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Abstract 

Lebesgue’s universal covering problem is re-examined using computational methods. This 

leads to conjectures about the nature of the solution which if correct could provide a 

blueprint for a complete solution. Empirical lower bounds for the minimal area are computed 

using different hypotheses based on the conjectures. A new upper bound of 0.844112 for the 

area of the minimal cover is derived improving previous results. This method for determining 

the bound is suggested by the conjectures and computational observations but is proved 

independently of them. The key innovation is to modify previous best results by removing 

corners from a regular hexagon at a small slant angle to the edges of the dodecahedron used 

before. Simulations indicate that the minimum area for a convex universal cover is likely to be 

around 0.84408. 

1. Introduction 
It is 100 years since Henri Lebesgue posed a curious problem about universal covers in the plane for 

sets of diameter one.  The diameter of a bounded set of points   is the supremum of the distance 

       for      . In the original problem written in a letter to Pál in 1914, Lebesgue asked for the 

convex set of minimum area that contains a subset congruent to any set of diameter one [1]. By the 

definition of congruence this means that the shape   can be translated, rotated or reflected to fit in 

the cover. This is known as Lebesgue’s Universal Covering Problem or the Lebsegue Minimal 

Problem 

A variation is to look for the minimal area of non-convex universal covers. For the convex case there 

must be a unique universal cover that achieves the minimum area by the Blaschke selection theorem 

[2]. It is not known if a minimal universal cover exists for shapes that may not be convex but the 

infinum of the areas of all covers is well defined. 

In 1920 Pál showed that a regular hexagon circumscribing a circle of unit diameter is a universal 

cover. This set an upper limit for Lebesgue’s minimal area at   
√ 

 
            He also showed 

that two corners can be removed from the hexagon down to the sides of a regular dodecagon inside 

the hexagon to make a smaller universal cover. This set a better upper limit     
 

√ 
 

           [3]. Then in 1936 Sprague showed that a smaller piece bounded by two circular arcs 

could be removed from another corner [4] reducing the upper bound to 

                                (1) 

Finally Hansen between 1975 and 1992 [5-7] removed two further small pieces from this shape. This 

reduced the upper bound on the area by only 4 x 10-11 to 

                              (2) 



Hansen’s argument made use of the freedom to reflect shapes which had not been required by Pál 

or Sprague and produced a covering without bilateral symmetry. 

 

Figure 1: minimal convex universal cover from previous results 

Another small reduction to Sprague’s covering was made in 1980 by Duff using a non-convex cover 

giving an area of 0.84413570 for the non-convex variation on the problem. This reduction also made 

use of reflections [8]. Duff considered another variation of the problem proposed by Rennie in 1977 

[9] in which only translations of the shapes are permitted [10]. This is useful as a simpler but still 

unresolved variant whose solution would help understand the harder problem set by Lebesgue. 

Proofs for lower bounds have so far been much further from the likely minimal answer but 

nevertheless they are worthy results. Elekes was able to compute the minimal area for a circle and 

all Reuleaux polygons for which the number of sides is a power of three [11]. The best lower bound 

by Brass and Sharifi sets a lower bound of 0.832 by combining a circle, triangle and pentagon of 

diameter one [12]. 



More related problems are discussed in the book by Brass, Moser and Pach [13]  

The present work will describe new computational methods which provide better lower bounds 

under some assumptions of the shape containing the cover. This study has also led to a new rigorous 

argument improving the upper bound of Hansen for convex cover.  

2. Simulated Annealing 
A basic and easily implemented computational technique used for minimisation problems with many 

variables is simulated annealing. With a finite number of shapes it is possible to run a simulation in 

which the shapes are allowed to translate and rotate randomly as if in thermal motion at a given 

temperature. The combined area of the shapes is used as the energy function.  

The simulated temperature can be dropped slowly so that the shapes freeze into a local minimum of 

the area. If the cooling is done slowly and the simulation is repeated many times with different 

randomisations, it is possible to empirically locate the minimum area. In Lebesgue’s problem it is 

also allowed to reflect shapes to form the minimum cover and the simplest method to 

accommodate this is to simulate 2n different combinations of reflections where n is the number of 

shapes in the simulation without bilateral symmetry. 

