come across a term kK€, in (4.10) and (4.11). Applying those
expressions with the indexes in (5.3) enables gstoert (5.3) into:
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* Atla* Bva % £’ gﬁpva Aa'r 33/3
-0,76,°6," - afa °8,) -8,8,°8" +0,/ 5,5 +6,/50, +5/3,°3, ) A"

( /fp
(5.4)
=i(+A"B, +A’B,+ A°B,+ A B -9, K B-4,’ K B)
= Ava ,ua _%5/1 AGT BT[
Rearranging, we find a slight variant of (5.1), redyn
A“B,-*A,* B"=35A B". (5.5)

This is equivalent to (5.1) when the commutativedationshipA™ B, = A, B applies, which
is to say, whemA “B,,, =0. If we setA,B — F, with a bit of rearrangement this becomes:

F'uaFva _*F,UO/* Fva :%5/11/':0-[':07’ (56)
which is equivalent to equation [15] in [27]. Combg —3 times (5.6) with the Maxwell
stress-energy tensor (3.1) now enables us to nae: wr
T'uV axwe Fya 15# FOT __l Fya FVU __l FyaFVU-i-_lJyVFOTFOT

M II 2 2 4 (57)

—%(F‘WFW +*FHa* Fm)

We showed in section 3 that for source free aegtnamics (3.9)«, =0 in (3.8) and so

via (3.5) the Maxwell tensor is locally-conserved, T, \..a=0. We also observed in (4.16),
echoing Witten, that source free electrodynamiasehduality “symmetry under

E - B,B - —E”, which in terms of F** is expressed as a symmetry unéeét — *F*.

Now, in view of (5.7), and given from (4.5) thgt F*¥ =-F*" |, we see thal”

symmetric under the duality transformatié” — *F*. For, if we setF* - *F* in the final
line of (5.7), we find that:

, alsois

v Maxwel

T'uv Maxwell %( F,UDI Fva +* F/ﬂ’* Fva) - _%(k F'u“k Fva + Flm Fva) = T/jv Maxwell (58)
remains completely invariant. Putting (4.16) togetwith (5.7), we may see the duality
symmetry of source-free electrodynamics, in alpesss, by assembling:

0=0d,F*

0=0,*F% , (5.9)
Tﬂv MaxweII: _%( F/m Fva +* F#a* Fva)
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which is manifestly invariant under the dualityrtsformationF** — *F*. We shall make use
of this well-known observation (e.g., [27], equati@4a]) in the development to follow.

Also very pertinent to the present developmenteai out at pages 473 and 483 of [28],
“Maxwell’s equations of motion are fulfilled and stube fulfilled as a straight consequence of

[the divergence relatiorxd T#, =0_, ( R, —10%, R) =0] plus expression
[T, vawer= —F*F,, +3907,F*F, ] for the stress energy tensor” in the circumstambere one

does not haveE [B =0 over an extended region.” That is because theldpment in 820.6 of

[28] is yet another manifestation of Einstein’sr{susing” finding in [22] “that the gravitational
equations for empty space determine their fieltl ggsstrongly as do Maxwell’'s equations in the
case of the electromagnetic field.” It is a finglitnat a statement about the energy tensor such as

R,=0o0rT" =-F™F,, +410° F*F, with 0, T¢ =0 may under certain

o Maxwell — o Maxwell
circumstance stand in as a proxy equivalent forwidks equations, which all goes to the
guestion of how one unifies classical electromagnetith gravitational theory.

It is also of use to take the trace of (5.7), beeave know that the Maxwell stress-

energy tensor is traceless which means that eleegoetic fields propagate luminously. The
trace equation thus yields the identity which soafuality invariant:

T __Fa'rFm_i_%a-aaFaTFm :—FOTFOT+FOTFOT_ 1(FGTF0T +*ET* FOT):O . (510)

Maxwell ™~ -2

ConsequentlyF“F,. =—*F“* F__, which is another manifestation of how with **=dr

or !

second rank duality, the duality * operator behdikesi =J-1.

The second identity (5.2) is best explored byt fianbining (4.13) and (4.14) into the
single relationship:

*Pr =D, * F :%(_g)—.sgwm(D F,+D,E,+D, Fa_ﬂ), (5.11)

o U M vo

and then simply renamirfgto B for generality, plus some index renaming, intoftiren:
D,*B” =4(-g) " ¢""(D,B,+D,B,+ D, B,), (5.12)

which applies to any second rank antisymmetricdeis, . Then we front-multiply this by any

antisymmetric tensofA , and apply*A,, :%(—g)'5 €5 AP Via (4.1), to obtain:
*A,D,*B" =4ie,. e A”(D,B,+D,B,+ DB, (5.13)

This once again contains a tewy),,£”* which employs the sixth rank Kronecker delta of
(4.10) and (4.11).

20



-0,/6,°6,” -96,96,'9,”-0,)5,"5,°
*&D*Bm:%g a “B “u B Zu Za u “a “p Aﬂ’g(DJBW-'-DyB/J-'-DVsTy)’ (5.14)
10,887 +3)88,°+8,)5,57 | | |

which is readily reduced down to the identity:
0=3A"(D,B,+D,B,+D,B,)+*A D,* B (5.15)

Aside from differently-named indexes, and the thet the ordinary derivativa, , carries
through into the gauge-covariabt,, it will be seen that (5.15) is exactly the sarm¢a2) from
footnote 22 on page 251 of [27].

