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     Abstract 
 
 
This paper examines Einstein’s 1905 derivation of the Lorentz transformations 
using the average time of travel of a light pulse in opposite directions.  It shows 
that the derivation has significant errors, produces a relationship between the 
coordinate values that does not exist, and that a more careful examination of his 
example implies very different characteristics of the velocity of light than those 
claimed.  It also points out that more general derivations which do not address 
specific measurement conditions cannot be judged as to their applicability. The 
paper shows that Einstein’s assertion of the independence of the shape of a 
spherical light pulse from the choice of the inertial reference frame of 
measurement is inconsistent with the known behavior of the photon.  It further 
notes the impossibility of proving a general set of coordinate transformations, 
which would require a knowledge of all possible present and future coordinate 
measurement methods.  It gives an example of a photon-emitting clock moving 
between two photon detectors, for which the transformations of the time of travel 
of the clock are consistent neither with the Lorentz nor the Galilean 
transformations. 
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Einstein [1] attempts to derive a general set of coordinate transformations 
between a stationary and moving coordinate system by using the average 
time of travel of a light pulse from an emitter/detector to a mirror and back 
in the moving coordinate system.  He expresses the average in terms of the 
time of travel of the light pulse as measured in the stationary system, and 
the x-coordinate of the moving system.      
 
The coordinates in Einstein’s moving system are ξ, τ, and in the stationary 
system x, t.  The moving system travels at a constant velocity, v, along the 
x-axis of the stationary system.  The emitter/detector is located at ξ = 0, 
and the mirror at ξ = x’.  The light pulse is emitted at x = ξ = 0, τ = τ0, 
travels to ξ = x’ at τ = τ1, and arrives back at ξ = 0, at τ = τ2.  
 
His expression for the average time of travel in the moving coordinate 
system is  
 
½ [τ0(0,0,0,t) + τ2(0,0,0,t+ x’/(c-v) + x’/(c+v))] =  
             τ1(x’,0,0,t + x’/(c-v)).           (1) 
 
But the expressions for the time values in the arguments of τ in this 
equation   are   already  time  coordinate  transformations  at   ξ = 0, τ = τ0,  
ξ = x’, τ = τ1, and ξ = 0, τ = τ2.   That is, they represent the time values of 
the emission and arrival of the light pulse as measured in the stationary 
system at these points.   They therefore raise the question of what sort of 
transformations he is in fact deriving with (1), and their applicability to the 
light pulse in his example.   But let us put this logical issue aside for the 
moment, and simply look at the correctness of (1) and its use, based on his 
example. 
 
Einstein converts (1) into a differential equation by treating x’ as an 
arbitrary position coordinate along the ξ-axis in the moving coordinate 
system, and t as the time coordinate in the stationary coordinate system, 
and gets 
 
 
           ½ (1/(c-v) + 1/(c+v))  𝜕𝜏/𝜕𝑡  =  𝜕𝜏/𝜕𝑥!  + 1/(c-v)  𝜕𝜏/𝜕𝑡 ,  or 



 
 
                                     𝜕𝜏/𝜕𝑥!  = - v/(c2-v2) 𝜕𝜏/𝜕𝑡                                (2) 
 
 
This,  however, is  incorrect.   x’ is not an arbitrary ξ-axis coordinate 
value, but  the  magnitude  of  the  distance from the emitter/detector to  
the mirror.    If,  for  example,  we  place the mirror at ξ = -x’, then the 
time  coordinates  in the  arguments for τ1 and τ2 become (t - x’/(c+v)),  
and   (t - x’/(c+v) - x’/(c-v)).   These are not only incorrect, but since t is 
the arbitrary but fixed time of emission of the initial light pulse, for any 
values of  |x’/(c+v)|  and |- x’/(c+v) - x’/(c-v)| > t, then the time values in 
the arguments would be negative.    Similarly, the time variable t in (1) is 
not the time coordinate in the stationary coordinate system, but rather the 
arbitrary initial time of emission, and must be correctly written as t0.   
Therefore (1) must be correctly written as 
 
½ [τ0(0,0,0,t0) + τ2(0,0,0,t0+ |x’|/(c-v) + |x’|/(c+v))] =  
                                                                           τ1(x’,0,0,t0 + |x’|/(c-v))   (3) 
 
 
Since t = t0 is an initial condition, it merely defines an arbitrary term on 
both sides of (1) and (3), which we can extract as follows:   
 
 
½ [τ0(0,0,0,0) + τ2(0,0,0,|x’|/(c-v) + |x’|/(c+v))] + τ’(t0) =  
                                                                  τ1(x’,0,0,|x’|/(c-v)) + τ’(t0)      (4) 
 
 
If the clocks in both systems are synchronized, then τ’ = t0.  So in fact both 
(1) and (3) are independent of t0, and we have more correctly 
 
 
½ [τ0(0,0,0,0) + τ2(0,0,0,|x’|/(c-v) + |x’|/(c+v))] = τ1(x’,0,0,|x’|/(c-v)),    (5) 
 
or, if the mirror is placed at  ξ = -x’, then 



 
 ½[τ0(0,0,0,0) + τ2(0,0,0,|x’|/(c+v) + |x’|/(c-v))] = τ1(x’,0,0,|x’|/(c+v)),  (5a) 
 
 
By treating the initial condition, t0, as the time coordinate t itself, and the 
magnitude of the distance to the mirror as the ξ-coordinate, Einstein 
creates a relationship between the moving and stationary coordinates in (2) 
that does not exist. 
 