Thermal motion at a given temperature can be simulated with the correct thermal distribution using 

a Metropolis-Hastings algorithm.  However, this would require the size of the movements to be 

matched in a carefully controlled way to the temperature as it decreased; otherwise the efficiency of 

the method is lost. A simpler method is to use a biased random walk in which changes that decrease 

the area are accepted, while those that increase the area are kept with a fixed probability (e.g. 

p=0.3). With this adaptation the effective temperature decreases naturally as the size of trial 

changes decreases while the selection criterion remains efficient.  

 

Figure 2: Circle and Reuleaux Triangle 



The optimal shapes to use are curves of constant width. Indeed any shape of diameter one is 

contained within a curve of constant width equal to one [14], so it is sufficient to consider only 

curves of constant width in the covering problem. Reuleaux polygons are the most easily 

constructed curves of constant width and empirically they appear to be most effective in maximising 

the minimum area of a cover for a given number of shapes. The curve of constant width with the 

maximum area is the circle, while the Reuleaux triangle has minimum area (figure 2). Together these 

two shapes maximise the area of the minimum convex cover for two shapes. 

In general a Reuleaux polygon is formed from an odd number n of circular arcs of radius one whose 

centres are placed on a star polygon whose sides all have length one. It is sufficient to specify n-3 

consecutive angles between these sides which form the diameters of the Reuleaux shape. The 

remaining point and three angles can be determined by triangulation from the two loose ends. All 

the angles must be less than 60 degrees and will add up to 180 degrees. The necessary requirement 

that all diagonals are less than or equal to one poses further constraints on the allowed range of 

angles. 

 

Figure 3: construction of a Reuleaux pentagon 

In the simulations a small number of Reuleaux polygons were used. For simplicity the arcs were 

replaced by polygons with small sides ensuring that the diameter of the shape remained equal to 

one. The area of the convex hull of the shapes was calculated using a simple wrapping algorithm. 



More efficient algorithms exist (see http://en.wikipedia.org/wiki/Convex_hull_algorithms) and it 

would be possible to implement them for arc-polygons rather than straight edge polygons. In this 

way the simulation could be made much more efficient. The simulation was implemented as a Java 

applet. 

As an example of the results this shows the final state of a simulation with five shapes: a circle, and 

regular Reuleaux polygons with 3,5,7,and 9 sides.  

 

Figure 4: results of a simulated annealing for 5 shapes 

The minimum area for any given set of shapes of diameter one is a lower bound on the minimal 

convex cover. The answer obtained by simulated annealing can only be regarded as an upper bound 

on such a lower bound, but with multiple simulations and a small number of shapes the best area 

can be found with some certainty and accuracy and can be regarded as an empirical lower bound. 

For these shapes the minimal convex area found was 0.83699098. 

http://en.wikipedia.org/wiki/Convex_hull_algorithms


As the number of shapes increases, the number of local minima makes it hard to find the true 

minimum of area. However, a useful observation seen in all cases tried is that the minimal cover 

appears to sit within an irregular hexagon whose opposite sides are parallel and distance one apart. 

In the figure above a regular hexagon has been drawn as a background reference shape making it 

easier to see that the edges of the hexagon that contain the shapes are at a slight angle to the 

regular shape. 

This can be expressed as a conjecture: 

The minimum area of a convex cover for any set of shapes of constant width one can be contained in 

a hexagon whose three pairs of opposite sides are parallel and a distance one apart 

If the set of shapes includes a circle then the sides of the hexagon would be tangent to the circle, the 

opposing pairs would be equal in length and the hexagon would have a 180 degree rotational 

symmetry 

3. The Hexagon Hypothesis 

 

Figure 5: curve of constant width in a hexagon 

Pál showed that a regular hexagon circumscribed around a circle of unit diameter is a universal 

cover, but this can be generalised to any hexagon circumscribed around the circle such that opposite 

sides are parallel. For any such circumscribed parallel hexagon there is a minimal area for covers that 

are bounded by that hexagon. The regular hexagon has the least total area but that does not 



necessarily mean that the minimum area for a cover contained in a circumscribed parallel hexagon is 

contained in the regular hexagon. 