In the event that the commutat{ra‘", D 4B, +D,B, +D, @J)J =0 and
[*A,. D,* B"]|=0,then0=4(D,B, +D,B, +D,B,) A"+ D,* B"™* A, aswell. Butin

o 1] T o
non-Abelian gauge theory, where we will assocfatndB with non-commutindield strength
tensors withF# = D#G" = b #G" - i[G", G“] and [G”,G“] # 0 as in (2.7), one must treat

the general cas[eA"T,( b,B,+D,B,+ D, I%,g)} #0 and [*A D,* B‘”] #0 . Butevenin

ur
this non-commuting situation, the exact same stegd) through (5.15) with gear rather than

front multiplication by* A, yields the commuted identity, becausg " = £""¢_,, may be
commuted. So irrespective of commutativity, we reagarately obtain:
o=4(p,B,+D,B,+D,B,) A"+ D,* B™* A,. (5.16)

Now let us take (5.15) and renaméo F and alsdB to F. Then, we take (5.15) and
renameA to *F and alsd® to *F while applying **=-1 for second rank duality. Tiewe take
the commuted identity (5.16) and renaf® F andB to F. Finally, we take (5.16) and rename
Ato *F and als® to *F again with **=-1. The first two renamings yieldet pair of identities:

0

1F7(D,F, +D,F,+D,F,)+*F,D *F"
=F”D,F,-*F,D,* F" +1F“D,F, 517

0=1*F (D.*F +D,* F, +D* F,,)+F, D F”

=1x
2
=%

FD,*F,-F,D ,F"+%* FD* F,

The latter two renamings yield the commuted paidefitities:
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Oz%(D;,UFaT-'-D;UFr,u-'-D' F )FOT+D;J*FGT* F/JT

T o
=D,F,F"-D,*F7*F,+1D F,F"
0=4(D,*F,+D,*F,+D,* F, f F" +DF"F,

(5.18)

=D,*F,* F"-D,F"F,+1D* F,* F”

If we further use (4.15) and (4.21) in the above tdentities as applicable, from the top lines of
(5.17) and (5.18) we find the further equivalergntties:

0=1F7P, +*F, * P
0—_1*|:OT*J +F JT (519)
- 2 LHoT ur
and
0=1P_F7 +*P'* F
2" ot A (5.20)
0=-1*J, *F7+JF,
The top identity (5.19) may be reconfirmed usttig, :%(—g)'s.sgwrF"y and
*pr :é(—g)"5 £ P 45 from (4.1), with the aid of (4.10) and (4.11) dotain:
Bt P = (0) e P70 By = e TRy = PR, (52D

The bottom identity (5.19) may then be easily rdéicored by keeping in mind from (4.15) that
in a theory with both electric and magnetic chatgasities, whenever the field strength

Fe - *F°" at the very same time the electric charge dessitill become magnetic charge
densitiesJ” - *P". So starting with (5.19), top, we need to gaha teverse direction from
magnetic to electric charges. Thus, in (5.19), wpset*F” — F° which means that

** FT = —F% L* F7 via **=-1 for second rank duality, and at the saing we must set
*P" — J" which means that* P, =B -* J, via**=1 for first and third rank duality.
This is simply the application, using Reinich [26ld Wheeler [27] duality, of Witten's
statement in [30] that the “symmetry under- B,B - —E . . . still holds in the presence of

charges and currents if one adds both electricm@aghetic charges and currents.” Performing
these precise substitutions into (5.19), top, lead5.19), bottom. Then (5.20) are simply the
commuted identities of (5.19).

It is also important to keep in mind that thathematicaldentities(5.19), (5.20) for
fields and sources amedependently-derivedientities from the identities (5.17) and (5.1&tt
purely involve field configurations. So, if onedwn (5.17) and (5.18) aspriori identities, and
also knew (5.19) and (5.28)priori, it would be possible to hold them side by side] a
immediately deduce the four relationships betwermces and fields given by:
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J¥=D,F*
P, =D,F, +D,F,+D,F

ow o . (5.22)
_*J/JOT - D:ﬂ* Fa'r+ D;J* Frﬂ+ Dr* E

Ho
*P/l — D * FU/I

The first two are of course Maxwell’s equationsustomary form extended to Yang-Mills
theory, and the latter two are alternate expresdionthe same physical content which, because
of the duality relationships (4.1), possess thetsanformation-content” as highlighted by [28]
at page 88. The use of one or the other formaftdn depend on circumstance and
mathematical convenience.

With all of the foregoing, we are now finally peegpd to examine the conservation of
energy, and the energy tensor, for a Yang-Millsggstineory in which there are both electric and
magnetic charges. We shall show how the energyptes that of the vacuunT,, =0, which of

course means th&,, =0, which will validate Einstein’s final hunch disaesl in section 2 that

the relationship between Maxwell’s system of equaiand “the gravitational equations for
empty space” is more than just “surprising,” anthifact a signal of gravitational and
electromagnetic unification. This in turn will &kis on a path to discover baryons out of the
Yang-Mills magnetic monopoles, and nuclear physiaisof electrodynamics and elementary
particle physics.

6. The Classical Unification of Maxwell’s “Source-Full”
Electrodynamics with Einstein’s Gravitational Theory

We reviewed at the outset of section 3 how thalloonservation of energy / momentum
is established through a zero divergence of theggrtensor,0., T#, =0. With four free

indexes, this is a set of four equations, ﬁqﬂ”V is set equal to a four-vector of zeroes. The

time component equation establishes energy consanyavhile the three space components
establish momentum conservation along each oftiee tspatial components of motion. We
reviewed how the Einstein equation may be uncovkeyetbnnecting this vector of zeroes with

the four-vector of zeroes in the contracted Biamgéntity 0., ( RY, -390, R) =0 to obtain

-Kk0., T, =0, ( R, —10%, R) =0 which upon integration without cosmological constgelds
-kT#, =R, -3, R. And we saw that in electrodynamics, one foll@@milar procedure,
but instead supplies this vector of zeroes ugifg” (.,F,, +0.,F,, +0,F,,) =0, which is also

Ho% U vo v oou
identically equal to zerdyut only because of the abelian field relationsFiff =0"“G"). In
Yang-Mills gauge theory, the non-Abelian field tedaship isF* = D'#G" of (2.7), and as a
result the magnetic monopoles of (2.8) &g, =D,F, + D F, +D,F, #0, which is no

longer equal to zero. As a consequence, the igarged to enforce energy conservation in
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electrodynamics migrates toF* (D, F,, +D,,F,, +D,F,,) #0, and because this is no longer

U Vo v oou

equal to zero, it can no longer be connected f6“, =0. So, to make a long story short, we

now must find a new “vector of zeroes” to connea@ {T#, =0, if we wish to properly describe
the energy tensor and the conservation of energgentum in a non-abelian, Yang-Mills gauge
theory for which the identity F (D F,+D,F,+D,F )¢ 0 because the magnetic charges

MU vo v oou

0 v v oou

are no longer vanishing. We need a new identitgpbace; F (6 F,+0,F,+0,F ) 0
with a new vector of zeroes.