But let us examine more carefully Einstein’s time coordinate 
transformations,   
 
           |x’|/(c-v),                              (6) 
 
 and           |x’|/(c+v),                                       (7) 
 
which represent the time of travel of the light pulse in either direction over 
the distance |x’| in the moving system, as measured in the stationary 
system. 
 
These do not appear to me to be correct.    In the stationary system, the 
distance travelled by   the   pulse  from  the  emitter  to  the  mirror  is  not 
|x’|,  but  rather |x’| + v(τ1-τ0), where (τ1-τ0) is the time of travel of the 
pulse   between   the  emitter and  mirror  in  the  moving  system.  That is,  
v(τ1-τ0) is the distance travelled by the mirror in the stationary system 
during the time of travel of the pulse.   (τ1-τ0) is the same as the time of 
travel of an identical pulse between a fixed emitter and mirror over the 
same distance in the stationary system.  If we designate this as (t1-t0), and 
we take τ0 = t0 = 0 for convenience, then τ1 = t1 and we have  |x’| + vt1. 
 
Since  |x’|  = ct1, we then have  
 
    |x’| + vt1 =  ct1 + vt1 = (c+v)t1,    (8) 
 
and      |x’| - vt1  =  ct1 - vt1 =  (c-v)t1               (9) 
 



 
for the distance traveled by the light pulse in the two directions. Therefore, 
instead of being merely an adjustment for the apparent velocity of light, 
these represent an actual difference in the distance travelled by the light 
pulse in the same time interval in the two coordinate systems.   
 
In other words, these express a physical difference in the velocity of light 
as measured in the two systems.  So by using the apparently realistic 
behavior of the photon in Einstein’s example, we are put in the somewhat 
perplexing position of having the light pulse physically travel at a velocity 
of c between the detector and emitter in the moving coordinate system, but 
at a velocity of (c ± v) in the stationary system.   This suggests that the 
physical (not apparent) velocity of the photon is independent of the motion 
of the emitter and detector relative to each other, but is not independent of 
the motion of both emitter and detector relative to a third coordinate 
system. 
 
Einstein also claims that the shape of a spherical light pulse remains 
unchanged when viewed in a coordinate system moving at a constant 
velocity relative to the source.  This does not seem to me to be correct.   
The light pulse appears spherical if the emitting coordinate system is 
moving relative to that of the detectors, but not the reverse.   We can see 
this using Einstein’s example, with the emitter at the origin of the moving 
system, and detectors placed along the x-axis of the stationary system. 
 
If we emit two photons at τ = 0 in opposite directions from  the origin 
along the ξ-axis in the moving system, then the velocity of the photons in 
the stationary coordinate system in which the detectors are located will be 
±c, the same as in the moving system, so the pulse will appear spherical.   
If, however, the detecting coordinate system is moving relative to the 
emitter, this will not be so.   In this case, the movement of the detectors 
during the time of travel of the photon must be taken into account, so the 
measured (apparent) velocity of the two photons in the detecting 
coordinate system will be (c ± v), and the light pulse will never appear 
spherical, 
 



Therefore, in principle, the emitting coordinate system defines a unique 
inertial reference frame relative to all other coordinate systems.   That is, 
the magnitude and sign of the velocity of any other coordinate system 
moving relative to it can be determined in that moving coordinate system 
by measuring the degree and direction of distortion of a spherical light 
pulse from the emitting coordinate system. 
 
Einstein’s assertion of the universal applicability of a set of coordinate 
transformations also seems to me incorrect.  In my view, the proof of such 
an assertion would be impossible, as it would assume a knowledge of all 
possible present and future coordinate measurement methods.   I give as 
an example a photon-emitting clock moving at a constant velocity between 
two photon detectors.  The time of travel of the clock as measured by the 
two detectors is consistent with neither the Lorentz nor the Galilean 
transformations. 
 
The photon-emitting clock travels in a straight line between two fixed 
detectors, located at x=0 and x=x in the stationary coordinate system.  In 
this case, the emitter is moving relative to the detectors, so the velocity of 
the photon is independent of the motion of the emitting clock relative to 
the detectors.   
 
If the clock, traveling at velocity v along the x-axis, emits photons at a 
fixed rate, starting at t=0 and x=0, then when it arrives at x=x at t=t, it will 
have emitted N photons in an arbitrary direction.   In its own coordinate 
system, then, the value of the time of arrival, τ, can be represented by N.  
To determine what the laboratory detectors will see, that is, the number of 
photons measured in the laboratory, we have to examine what happens to 
the photons emitted by the clock during the time of travel. 
 