The results from simulated annealing suggest that a cover of minimal area for a set of shapes that 

include the circle can be contained in such a hexagon but in absence of a proof we cannot be certain. 

It may be that the covers generated by annealing are only approximately contained in the hexagon 

or that with more shapes they would take a different form. Nevertheless we can work on the basis 

of a “hexagon hypothesis” and seek the minimum area that is contained in such a hexagon. This 

would be at least a good upper bound for the true answer. 

First we prove that a circumscribed parallel hexagon is always a universal cover. Define the support 

function      for any shape relative to a point C as a function of an angle   as the distance from C to 

a tangent to the shape normal to the direction  . Without using the notion of tangent the support 

function is defined for any compact set   in the plane as  

                      (3) 
 

Where   is the unit vector in direction   i.e.               

 

Figure 6: support function for a closed curve 

The condition for the shape to be a curve of constant width one is that              . This 

condition is independent of the choice of C. An offset function defined by  

                     (4) 
 

Gives the offset of the midpoint of the diameter in direction   from C in the same direction. For a 

curve of constant width it satisfies             . Now consider the offsets          in three 

directions given by the unit normals          to the sides of a circumscribed parallel hexagon 

centred at a point H. If H is allowed to move so that the vector from C to H is   then the shape would 

be covered by the hexagon when                 . With the ansatz     ̂    ̂  where  ̂  

is a unit vector at 90 degrees to    , the first two equations are solved by  



  
    

     
   

    

     
 (5) 

 

The third equation is equivalent to 

                                  (6) 

 

This equation is independent of C since the requirement that the hexagon can be translated to cover 

the shape is independent of C. To attempt to solve this condition and fit the curve inside the 

hexagon we rotate the hexagon by an angle   so that    is a function     . The angles at which the 

shape fits the hexagon are the roots of       . That such roots exist follows from the identity 

             and the fact that      is continuous. This proves that any curve of constant width 

can be made to fit inside any circumscribed parallel hexagon and therefore that such a shape is a 

universal cover. 

Furthermore the support function for a Reuleaux polygon is easily calculated so a function to find all 

the roots of      can be programmed using recursive bisection making use of the fact that the 

derivative       is bounded to eliminate ranges that do not contain roots. For computational 

purposes the implementation is robust, efficient and accurate.  This offers the possibility of finding 

the minimum area for a cover of a given set of shapes inside a given hexagon. For each shape there 

are a finite number of ways it can be placed inside the hexagon allowing translations, rotations and 

reflections and these can be computed. It is then sufficient to search through all the ways that all the 

shapes can be placed inside the hexagon to find the minimum area that covers them, either using a 

convex cover or the a non-convex cover to compute the area. 

 

Figure 7 offset function for a typical Reuleaux pentagon 



For a typical curve of constant width we find that      has six roots, though it can have fewer or an 

unlimited number more, the chart below shows      for three symmetrical pentagons where two 

anlges are set to 35, 36 and 37 degrees. The numbers of roots are 18, 30 and 6 respectively.  

 

Figure 8: offset funtions for three Reuleaux pentagons 

Together with the reflections if it is asymmetrical, this means that there are typically 12N areas to 

calculate to find the minimum area. This would limit the search to just a few shapes were it not for 

the possibility of pruning the search tree using the fact that the minimum area can only grow as 

more shapes are added. At any point in the search the minimum area known so far can be used as a 

cutoff to prune further addition of shapes. In practice it pays to calculate all possible areas for the 

addition of any one further shape at any point in the search, and choose to add the shape that 

increases its minimum additional area by more than any other shape. This takes us to the optimum 

minimum more quickly and means that we reach a point where any branch of the tree can be 

pruned more quickly. Using these optimisations it has been possible to find the minimum area for 

well over a hundred shapes inside a given circumscribed parallel hexagon.  