The identities (5.17) and (5.18) all fit the @8 “vector of zeroes” which may be set to
0.,T?, =0 to establish the local conservation of energyleéd, the precise vector of zeroes

sF7 (DWFW +D,F, + D;TFW) used for this very same purpose in source-fregrelgynamics,

see (3.2), is already part Of:%F‘”(D F.+D_F +D.F )+*FMD;U* F°* which is the top

0 U T Uo
identity in (5.17). So the questions we must nowstder is: which of the four identities in
(5.17) and (5.18), awhat combination of these identitje® we use?

First, we take some guidance from (5.9), where@esthat in source-free
electrodynamics, which is symmetric under duahkty’ - *F*, the Maxwell tensof“, ,,...ci
is itself also symmetric under duality. We surntiserefore, for “source-full” electrodynamics
which contains both electric and magnetic charthes,the energy tensor should likewise remain

invariant under & - *F#” transformation. We can construct such an idgbgtadding
together the two separate identities in (5.17ptenfthe single identity:

0=4F"(D,F, +D,F,+D,F,)+*F,D *F" +¥* F"(D* F, +D* F,+D; F,)+F,DF”

N /7] T o Uo

=F"D,F,+*F"D,*F,-F,D,F" =*F,D F"+iF"DF,+* F"D* F,

(6.1)

Just likeT#, | ower=
may form a separate identity by combining both5018) to form:

(F‘”’F +* A E ) this is manifestly invariant under duality. We

0=4(D,F, +D,F,+D,F, )F" +D, *F"*F, +1(D,*F, +D* F,+D* F,} F"+D F7F, ©.2)
=D,F,F"+D,*F,* F" -D,F"F,-D* F™ F, +iD F,F" +iD} F* F”

This is just the commuted version of (6.2) andd is F** — *F** symmetric. Now the
guestion becomes, mat we use (6.1) alone, or &oRk, in connection witi # ? Or, do
we have to also combine these in some way?

v Maxwell *

Now, as noted after (5.15), for an abelian gabgeny with F* = 9'#G"! and
[G”, GV} =0, (6.1) and (6.2) will be redundant identities. v can get by with using only one

of these. As a strictly mathematical warm-up fae tomplete non-Abelian Yang-Mills solution
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to this question, let us rewrite (6.1) as an abel@ationship, by settin®., - 0., and
regarding the field strength tensors to be fullpnowuting. Thus, (6.1) simplifies to:

o:%F‘”(a F_+0 F +0_F )+*F#,6;U*F‘”+%* F‘”(d;y* F,+0.% F,+0* FW)+F#,6;UF"T

ol 7} ;T po

=F”0,F,+*F"0,*F -F,0,F"*F0* F"+3F"0 F, +3 F70% F,

(6.3)

Of course, wherF#’ =9"“G"!, the monopoles are zeroed out, but let us forrtbment adopt

the late 18 century stance of Helmholtz and simply regard Et& as ordinary antisymmetric
tensors with no relation to a gauge field, simplylésh out the mathematics, recognizing that
this is an “unphysical” view.

Regarding (6.3) as no more than a mathematicatitgenvolving antisymmetric tensors,
we first observe by way of (5.10) for the luming2f electromagnetic energy that:

1R, F, +1¥F70,* F, =10, (F7F, # F™ F,)=10,0 )=0 . (6.4)

Therefore (6.3) may be partially reduced to:

0=1F"(0,F, +0,F,+0,F,)+*F,0,* F7+* F7 (3 * F +d.} F, +3% F,)+F,0,F"

O TU T o HT ™ 0 (65)
= F‘”O;UFUI+* F7a.,* Fu = Fw(laF‘JT -+ F,0." Fr
Now let’s work with the identity on the final lirebove, which we may write as:
F“o,F, +*F"0,*F, =F0,F"+F 0> F”. (6.6)

But if both sides of this equation are equal, thach of these sides is also equal to ¥z times the
sum of both sides, that is (%= B, then A= B=1( A+ B)):
F?0,F, +*F"0,*F,

o T
=F,0,F7 +*F,0,* F” : (6.7)

w o

=4(F70,F,+F,0,F"+*F7 * F, +F0* F”)

At this point we reach an important juncture whieghlights the commutativity issues that need
to be accounted for as between (6.1) and (6.2 caBse we are momentarily assuming abelian,

commuting gauge theory, we may commg,,d,,F” |=0 as well ag *F,d,,* F,, |. With
these commutations, plus one final consolidatibe,identity (6.7) finally becomes:
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Fa,F,+*F70 *F,

Nl /7]
=F,0,F7 +*F 0 * F"

w o

3(F70,F, +F,0,F +*F70,*F, +F,0* F7). (6.8)

N

(0,F,F +F,0,F7"+0,*F, *F" +F,0* F”)

%6;0'( T,UFGT-'-*FT,U* F )

So, now we return to (6.3), and because it iscéovedentity of zeroes, we connect this to
the local energy conservation relationsBipr , =0. We then applyr”F_, +*F“* F_ as
well as the identity (6.8). Showing all of thepgewhat we find is that:

9,T°, =0
=1F7(0,F, +0,F, +0,F,, ) +*F,0,* F7+5 F7 (3,5 F, +0 F,+0% F,)+F,0,F"
=F70,F,+*F70,*F, ~F,0,F"*F,0* F"+iF"0 F, +% F70* F, (6.9)
:%a:ﬂ(Fme"'*Fw*F )_Ea?U(F’/‘F RS RT )
:%G;U(FwF‘"+* F* B —F,F7 = Fr Fm)
=39,,(0)

This may also be written in terms of the sourta@sdP via abelian versions of (2.8), (4.15) and
(4.18), as:

0,7, =0=1F7 P +*F, P -1 F™ J +F J=10,0). (6.10)
Of course, we started out with a vector of zeragadequal tad., T?,. But the goal, as

it was in (3.3) for source-free electrodynamicdpigdentify an integrable expression that can
then be identified directly with the energy tengself rather than with its divergence. What we

come across in (6.9) is nowensor of zeroem the form ofd, . T?, =10.,(0) =0. Integrating
each side without a cosmological constant, we ffatder simply thaf“, =0. And of course, as
is well-known, because the Einstein equatitT“, = R, -3 J* R has a trac&T = R, it is
readily invertible toR”, = —K(T"V -10%, T). So in strictly geometric terms, (6.9) says that:

