On the twin Prime Numbers

Xu Feng

Prime numbers = $P_n = 4 \times 10^n + 1$, $(n = 2k + 1, \text{ and } n \neq 5 + 6k, k = 0, 1, 2, 3, 4, ..., \infty)$,

when $P_n + 2$,

 $P_1 = 4 \times 10 + 1 + 2 = 4 \times 10 + 3 = 43$, and 43 is a prime number,

 $P_2 = 4 \times 10^2 + 1 + 2 = 4 \times 10^2 + 3 = 403 = 13 \times 31$, so that 403 is an odd number,

 $P_3 = 4 \times 10^3 + 1 + 2 = 4 \times 10^3 + 3 = 4003$, and 4003 is a prime number,

 $P_4 = 4 \times 10^4 + 1 + 2 = 4 \times 10^4 + 3 = 40003$, and 40003 is a prime number,

 $P_5 = 4 \times 10^5 + 1 + 2 = 4 \times 10^5 + 3 = 400003$, and 400003 is a prime number,

 $P_6 = 4 \times 10^6 + 1 + 2 = 4 \times 10^6 + 3 = 4000003 = 7 \times 571429$, so that 4000003 is an odd number,

. . .

in the end, when n = 2k + 1, $(k = 0, 1, 2, 3, 4, ..., \infty)$,

 $4 \times 10^{n} + 3$ are the prime numbers.

But, when = 2k + 1, and $n \neq 5 + 6k$, $(k = 0, 1, 2, 3, 4, ..., \infty)$,

 $4 \times 10^{n} + 3$ and $4 \times 10^{n} + 1$ are the twin prime numbers.

So,

$$(4\times10^n+3)-(4\times10^n+1)=2$$
, $n=2k+1$, and $n\neq5+6k$, $(k=0,1,2,3,4,...,\infty)$.