In an implementation of this algorithm shapes are selected to be added one at a time from a large 

pool of Reuleaux polygons. Each time the shape which appears to be least well covered by the 

minimum area defined by previous shapes is added, then the new least cover is computed. This is 

repeated until the area appears to converge. At any time this gives a rigorous lower bound for the 

minimum cover included in a given hexagon. If it exceeds the known upper bound for the minimal 

universal cover then that shape can be ruled out as a container for a minimum cover 

A circumscribed parallel hexagon can be specified by giving the angles between its edges. Only two 

angles are required since opposite sides are parallel and the three remaining different angles add up 

to 180 degrees. Using the search algorithm we can explore the two dimensional space of 

circumscribed parallel hexagons parameterised by these two angles. A graph of the lower bound on 

the area using up to 40 shapes in the special case where the two angles are equal can be plotted as 
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follows (The regular hexagon is the case where the angles are 60 degrees) The horizontal line is the 

known upper limit so we can see that there is only a possibility of finding a lower area when the 

angles are within 0.5 degree of the regular hexagon. 

 

Figure 9: lower bound for symmetric hexagon 

A plot closer to this point using up to 60 shapes shows that the minimum appears to be at or very 

close to the case of the regular hexagon. With 80 shapes the lower bound for the regular hexagon is 

0.843961 

 

Figure 10: lower bound for symmetric hexagon 

More of the space can be covered e.g. by taking one angle to be 60 degrees and varying a second 

resulting in this plot 
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Figure 11: lower bound for asymmetric hexagon with one angle of 60 degrees 

Once again the conclusion is that the regular hexagon is the best case to investigate further although 

it is possible that the minimal cover is inside a hexagon that is irregular, but differing only slightly 

from regular.  

The conclusion a second conjecture is proposed 

The minimal universal cover within a hexagon with the property that opposite sides are parallel and 

distance one apart is achieved in the case of the regular hexagon 

4. Modified Pál Hypothesis 
For the regular case the minimal cover with 80 shapes looks like this 

 

Figure 12: minimal cover inside regular hexagon for 80 shapes 
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If we zoom in on one of the cut-off corners we find that the minimal cover differs from Pál’s solution 

in that the edge of the corner cut off is at a small angle to the edge of the regular dodecahedron. 

 

Figure 13: minimal cover in hexagon showing slanting cutoff 

 

Pál demonstrated that two corners of a regular hexagon circumscribing a circle can be removed to 

construct a smaller universal cover. The cuts were tangent to the unit circle forming two sides of a 

regular dodecagon inside the hexagon.  

 

Figure 14: corners cut at slant angle to give a modified Pál cover 

Pál’s argument can be generalised to show that a universal cover can be formed by cutting off two 

corners of the regular hexagon tangent to the unit circle but at a different angle to the side of the 

dodecahedron, provided that this angle is the same for both corners. To show this first consider the 

regular hexagon with all six corners marked down to a tangent to the circle in such a way that 6-fold 

rotational symmetry is preserved. 



Any shape of diameter one can fit inside the hexagon. Furthermore, it cannot be inside both corner 

triangles marked A and D since the minimum distance between points in these two regions is one. 

Similarly it cannot be in both F and C, or both E and B. Making use of the rotational symmetry any 

combination can be reduced to one of two cases where either the shape is not in corners E, D and C, 

or not in A, E and C. In either case it is not inside corners E and C so these can be removed leaving a 

new universal cover. 

Once again the minimum area for universal covers of this shape is attained in the case described by  

Pál where the corners are cut off at the sides of a regular dodecagon, but it is possible that the 

minimum area for a universal cover within the more general shape is attained for cuts at a different 

angle. This can be tested using the computational search with a modification whereby any fit inside 

the hexagon for a shape is rejected if it falls inside the corners that have been sliced off. The results 

are shown in this graph of area against the angle of the slant away from the dodecahedron edge. 

 

Figure 15: lower bound for modifed Pál hypothesis 

This time the results are more encouraging. The minimum is not given by the regular hexagon at 

slant angle zero. Instead the lowest area is found at around an angle of 1 degree. However, it must 

be stressed that these points are only lower bounds on the minimum area and the ability to reach 

the true minimum area under the modified Pál hypothesis could be limited by the choice of possible 

shapes to include in the search. To be sure of the result it is necessary to prove an upper bound 

lower than the existing bound provided by Hansen. 