R, =0 (6.11)

for abelian source-full duality-invariantelectrodynamics. This is the direct proof of E&is's
final hunch discussed in section 2 in which he tburfsurprising that the gravitational
equations for empty space determine their fieltl ggsstrongly as do Maxwell’'s equations in the
case of the electromagnetic field.” The reasorthy is that at least for abelian gauge theory,
when there are both electric and magnetic sourdgbsdwality symmetry,R , =0 is an
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equivalent statement of Maxwell's equatioasd so unifies classical electrodynamics with
gravitation reaching the objective that Einstein pursuedrdytine last several decades of his
life and which he handed off to posterity by notthgs “surprising” finding. This is likewise the
next step in what is developed by Misner, Thorng \Afneeler in §20.6 of [28], as discussed
following (3.6). In that analysis, it is shown hole choice of the Maxwell energy tensor and
the conservation of that energy tensor leads ‘&ngineric case” to Maxwellsource-free
electrodynamics. In (6.11), we find that the cleadt the vacuunR , =0 together with energy

conservation also leads to Maxwell’s electrodynamiozit now, what we have is abeliaource-
full electrodynamics. It is the duality symmetry of Bources that creates the balances needed
to zero out the energy tensor.

As stated at the end of section 2, (6.11) is #réqular result which the author
discovered in 1984 [25], which became the stanpioigt for much of the author’s subsequent
research. For, while (6.11) was developed fortzelian gauge theory with both electric and
magnetic sources, and duality symmetry, this isaqpbtysicaltheory but rather is a formal,
mathematical unification, because in Abelian gathgery magnetic sources vanish as soon as
one introduces a gauge field. And, as Witten goinit in [30] as reviewed at the start of section
4, “the vector potential is not just a conveniemcsolving Maxwell equations. It is needed in
20"-century physics for three very good purposes” Whiere not understood back when
Helmholtz suggested that there might be no real f@rea vector potential and before Hermann
Weyl had developed gauge theory [31], [32], [33Mnich the gauge field/ vector potential
assumed an indispensable and central role. Se Emistein’s final hunch about there being
some equivalence between Maxwell's system of egnatand the empty space equations
R, =0 is confirmedmathematicallyy (6.11), taking the next, vital step towataysical

confirmation requires a) the existence of magnabnopolesas part of a theoryhich includes

a vector potentiglwhich is realized by the use of Yang-Mills gadigeory; b) identification of

the magnetic monopoles with something that mayldseiwed, which the author has shown in
[13] and [21] are baryons; and c) validation ofddlthe foregoing using empirical, numeric data
from at least some baryons, and specifically, logely explaining a number of observed binding
and fusion energies for the proton and neutron, [[14], [18], [19] as well as the observed
proton and neutron rest masses [20].

So in the next section, we will use the result 1§ for mathematical guidance, and shall
see whether this same resRlf, =0 can be reproduced in Yang-Mills gauge theory imciithe

gauge fields are non-commuting, i.e., non-abebauad, in which the magnetic monopoles really
do become non-vanishing as a result of the figkehgth defined in relation to the vector/gauge

potential in (2.7) byF** = Di¥G" =i+ G - i[Gﬂ, GV] .

7.  The Classical Unification of Yang-Mills’ Electrodynamics with
Einstein’s Gravitational Theory

Let us now return to the non-Abelian identity (6abhd see how far we can progress
toward R, =0 before being required to also employ (6.2). Assiall shortly see, it is the step
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/7
will for Yang-Mills theory, which will require comhing (6.1) and (6.2) in a particular manner.

we took at (6.8) of commutingF,,,0,,F” | =0 and[*F,d,,* F,, | ,which we cannot do at

Corresponding with (6.4), let us first develop taen ;F” D F, +3*F“D_* F, from

(6.1). Using variants of (4.1), and keeping in chihe cancellation of thé—g) terms as we
have previously seen, e.qg., after (4.14), we matewr

1*F7D,* F, =3(4(-0) " #7F,, ) D, (4(-0) " £upr F¥)

%%%glﬂm HﬂﬂTFﬂVD Fﬂﬁ— %%%5’“VJH,&7F/JVD Faﬂ__il?l!J#VaBvaD;pFaﬁ' (71)
=-11(s",0",-06";0",)F,,D,F” =-1F"D,F,

So based what is effectively the relation **=-1 g@cond-rank duality rooted in the underlying
calculation (4.2) to (4.5), we find that (6.4) dagsneralize to:

sF”DF,+3*F"D *F, =0. (7.2)
This means that (6.1) reduces to:

0=41F"(D,F, +D,F,+D,F,)+*F,D *F" +&* F7(D* F, +D* F,+D; F,)+F,DF”

N /7] uo

(7.3)
=FD,F,+*F"D,*F, -F,D,F" > F, D F

and that via an identical **=-1 type calculatiof,2)
iD,F,F7+iD,*F,* F" =0, (7.4)
so that (6.2) reduces to:

0:%(D F. +DgFm+D,FW)FﬂT+D;J*FaT* F#T+%(D;,U* F,+D F,+D} FM) F7 4D FE, s
:D?UFT/IFUT+D;U*FT;1* Fm_D:gFmFm_D;g* Fo= Fr/l

As a result, we now may extract from (7.3) an&),Avith the further help of
A= B=1( A+ B) the respective identities which generalize (6.7):

F7D,F,+*F“D,*F,

=F,D,F" +*F,D,* F"
=4(F"D,F, +F,D,F"+*F7D,*F, + F,D* F”")

, (7.6)
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D,F,F7+D,*F,*F"
=D, F”F,+D,*F"*F, . (7.7)
:%(D;JFTNFOT + D;JFGTFM +D,* FT/J* Fo+ D, o Fflf)

Now we hit a roadblock that is uniquely a consegeeof the non-commuting nature of
non-Abelian, Yang-Mills gauge theory. In (7.6) weuld like, for example, as in (6.8), to be

abletouse{F‘” D F ] 0 to write F"D,F, +F,D ,F” =D, F F” +F,D F” toward the

o T o T Hoal /74

goal of then collapsing via the product rdla[B+ Ald B:G( ADS Similarly we would like to
use[*F”,D,* F,|=0 towrite*F“D*F, — D,* F.* F, butcannot. This is because
these field expressions do not commute in Yangs\Wjduge theory. So what do we do?

