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Abstract

With the Planck ’constants’ length, time, mass and acceleration will be shown, that a
Quantum Gravity of the cosmos exists. This paper shows how Einstein’s Field Equations in

Friedman Robertson Walker Metric solves the Planck Era context.

1 The Planck ’constants’

Planck length Ax = 1/%

Planck time At = /&L

Planck mass Am = 4/ %

i —c _ |
Planck acceleration Aa = A= \/;

2 Modern Cosmology

Within modern cosmology the Einstein’s Field Equations would be written with cosmological

term A as follows (see [2] and [3]):
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The solutions of the Field Equations in Friedman-Roberson-Walker-Metric are:
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FRW Equation (II)

Finstein abandoned the cosmological term A as his ”greatest blunder” after Hubble’s 1928
discovery that the distant galaxies are expanding away from each other. Within a Universe
with ideal Quantum gas and without cosmological term A and geometry factor k& = 0 the
equation (2.1) and (2.2) will become:

FRW Equation (I)
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With the relation p = % (Quantum gas) will change (2.4) as follows:
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Within Thermodynamics we assume dE = TdS — pdV and for an adiabatic process it holds
TdS = 0. We become d(eV') = deV + edV = —pdV and it follows with de = —(e —i—p)% and

for the Radiation Dominated (RD) Universe p = § we assume:
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If we assume R = cty and R = ¢ (with ty = Age of Universe = 13.8]Gyr] = 4.3549¢!7[s]) we

receive from (2.3):
c? _ 8nGp

R 3

(2.7)
We multiply (2.7) with ﬁ and with energy density € = pc? (RD) we get:
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In the context of (2.6) € ~ R~ follows that % = constant (see [5] section 7.8).



The equivalence between Radiation Dominated (RD) and Matter Dominated (MD) Universe

is given by:
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Cosmic Microwave Background Temperature Toyp = 2.725 [K]

The Radiation constant is @ = 7.5657¢ 16 [K‘T]ng]

3 Planck-Era

In Planck-Era the following 6 relations are valid:

Am Ax = % (3.1) (Heisenberg uncertainty principle Ap Az = h)
Am At = c% (3.2) (Heisenberg uncertainty principle AE At = h)
Sm = L (3.3) (Quantum Gravity Aa = A%C?’)
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With Planck-Force AF = Am Aa = & (3.6)

The Planck Temperature is AT = (g2%5-)1/4 = 5.8404¢%! [K]

The Planck Energy AE = Amc? = 6.08088 kAT = %05

4 Gravitation as curvature of space

We assume in macroscopic scale the equations (3.1) til (3.6) as:

(Entropy constant ¢, = ]Ze;’ = 1.5036¢%) Ry = % = 6.426€?! [m]
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For the Radiation Dominated (RD) Universe we get: Grp = CCTShR%D

For the Matter Dominated (MD) Universe we get: Gyp = G RuD

cto

For Matter and Radiation Equivalence we get: Geqy = C%qu = %Req = 3.28486_15[8’2"29]

Planck length at equivalence Axcy = 4/ ngh = 2.8422¢737[m)

Planck time at equivalence Aty = \/@ = 9.4805¢ 465
Planck mass at equivalence Amg, = \/GI; = 7.7765¢ %[kg]
My = Myp = (ZAmey = 1.7582e%3[kg]

MegReq = G2 (4.1)

Megteq = Cﬁc% (4.2)
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With Planck-Force AF,; = Mcqa = G‘f—cq (4.6)

. . 2 GegMeg _ Megc? . .
With the Acceleration a.q, = VegGog — Req — B2, = cih it follows:
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For R? = S92t is with (4.7): R? = MegReg &7 =

The FRW Equation (I) (2.3) is with R = ¢ as follows:
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or with (2.8) and (4.7):
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We become the R* dependency of (2.6) as follows:
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5 The universe as a black hole

(Entropy constant ¢ = 1/ £ = 1.7952¢3°) R = cty = 1.3056¢?® [m]

For a Virtual Photon we assume: £, =hv =max

. . . 2
The Radius is R = €Y and Acceleration a = S = <
c R R

We get: E., = %% = % = kTpy = The Bekenstein-Hawking-Temperature is: Try = ,?—I%
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The Bekenstein-Hawking Planck-Temperature is ATgp = % = khAcm

With R = (?Ax follows: Try = kcgﬁ — A?H

2
The Entropy is S = —k In P = —k ln(eiﬁ) = k¢* (P = Normaldistribution)

The total Energy is E = STgy = (?kATgy = (?AE = My;pc?



6 Consequences

There is no problem with the Singularty at Zero because:
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Grp(R) = &7 = Ggp(t) = &7 (5.1)

For the Planck Era we receive:

Planck length Az(G) = Gh _ R

Planck time At(G) = Gh _ t

Planck mass Am(G) = % = Z—Rg = Am(G)Az(G) = %

Planck acceleration Aa(G) = ‘/#(75‘-) = % = Aa(G)Az(G) = 2
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General Relativity: IR%—; = 8”3Gp = 1‘3%—22 = t% = R=ct
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