Based on the searches for minimum areas inside the regular hexagon a third conjecture emerges 

For a given set of shapes the minimum universal cover inside a regular hexagon is contained within a 

shape formed by cutting two corners off the hexagon using lines tangent to the circle and at an angle 

of 120 degrees to each other. 
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5. Upper Bounds Without Transformations 
Any set of points of diameter 1 can be embedded in a curve of constant width one. We also know 

that any curve of constant width one can fit inside the shape defined by the modified Pál hypothesis. 

Within that area, there is a smaller set of points defined by the union of all curves of constant width 

one as they fit inside in any orientation. This shape must be a universal cover but not necessarily the 

smallest because the minimal cover allows us to choose one of any of the ways the curve fits in. 

What is the area of the convex hull of this shape as a function of the slant angle? 

 

Figure 16: pentagons that define limits of cover 

The answer depends on a particular Reuleaux pentagon constructed as follows, using the diagram 

above and assuming without loss of generality that A1A3 ia greater than A1A2. From F3 draw a line of 

length one to a point G near C2 on the line segment D3C2. From F3 and E3 draw two lines of length 

one that meet at a point H near B2. Then from E3 and G draw two lines of length one that meet at a 

point J near A1 Using the 5 points F3 E3 G, H and J form a Reuleaux pentagon.By construction it fits 

inside the hexagon and does not enter the regions E, C, F or B. If this pentagon is rotated 180 

degrees it forms a second Reuleaux pentagon including B3 and C3 as vertices that fits into the 

hexagon and also does not enter E, C, F or B. As a third shape add the Reuleaux triangle with vertices 



at F1, B1 and D1. This shape fits inside the hexagon without entering the triangles at E and C as 

required. 

It can be seen that there are only three small regions that are not covered by this shape. These are 

near the points C2, E2 and A1 It can be shown that no curve of constant width one within the hexagon 

that does not enter E and C can enter those three regions. 

 

Figure 17: region that can be removed near C2 

Firstly the region near C2 is bounded by two straight edges GC2 and C2K and an arc of radius one KG 

where K is the point on C2C3 at distance one from F3. Any curve of unit constant width one fitted into 

the hexagon without entering triangle C must touch or enter the triangle F. All points in GC2K are at a 

distance of one or more from that triangle so no points in the shape can enter this region. In the 

case of zero slant this region vanishes. 

 

Figure 18: region that can be removed near A1 

Secondly the region near A1 is outside the two arcs of radius one centred on E3 and G. A curve of 

constant with one inside the hexagon must touch each side of the hexagon so it must touch the lines 

D1E3 and D1G. This ensures that it cannot enter the region cut off near A1. In the case of zero slant 

this area is the one removed by Sprague. 



 

Figure 19: region that can be removed near E2 

Thirdly, points in the region cut off around E2 are either greater than distance one from the line 

segment B2C3 or greater than one from the triangle B. By similar reasoning there can be no point in 

this boomerang shaped region that is symmetrical about a line through E2 and B2. This area also 

vanishes in the case of zero slant  . 

It now follows that the shape defined by the hexagon with the triangles at E and C and these three 

smaller regions removed is a universal cover. Its area can be computer and plotted as a function of 

the angle  . 

 

Figure 20: minimum area as a function of slant angle 

The minimum of this curve is at     where it reduces to the area determined by Sprague, so this 

upper bound is not sufficiently good to improve on previous results. 