This is where we now start to interplay (7.6) énd), because (7.7) does contain the
exact field terms that we cannot get to in (7.&duse the non-Abelian fields do not allow us to
commute the way we can in abelian gauge theory.fa8mon-abelian gauge theory, the “vector

of zeroes” that we need to connecttgl “, =0 will need to involve a combination of (6.1) and
(6.2), which thus far have advanced to (7.3) angl)(7

Therefore, let us now combine (6.1) and (6.2) ewof (7.3) and (7.5) (see (7.2)) by
subtracting(6.2) from (6.1) to fashion the combined identity:

0=1 ‘”(D F, +D,F,+D,F )+*FMD;U*F‘”+%* F‘”(DW* F,+DJ F,+Df F )+FMD;UF‘”

T po uo

F
-i(D,F, +D,F,+D,F,)F" -D *F"*F, -1(D* F, +D} F,+D* F,) F"-DFF,

H Al /7] T po
=F"D,F,+*F"D *F,-F,D F" *F,D* F"+1F“D F, +1*F"D *F,
-D,F,F" -D,*F,* F" +D F“F, +D* F™ F, -1D,F,F"-iD* F* F” (7.8)
=F"D,F,+*F"D,*F,-F,D,F" *F,D* F"

-D,F,F"-D,*F,* F"+D,F"F,+D* F™ F,

oAl /]

=(D,F"F,+F"D,F,)+(D,*F"* F,#* F"D} F,)

oAl

-(D,F,F"+F,D,F")-(D,*F,* F" + F,D* F”)

The reason we have subtracted rather than addather simple: this now gives us four pairs of
terms,D,F”F, +F"D,F,, D, *F7* F+* F"D* F,, -D,F,F" -F, D F" and

o /78l o) 7] 0 /78l
-D,*F * F” = F D/ F’ which are structured just as we would like therbeédo now

pursue a consolidatiodA[B+ Ald B - 6( ADQ using the product rule. That s, it is the desire

to combine terms using the product rule which béacls from proceeding at (7.6) and (7.7) that
motivates the combining of (6.1) and (6.2) throggbtraction rather than addition. Now let us
work with these four pairs of terms.
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One cannot immediately us&[B+ AldB - 6( ADQ because the terms in (7.8) contain
gauge covariant derivatives. So, for exampletehas:

D,F"F,+F7D,F,=(d,-iG,)F"F,+F” (3, -iG,)F,

=9 ,F"F,+F"d,F, -iG,F"F, —iF"G,F, (7.9)
=0, (F7F,)-iG,F"F,-iF"G,F,

contain extra the extra tern@&, F”F, , + F” G, F,, arising from the gauge-covariant derivatives.
Similarly, for the other three term pairs:

D:U*Fm* Fru+* FUTD;J* sz(a;a_iGU) Fo FT-/';* Fm(aig_iGU*) F

w

, 7.10
=9, (*F7* F,)-iG* F™ F, -t F"G} F, (719
-D,F, F"-F,D,F”" =-(d,-iG,)F,F"-F,(0, -iG,) F‘”' 711
=-0,,(F,F7)+IiG,F,F +iF G F”
-D,*F *F" *F D F"=-(d,-iG,} Fx F"= F (8, -iG}) F”
i ] w0 ( H I 0’) W T/J( H ! 0’) (712)

=0, (*F,* F7)+iG,* F,x F7+t F G F”

w=o
As a consequence of (7.9) through (7.12), the Beabf terms in (7.8) reduces as such:

D, F“F,+F“D_F, +D *F7*F+* F"D* F,
-D,F,F" -F,D,F"-D, *F,* F™ =+ F,D* F”

=0, (F7F, +*F7* F,)-0, (F,F" + F  F7) . (7.13)
-i(G,F7F, +G,* F7* F, ) +i(G,F,F" +G* F* F”)

(/]

-i(F"G,F, +*F"G,* F,)+i(F,G,F” + F,G,* F”)

W=

Once again, duality helps us reduce. For examigiag (4.1) and variants:

oyt
Lee apu

xR Fr 2| 2! deFaﬁ = _21| 21' gdya-rgaﬁurFJyFaﬁ _ﬁﬁédwaﬁﬂlz Faﬁ
=11(8°,0,0°, +0°,07 07 +8° 0 187 = 0%, 0" O 5 = O° 8 ;&7 = 87,07 .07, ) Fp F P (7.14)

=F,F7+10° F, F

Referring to terms in (7.13), this means that:
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FoF, +*F"*F, =F"F +F F" +30° F F” (7.15)
which is a non-abelian variant on the Maxwell tare®we can see by rewriting this as:
~1(F7F, +*F7* F, )==1(F7F, +F,F")+15° F, F” (7.16)

and thinking about the abelian commutatieffF,, = F, F* which we arenotallowed to do in

a non-abelian theory, but which would yield ... = —F”F, +39° ,F, F” if we were.

Next, we considetF,* F” in (7.13), which is the commuted form tF “* F |
calculated in (7.14). Here, a like-calculationegy

or — 1 1 oyor — af
R R =55 ETFTR,,

— 0} af — o7 (o ar
—%%dw”’F Fs;, =F Fw+%5/1FOTF

oyt = af ——_11
2 F de_ 55‘905/”

(7.17)

which is simply (7.14) withF, and F” commuted. Consequently, in (7.13), this mearnts tha
F.F"+*F *F" =F,F" +F7F +30° F, F”, (7.18)

which similarly is a non-abelian variant on the MeeXl tensor. Most importantly to pinpointing
an integrable divergence for the energy tensqi7.i3), using (7.15) and (7.18), the term

0., (F7F, +*F7* F,)-0,(F,F" + F* F")
9, (F7F,+F,F"+10° F,F")-0,(F,F" +F"F, +10°, F, F7)
9, (F7F, +F,F7 +10° F F" -F, F" -F"F, -18° F, F")
2,

()

So we have found the term to which we will wantemnectd , T, =0 in order to identify

T?,=0 and thus extract the empty-space gravitationaatom R, =0 of (6.11) as the

gravitational equatiomven for non-abelian electrodynamiddut now we need to take care of
the remaining terms in (7.13) which contain theggafield G, and which arise only because of

the very fact that Yang-Mills theory employs theaiga-covariant derivativ®,, rather than the

(7.19)

ordinary covariant derivative., .