6. Upper Bounds Using Rotational Symmetry  
To improve the upper bound within a modified Pál hypothesis it is necessary to take into account the 

ability to rotate or reflect shapes within the area to define a smaller universal cover. Shapes of 

constant width one fitted within the modified Pál hypothesis can be classified into two types: Those 

that enter region D and those that don’t. If they don’t enter region D they will enter A instead. We 

will call them D-type and A-type. (Those that touch the boundaries of regions A and D are D-type) D-

type shapes can be rotated through angles of 120 degree and remain inside the modified Pál 

hypothesis. This can be used to fit them inside a smaller shape. The A-type shapes can then be 

treated as before, i.e. construct their convex hull regardless of other positions that may fit. The two 

shapes defined in this way can be combined to give a new universal cover. 
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The pentagon F3 E3 G H  J is A-type so it is kept in this position. Therefore no improvement in the 

areas near E3 and C2 are possible using this method. The same pentagon rotated 180 degrees is a D-

type fit, so it can be rotated by 120 or 240 degrees. This provides an opportunity to reduce the cover 

near E2 and C3 where this pentagon was previously a limiting factor. These are the corners where 

small regions were removed by Hansen in the special case of the regular hexagon so we seek to 

generalise and improve his results. 

An argument that allows small regions near these corners to be removed proceeds as follows. Take a 

point X near E2. A curve of constant width must touch the line segment E3F2 at a unique point L. The 

point at X sets a limit as to how close point L can be to E3 determined by an arc tangent to E3F2 and 

passing through X. L cannot be nearer to E2 than the point where this arc touches E3F2 

The shape of width one must also touch E3D2 at a unique point M. The point X also sets a limit to 

how close M can be to E3. This uses the observation that if two points X and Y are inside a curve of 

constant width one then all points on an arc of radius one joining X and Y must also be in the shape. 

By the modified Pál hypothesis no point on the curve is inside the triangle at E. Therefore if an arc of 

radius one is drawn from X touching E2E3 and meeting E3D2 at M then M can be no closer to E2 than 

this limit. For some points X such an arc cannot be drawn in which case there is no such restriction 

on M. Since we are considering only A-type shapes we know that the curve also cannot pass through 

the triangle D or C so a similar argument can be repeated twice to set limits on the points where the 

shape touches D3C2 and then C3B2 This sets a lower limit to the Point P where the shape touches C3B2 

 

Figure 21: critical heptagons for small slant angles 



However the point L where the shape touches F3E2 must be directly opposite the points P where the 

shape touches C3B2 The point X sets a lower bound on L and an upper bound on P. If the lower 

bound is higher than the upper bound there is a contradiction proving that X cannot be inside an A-

type shape. The set of excluded points defines a region that can be removed from the cover of A-

type shapes. By a similar argument mirrored a similar but smaller region can be excluded near C3 

provided the slant   is not too great.  

Taking the case where X is chosen so that it coincides with L and the point P is at the same height 

leads to a Reuleaux heptagon formed from the arcs and their centres. This defines the upper point of 

the region that can be removed. If this heptagon is reflected about the axis of symmetry through 

E2B2 it forms another heptagon which is still inside the Pál hypothesis for small angles. The point 

where this reflected heptagon touches E2E3 then defines the lower point of the region. 

These two regions do not vanish in the limit of zero slant and are related to areas removed by 

Hansen in his 1975 paper but are larger. Unfortunately the area is only larger than the previously 

derived areas above for very small slant angles under 0.003 degrees. So this cannot account for the 

minimum lower bounds at around 1 degree. 

To complete this analysis the cover formed by D-type fits must also be dealt with. Consider once 

again the points L, M and N where a D-type curve touches the sides of the hexagon. It will also touch 

the opposite sides of the hexagon at points L’,M’ and N’ the same distance from the vertices of the 

hexagon. Taking the three distances LE1=L’C1, ME1=M’A1 and ND1=N’F1 the shape can be rotated 

through angles of 120 or 240 degrees so that the largest of these three distances is LE1 Since the 

shape must cross or touch the line B3B2 and LE1 > ME1 it follows that a lower bound on the distance 

LE1 is set when the point L is at distance 1 from the intersection Q of the B3B2 and the centre line 

through E1B1 Furthermore no point near E2 on a D-type shape rotated in this way can be outside the 

arc of radius one centred on Q. Similarly points near C3 are constrained to be within a distance one 

of the intersection of F3F2 and F1C1. The regions removed from the D-type cover in this way are 

supersets of the regions removed from the A-type cover. It follows that the region defined by the A-

type cover is a full universal cover for all shapes. 