As to four of the eighG, -containing terms in (7.13), we may use (7.15) @hl8) to
eliminate:
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-i(G,F7F,+G,* F7* F,)+i(G,F,F" +G* F* F”)

=iG”(FT/fFOT+*FTﬂ* R _FOTFw_* o FT,U) . (7.20)
:iGU(FT/‘Fm+FGTFT#+%JUIJFUTFGT_FGTFT,U_FT,UFOT_%JUIJFUTFGT):O

As to the remaining fou6, -containing terms in (7.13), we again use dualityL) as in (7.14)
and (7.17) to obtain:

* FOTG * Fr,u _Eggdmgaﬁry deGa Faﬁ == %‘ 21' gdmgaﬂyr FJyGLT Faﬁ = 21' 2]; deaﬂ,u JyG Fﬂ
:%51(5‘5 0" ;07 , +5‘5 0" 0%, +5‘5 0",0°%, -5°, 0" 0%, —5‘5 0" ,0°, —5‘5 o ,0° ) 5 G,F? .(7.21)
=F G,F"+]F,G,F”
Consequently, the term:
F*G,F,+*F"G,* F,=F"G,F,+F,GF +; F G F". (7.22)
Likewise to (7.21), we may use duality to find ttemmuted relationship:
*F,G,* F"=F"G,F,+3F,G,F” (7.23)
so that:
F.GF"+*FG*F"=FGF' +F'GE+;F GF. (7.24)

Therefore, on the very bottom line of (7.13), weymae (7.22) and (7.24) to eliminate:

-i(F"G,F, +*F7G,* F,)+i(F,G,F” + F,G} F”)

o wo
=i(F,G,F" +*F,G,* F" -F"G,F* F"G} F,) . (7.25)

=i(F,G,F" +F"G,F,+1F, G,F"-F"GF,-F,GF -1 E G F)=0

Now consolidating all of our calculations, we mase (7.19) and (7.20) and (7.25) to
reduce (7.13) to:

D,F”F,+F”D,F, +D, *F * F +* F"D* F,
-D,F,F"-F,D,F"-D, *F,*F" =*F D* F”
=0, (F7F, +*F* F, )=, (F,F" + F* F")

=0, (0%,)

(7.26)
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We then use (7.26) in (7.8), and also write thgioal subtraction of (6.2) from (6.1) using
commutators, so at to arrive at our final identity:

0=1F"(D,F,+D,F,+D,F,)+*F,D *F"+# F"(D* F, +D* F,+D} F,)+F,DF”
-4(D,F, +D,F,+D,F,)F"-D *F"*F, -1(D*F, +D} F,+D* F,} F"-DF”F,
=4[F”,(D,F, +D,F, +D,F,)]+[*F,.D,* F"] (7.27)

+%[*F‘”,(D;,,* F, +D* F, +D.>* Fﬂ”):|+|:|:m D;JF‘”]
=0, (0%,)

This identity is an identity of non-abelian gaugeory in which there are both electric

and magnetic sources, it is invariant under thdityusansformationF* - *F# and it
comprises a vector of zeroes which is the spacaliwergence of a tensor of zeroes. Thus, as a
final step, we connect this to the divergence efdbnserved energy tensor, and also introduce
the electric and magnetic sources directly via)(d815) and (4.18) to arrive at (contrast the
abelian result (6.10)):

9,T%,=0=4 F",(D,F, +D,F,+D,F,)|+[*F,.D,* F"]

7 o T T Uo ur?

+%[*F”T,(DW* F,+D,* F,+D* FM)}[FM D,F"] . (7.28)
A[F7 R (Rt P e 0, 4 700

So the subtraction of identity (6.2) from (6. 1)rtsnout to introduce the four commutators
[F7.Py |, [*F*P" ], [*F7.*J,,, | and| F,,, 3" | of sources with field strength densities,

v U uor ur? Hur?
and is effectively a classical equation of motietating all sources and fields. The overarching
result in (7.28), however, 8=0,,T°, =0d 0 which integrates sans cosmological constant to

T?,=0 and which, upon inverting the Einstein equatioweadid after (6.10< once again
yields the result (6.11), that:

R, =0 (7.29)

v

In (7.28), once we connect W, T?, =0 to the Yang Mills identity, it is important to
keep in mind that because” = A'F' "=FZ =A' ,,F' 7 is really an NxN Yang-Mills matrix of
N? -1 bivectorsF' 7 for any specific gauge group SU(N) for which tlemgratorsl’ maintain
the commutator relationsh{pzli A ] =if, A using the group structure constarifs, that the
energy tensofl “, will now contain an additional NxN Yang-Mills matrcharacter, which is to

say thatd,,T?, =0,, once all indexes are explicit, really has theatred , T, =0, 5. In

general however, we shall suppress showing theag-¥alls indexes explicitly unless
specifically warranted to make a particular pointarry out a specific calculation, as it will
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eventually be when it comes time to calculate ihdibhg energies of the monopole baryons to
demonstrate how they do match up closely with eicgdinuclear data. This means that in
Yang-Mills, R, = R, .5 =0 has an implicit NxN Yang-Mills matrix structure agll, on top of

its 4x4 symmetric spacetime structure. So graeial theory, in this way, inherits the non-
commuting attributes of Yang-Mills gauge theory.

In (7.29), once again, Einstein’s final huncijdg] as to a connection between
Maxwell's equations and the gravitational equatRy) =0 for empty space, is validated by the

fact thatR, =0, coupled with a locally-conserved energy tendgf?, =0, can, as shown in

(7.28) be identically matched up with Maxwell's equati@ssextended to non-abelian Yang-
Mills gauge theory with a duality symmetry betwestectric sources and the non-vanishing
magnetic sources that arise from Yang-Mills galngety. Stated differently, (7.28) and (7.29)
are the concrete representation, for non-Abeliarggaheory, of Einstein’s “surprising” finding
in [22] that “ the gravitational equations for emgpace determine their field just as strongly as
do Maxwell’'s equations in the case of the electrgmedic field.” To extend and encapsulate the
lessons of Misner, Thorne and Wheeler in §20.@8f,[R,, =0 for pure spacetime geometry,

together with the conditiod., T? , =0 that energy must be locally conserved, is all ihat

needed to reproduce Maxwell’'s equations as repredeém (7.28) for a non-abelian gauge theory
(which therefore encompasses strong and weak atiena), and as represented in (6.9) and
(6.10) for abelian, source-full electrodynamicscBuse the magnetic monopoles in (7.28) are
non-vanishing, and subsist in a theory that doesato gage fields which are related to the field

strength according to the non-abelian relationghffy = D'“G" = d#G1 ~i[ G, G’ | of (2.7),

this theory is a viable theory of nature insofart@oes utilize the vector potential which “is not
just a convenience in solving Maxwell equationst]isineeded in 2B-century physics for [the]
three very good purposes” identified by Witten30@], not to mention that the vector potential is
the central defining element of the gauge theom&imann Weyl [31], [32], [33].

This completes Part | of the development herewNee need to establish that the non-
vanishing magnetic monopole of Yang-Mills theoryetast in the physical universe, and are in
fact the baryons which in their proton and neuftawors, are at the heart of the material
universe.

PART II: CLASSICAL UNIFICATION OF NUCLEAR AND
ELEMENTARY PARTICLE PHYSICS

8. In the Beginning: How Nature Springs Forth Luminous Energy and
Matter from the Geometrodynamic Vacuum

When Einstein made the “surprising” finding in firgal paper [22] that “that the
gravitational equations for empty space deterntieg field just as strongly as do Maxwell’s
equations in the case of the electromagnetic fialsldiscussed in section 2, he really begged
two questions. The first of these is whether Was more than just a “surprise,” and rather an
indication that there is in fact some formal eglewae between electrodynamic theory and
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gravitational theory under some defined set ofuriistances. As we have now demonstrated in
section 6 for “source-full” electrodynamics andtgmt 7 for Yang-Mills electrodynamics, and
throughout the development of Part I, there is @ada formal equivalence between the
gravitational equatiorR,, =0 for empty space, and duality-symmetric, source-ful

electrodynamics, with **=-1 from the duality symmgebdf second rank fields and (for non-
abelian Yang-Mills theory) the commutation of figldnsities with sources in (7.28) resulting in
the necessary balancing to cancel all constituemtributions to the energy tensor down to zero.

Second, by defining a “measure . . . which wike\enable us to compare with each
other the strengths of systems whose field varsahiféer with respect to number and kih@nd

by showing the two separate Maxwell equatiorso ,F* and 0=9,F, +d,F, +0,F,, in

o' uv v ou

covariant form to be equivalent in strength tod¢he covariant equatioR , =0 of empty

gravitational spacetime, Einstein begged the qoests to whether the logical consolidation
which he himself started in 1905 in [23] of Maxwellour equations (2.3) down to the two
spacetime-covariant equations (2.4) was itselfausty station on path to a fuller consolidation
in which one would speak simply of “the Maxwell agjon,” singular, as a single covariant
equation that contains and unites all the physiocatent of Maxwell’s theory. Simply put: what
would happen if one were to combine both of Maxisedfjuations into a single equation that
contained the combined physical content of both@uM/the “combination of the parts” yield
more physics than the separate parts, and if sat wbuld that physics be teaching us about?
This is a different question from whether thera iIossover connection to gravitational theory
in the form of R, =0, and is rather a question about whether electraycs, as a self-

contained theoryon its own termshas in fact yet been fully advanced to its logarad physical
and historical conclusion? That is the questiorshal now begin to explore, and it will deepen
the electrodynamic and gravitational unificatiorPafrt | by revealing unification among
elementary particle physics, nuclear and hadrorsiphyand electrodynamics, in which the
magnetic monopoles of Yang-Mills theory are undmdtto be baryons which confine their
guarks and gluons and interact via meson exchange.

A fair portion of what will now be reviewed haseddy been developed at length by the
author in previous papers [13], [14], [15], [16)dgoreprints [17], [18], [19], [20], [21] and so
that development will not be repeated here. Iaktéee review to follow will now focus on two
main purposes: First, we shall simplify and stri#aenand clarify and consolidate the
development of these earlier papers wherever theraymity presents itself. Secondly, the
opportunity in fact does best present itself, wheploring the fashion in which these earlier
results are implicitly a unification among elemewgtparticle physics, nuclear and hadron
physics, and electrodynamics, by making that uaiios explicit and clear. Consequently, the
presentation to follow will be that of a unifie@lid theory, in which the author’s previous work
pertaining to baryons including protons and nelgroging the magnetic monopoles of Yang-
Mills gauge theory, the solution in [21] to the 88aGap Problem [12] including the
development of quantum Yang-Mills theory and prgvine existence of a non-trivial quantum

Yang—Mills theory onR* for any simple gauge group G, and the connectiomsnpirical light
nuclide binding data and the proton and neutrorsmii'emselves, will all be assembled
together into the context of a unified field thespringing forth from the vacuuR, =0 of
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empty space. And so, from that seemingly-emptyestd the spacetime vacuum, we shall show
how nature springs forth luminous and material gpeand all of the natural phenomenology we
observe in the physical universe.

It has often been envisioned that a unified ftakebry might start at its summit with a
simple, single equation and very small number ofgiples, and that from that one equation and
few principles, one would be able to systematicafifold by deduction other equations and
principles which, when fully elaborated and minedtheir physical content, would reveal and
explain everything that is observed in the physmatld. In that spirit, we begin in the vacuum,
with R, =0, which we uncovered in (6.11) for source-full Matlrelectrodynamics, and in

(7.29) for Yang-Mills electrodynamics wheR,, ., =0. This is the single, simple, master

equation of nature The way forward from there is revealed in sf§it§20.6 of [28], where at
page 473, Misner, Thorne and Wheeler show how M#enagjuations of motion “are fulfilled
and must be fulfilled as a straight consequendeimdtein’s field equation . . . plus . . . the stre
energy tensor.” The key point of Einstein’s fielguation is that it emanates from connecting

the contacted Bianchi identi@{#(R"V -390, R) =0 to the local conservation of energy
0., T, =0 as the vector of zeroes©,, T, =0, ( RY, —30%, R) =0, and then integrating sans

cosmological constant to obtaixT#, = R, -4 J* R. That is, the divergence of Einstein’s
equation is a set of equations for local consewmvadf energy and three components of
momentum, connected to and enforced by pure Rielmageometry. While the stress energy
tensor used in 820.6 of [28] &' =-F%F,, +39° ,F*"F, of (3.1), the point of the stress

o Maxwell

energy tensor is not this particular energy tensot ratherthe very fact that one has an energy
tensor to begin with So what Misner, Thorne and Wheeler are pointigmore generally is
that one starts out with an energy tensor — soraeggriensor — (which in abelian gauge theory
has ten independent components), one starts duthatprinciple that that energy tensor is
conserved (which is an equation with four indepemdemponents), and that by having an
energy tensor coupled with the principle that #argy tensor is conserved, one may deduce
Maxwell’s electrodynamics in some variation. S,Us now take those steps starting with the
energy tensoR , =0 of (7.29).