7. Hansen’s Cover and Extension 
Before continuing with the investigation of the minimal cover for a modified Pál hypothesis it is 

worthwhile to revisit the 1992 results of Hansen where small regions near E2 and C3 were removed 

for the case of zero slant. To accomplish this Hansen used an argument based on the Reuleaux 

heptagon but with the additional use of reflections. In the case of zero slant the Pál hypothesis is 

symmetric about the line through A1D1 so any shape inside the hypothesis can be reflected about 

that line. 

The limiting Heptagon is also symmetric with a vertex on the midpoint of the line A3A2. Taking the 

two regions LE2R and L’C3R’ where R and R’ are where this heptagon touches the lines E2E3 and C3C2 

respectively, Hansen’s argument or a modified version of the arc argument above shows that any A-

type shape cannot have points in both of these regions. Therefore the reflections can be used to 

remove one of these shapes from the cover. On the other side there is still a smaller region that can 

be removed using the non-symmetric argument as above. Hansen gave a simpler but weaker 



argument removing just part of this area. Here the area of these regions will be accurately 

calculated. 

 

Figure 22: area calculation for regions of regular hexagon 

The first step is calculate the position of the vertices M (or N) on the heptagon given that they are 

equally spaced from the centre line  A1D1 . Let S be the midpoint of D2D3 and call    the distance D2S. 

From elementary geometry we find      
√ 

 
 . Knowing    the length of     MD2 is found to be 

given by 
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(7) 

 

A radius of length one from M will meet B3A2 at the point M’ and the line B3B2 at a new point T. The 

geometry of the shape M’B3T is analogous to the geometry of SD2M but on a smaller scale where the 

length of B3M’ is given by    and the length    = B3T is given by a second application of the formula 

above. Once again a radius is drawn from T to intersect the lines meeting at E2. The area defined 

here is again analogous and the smaller side is    calculated using the same formula. This shape is 

the larger of the two that Hansen removes. To calculate its area use. 
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  (8) 

 

The result is     3.7507 x 10-11 

The second piece that Hansen removed near C3 is obtained by iterating the construction one more 

time to give     8.4460 x 10-21 .  

The area of the boomerang shaped piece that can be removed is    1.3877 x 10-17. 

8. Upper Bound Using Reflections 
As shown above, a regular hexagon circumscribed round a circle of diameter one remains a universal 

cover when two corners are cut off by lines at an angle of 120 degrees to each other and tangent to 

the circle. These lines can be at a slant angle   to the edges of the regular dodecahedron used by 



Pál. Three smaller pieces can be cut from this cover near the corners A1, C2 and E2 However, one 

extra piece near A1 can be removed if we used the freedom to reflect shapes and the remaining 

convex universal cover then has a minimum area for a non-zero value of the slant angle  . This 

provides a construction for a convex universal cover that has a smaller area than previous best 

results.  

 

Figure 23: construction of universal cover using reflections 

 

The axis of reflection to use is the line from the midpoint M of the side of the hexagon from E1 to D1, 

to the midpoint of the opposite side. A shape fitted into the hexagon with the corners E and C 

removed can be reflected about this axis provided it also does not enter the triangles F' and D' which 

are the reflections of C and E about the axis. When this is the case we will choose to reflect the 

shape if it touches the side from E to D at a point nearer to E1 than D1. Remember that it touches the 

opposite side at the opposite point which is therefore also reflected to be nearer the corner of the 



hexagon at B than the one at A. If we draw an arc centred on M of radius one it cuts off a larger 

region near A and no shape that can be reflected can be beyond this line. The point where this 

meets the arc centred on G is marked W. Recall that G is the point at distance one from F3, so no 

point inside any covered shape can lie outside the arc centred on G. 