In the beginning:

R =0. (8.2)

v

This is the equation for the pure, empty geometigpacetime. Via-xT*, = R/, -15“ R, we
obtain the stress energy tengof, =0. Via -«0.,T*, =0, ( RY, —30%, R) =0 we require
energies in the vacuum to be locally conservedt t@Bareate light and electronic and nuclear
matter we will need a different identity from thector of zeroes?w(R”V -390, R) =0. We

will need another identity — also a vector of zaeredhat contains electrodynamic fiel#$” and
sourcesJ”, P_ . As to the fieldsF*, we have the mathematical identity pairs (5.1%) a

auv *

(5.18) which contain the gauge-covariant derivatiize, = 0., —-iG, and so apply even to non-
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abelian gauge theory in which the fiel#$” do not commute. For abelian gauge theory, these
identities continue to apply, but with the speaiation D., - 4., and with the fields now

commuting, which commutativity collapses (5.17) #8d.8) together into a single identity pair.
So in place of the Bianchi divergendg(R"V -390, R) =0, we may fashion (5.17) and (5.18)
into the field identity of (7.28), connect thisttee conservation requiremedt T’ , =0, and

write the local energy-momentum conservation equati

0,T7

ol u

9, (R,-10°,R=0

i/ F".(D,F, +D,F, +D,F, ) |+[*F

T uo ur?

D,*F ] . (8.2)
+3[*F7,(D,* F,, +D,* F,+D} F,,)|+[F, D,F"]=00

Both a;g(R"# -39%, R) and the expression containifg” are a vector of zeroes by

mathematicaldentity, whiled.,T? , =0 is aphysicalprinciple of local conservation that we
impose upon the energy tensor. However, the pdaticombination of fieldd=“" shown in the
above, because of duality and the commutators pa@ssto also contaid , 77, =90, which
means up to a cosmological constant, tRat=0. So (8.2) is another way of saying that

R, =0, and that the associated energy momentum is yocatiserved. This is 820.6 of [28],
extended to Yang-Mills electrodynamics with botbeottic and magnetic sources.

But there are some other mathematical identiiasduality permits us to derive, and
those involve first rankl*, *P* and third rank antisymmetrie,, , *J . source tensors. Those
are the mathematical identities (5.19) and (5.2@)ch may also be combined together into the
mathematical identity:

0= F" P, [+[*F, *P"|-4[*F"* 3, [+ R, T] (8.3)

which is yet another vector of zeroes that is shembedded into (7.28). However, when we
separate out this embedding as we have done atvethecomparisorof the mathematical
field identityin (8.2) with the mathematicaburce and fielddentity (8.3) immediately allows us
to deduce the four interrelationships previoushpedded in (7.28):

JH = DUFU”
P/m = D;/t Fr + D;o Fr/t + D;TF/IU

o =D, By D R+ DS F

Ho
*PH =D * FH

(8.4)
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This is a verbatim reproduction of (5.22). So nowt of the vacuunR , =0 and the

conservatiord., T =0 of its associated energy-momentum, we have, tayefa construction

of mathematical identities, derived the Maxwell atjpns of Yang-Mills electrodynamics, which
by being Yang-Mills equations, are capable of acomaating the weak and strong interactions.
As previously reviewed, although (8.4) containsrftmnsor equations, the “same-information-
content” ([28] at page 88) character of dualityl j4llows us to capture all of the physics
information contained in (8.4) by using only onetlué electric source and one of the magnetic
source equations. Often, it is the first two ecpret that one uses.

One can then proceed to the further specializaflg - 0., and impose an abelian
condition F* = 3“G" in lieu of the non-abelian conditioR*” = D*G” = i#G? - i[G”, G“]

of (2.7), so that all of the fields now commute. this instance the top two equations (8.5)
reduce to the equation pair (2.4):

J# =0, F*

B : (8.5)
0=d,F, +0,F,+d,F,
of ordinary Maxwell electrodynamics with electriousces but without magnetic sources. In the
further specialization of source-free electrodyreanwe setl” =d_F% =0. This implies as in

(3.8) thatx, =F_,J* = F, 0., F" =0, which in turn means that (3.5) reduces to theseoration

o a

relationship0=0., T, =0., T, .we iN Which the Maxwell stress energy tensor:

Taa MaxweII: - Fa,u FU/I +%JHJ Fyv Fuv (86)
of (3.1) is the conserved energy tensor. Thigoolrse, is a traceless energy tensor,
T, uawer= 0, @nd so it represents the luminous energy of llgbpagation.

So in Part | we worked forward from source-free Weeelectrodynamics to source-full
Yang-Mills electrodynamics and connected all o thui the gravitational equatioR,, =0 of

empty space. Now, in this section, we have redeafieof that development, by starting with
R, =0 and local energy-momentum conservation to dedelgtiwork backwards to Yang-

Mills’ and Maxwell’s electrodynamics. This is timay in which classical gravitation becomes
unified with both the Maxwell and Yang-Mills vari@nof classical electrodynamics: We start
with a geometrodynamic vacuum with locally-consdreaergy, and from that vacuum, nature
springs forth both light and matter. That (8.§resents light and (8.5) represents
electrodynamics is well-established. The balaridceeodevelopment here — as the author has
previously established in [13] and [21], and supgbrvith empirical data in [14], [16], [17],
[18], [19], [20] — will be to review how and why eations (8.4) are the equations of baryonic
and nuclear matter, wherein the Yang-Mills magnetanopolesP,,, =D F, +D,F, +D.F,
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are one and the same as baryons, which mono@hlesin their most important and interesting
flavors, include the observed protons and neutabrithe heart of matter.” [34]

0, To Be Added

Subsequent sectionsto be added will review the work of [13], [14], [15], [16], [17], [18], [19],
[20], [21], placing them all into the above-established context of a unified field theory.
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