 

Figure 24: region XYZW that can be removed 

The only shapes that can have points outside that arc centred on M are ones that cannot be 

reflected. Therefore they must enter some point inside the regions F' or D' If they have a point in D' 

then they cannot have a point in A' which is the triangle whose points are at a distance of more than 

one from all points in D'. Draw one more arc centred on Q at the corner of the triangle C' which is 

the reflection of the region F. All points in C' are at a distance of one or more than one from points in 

F' so the arc will touch the region F' but not enter it. This arc will meet the arc centred on M at a 

point Z and the arc centred on N at a point Y. Now consider the fate of points inside the region XYZW 

bounded by the four arcs. It is a general property of curves of constant width one that if two points 

are inside the curve then all points on an arc of radius one through the two points are also inside the 

curve. Suppose then that a shape fitted inside the hexagon had a point in XYZW and also in F' We 

could then join those two points with an arc but between the two points it would be outside the arc 

centred on Q and would therefore go outside the hexagon. This is in contradiction with the premise 

so we conclude that no shape fitted in the hexagon can have a point in both XYZW and F'. It can also 

be verified that for angles   less than 9 degrees the region XYZW is inside the triangle A'. Therefore 

shapes with a point inside XYZW do not have points in F' or D' and can be reflected. However, we 

have already determined that such shapes will not have points in this region. This proves that the 

region XYZW can be removed from the universal cover. 

It turns out that this is now sufficient to construct a universal cover smaller than the ones of Hansen 

and Duff.  Even if we restrict ourselves to the convex case and remove only the part of this region 

that leaves a convex shape, the area of the universal cover for an angle        degrees can be 

computed to be 0.8441121. 



 

Figure 25: area as a function of slant angle using reflections 

9. Opportunity for further progress 
The upper bound of 0.8441118 at a slant angle of 0.97 degrees is not the final answer. The 

computational searches using a regular hexagon and a fixed slant angle gave a minimum area of 

about 0.84408 at a slant angle of about 1.0 degrees. If we accept the conjectures based on the 

simulations then the minimum cover should be enclosed in a regular hexagon with a modified Pál 

hypothesis. This result is therefore likely to be closer to the final answer, but where was more area 

removed? 

To answer this, the simulations were ran again for a slant angle of 1 degree with background masks 

showing the regions removed in the reflection analysis. This shows that there are too areas where 

more area can be removed. 

 

Figure 26: orange is area already removed, green is further area that can be removed 
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10. Summary and Conclusions 
Computational methods have been used to investigate Lebesgue’s Universal Covering Problem. This 

gave indications of what the minimal cover is like and once known how to proceed, it was then easy 

to prove an upper bound for the convex cover improving previous results. 

The conclusions can be framed in a series of conjectures. First it was noticed from simulated 

annealing that for any set of shapes of constant width one the minimal convex covering can be 

contained within a hexagon with opposite sides parallel and distance one apart. It would be a 

reasonable conjecture that this is indeed the case. 

If the set of shapes includes the circle then we know more specifically that the hexagon can be 

circumscribed round a circle with parallel opposite sides. Any such hexagon can be shown itself to be 

a universal covering so there is a minimal convex covering that it contains. The minimal such cover 

for a set of shapes can be computed efficiently and the results show that the cover with the minimal 

area cannot differ by much from the case of the regular hexagon. Again it would be a reasonable 

conjecture that the regular hexagon is precisely the minimal case for all such hexagons. 

Given a regular hexagon it was observed that the minimal convex cover within the hexagon for any 

set of shapes of constant width can be contained in a shape formed by cutting off two of the corners 

using two lines tangent to the inscribed circle at 120 degrees to each other (a modified Pál 

hypothesis) Again it could be conjectured that this is the case. Computations of the minimal area 

within a modified Pál hypothesis indicated that the minimum convex area is given when the lines are 

at a small angle away from the edges of the regular dodecahedron. It was then easy to prove that a 

convex universal covering could be constructed in this way improving previous upper bounds. 

Further work would probably reduce the area still further and may lead to a conjectured minimum 

convex cover. A strategy to prove this would be to prove the three individual conjectures and then 

show that the conjectured minimal convex cover is the minimum within a modified Pál hypothesis. 

None of these steps looks simple. 

The case of non-convex covers has not been investigated in the same way but it is easy to see that a 

further reduction in the area can be attained for the non-convex case.  
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