Depending on where the detectors are located, the results will differ.  If 
the photons are emitted in the forward direction, then a detector stationed 
at the end of the path, at x=x, will have detected all N photons in the time 
of travel, t, because each photon emitted during the period of travel will 
move towards the detector more rapidly than the clock, and will have 



already arrived at the detector prior to, or along with the clock’s arrival at 
x.  Therefore for the front detector, t=τ. 
 
For photons emitted in the backward direction, however, this is not the 
case.  There will be a threshold point, at some x-∆ x, where the remaining 
time of travel of the clock will be less than the time of travel of emitted 
photons to the rear detector.  That is, ∆x/v < (x-∆x)/c.  Equating the two, 
and solving for ∆x, gives ∆x = vx/(c+v).  During such a time period, the 
number of photons emitted will be ∆N = ∆t dn/dt, where ∆t is the time of 
travel of the clock over the distance ∆x, and dn/dt is the rate of photon 
emission of the clock in an arbitrary direction.  These will not arrive at the 
detector during the time interval of travel. Therefore the number of 
photons detected at the rear detector in time t will be N-∆N.    Since the 
rate of photon emission is constant over the length of travel, the ratio of 
∆N/N will be the same as ∆x/x, and we can then determine ∆N:  
 
                                   ∆N/N = v/(c+v),  ∆N = Nv/(c+v),   so that 
 
                                  N-∆N = N-Nv/(c+v), or N(1-v/(c+v)).   
 
Using t and τ instead of N-∆N and N for the time interval expressed in the 
two coordinate systems, for the rear detector we then have 
 
 
     t = τ (1-v/(c+v)).   (10) 
 
 
If we assume a clock velocity of .9c, the rear transformation gives a value 
for t of approximately .526τ, which indicates that a significant number of 
photons would not be observed at high velocities.   If v = c, then t = .5τ, 
and of course half the photons would be excluded, as the velocities would 
be the same.   Thus the time measured by the moving clock during time τ 
as seen by the stationary observer would be the same as an equivalent 
stationary clock if measured by the front detector, that is t = τ, but reduced 
by this factor when measured by the rear detector.    The    Lorentz   
transformation,  τ = t√(1-v2/c2),   with   v = .9c,   gives t = 2.294τ 



measured by either detector.   The Galilean transformation gives t = τ for 
both detectors. 
 
The above arguments do not, of course, preclude the possible 
appropriateness of the Lorentz transformations in some circumstances.  
But it seems to me difficult to see what those might be.   More general 
derivations such as [2] cannot be judged as to their applicability without 
examining specific measurement conditions.     
 
For instance, assuming invariance of the form of the coordinate 
transformations under a change of the stationary coordinate system may or 
may not be correct.    In the above example of measuring the dimensions 
of a spherical light pulse there are two physically different cases, that of 
the emitter moving relative to the detectors and vice versa, and in each of 
these cases there are the values of the coordinates as measured in the two 
different coordinate systems.   
 
If the emitting coordinate system is moving at +v relative to the detecting 
system, then the x-coordinates of the photons along   the   x-axis  in  the  
emitting  system  on  arrival at the detectors are ξ  =  (c-v)τ  and -(c+v)τ.    
In  the  detecting  coordinate  system,  they  are x = ±ct.   If the clocks are 
synchronized and the moment of arrival of the photon in the detecting 
system   can   be   communicated to the emitting system immediately, then  
t = τ.    
 
If the detecting coordinate system is moving at -v relative to the emitter, 
however,  the   x-coordinates   in   the  emitting  system  are  ξ = ±cτ, and 
the   positions   in   the   detecting  coordinate  system  are  x = (c+v)t,  and 
-(c-v)t.    Again, if the clocks are synchronized and the moment of arrival 
of the photon in the detecting system can be communicated to the emitting 
system immediately, then t = τ.   The time values for the arrival at the 
detectors in this case, of course, are different from those in the previous 
case. 
 
Similarly, in the photon-emitting clock example, if the clock is moving 
relative to the detectors, then the time coordinate will be the same in both 



coordinate systems if measured by the front detector, but differ if 
measured by the rear detector: t = τ (1 – (v/(c+v)). 
 
If   the   clock  is  stationary  and   the  detectors  move  relative  to it, then 
the   motion  of  the  detectors  during  the time  of  travel  of  the  photons  
must be accounted  for.    This does not affect the time measurement of the  
front detector, but the transformation for  the  rear  detector  is   changed  
to t = τ (1 – v/c) . 
 
Another assumption is that the relationship between the coordinates in the 
moving system, ξ, τ, and the stationary system must be expressed as a 
function of only the coordinates in the stationary system, x, t, and the 
relative velocity, v, or the relative velocity plus c.  That is, ξ,τ = fξ,τ(x,t,v), 
or fξ,τ(x,t,v,c).  This is not generally true, as we can see in the example of 
the photon-emitting clock.  If the rear detector, for example, is located off-
axis, then  the  measured  time  of  travel  of the clock will depend upon 
the  distance  of  the  detector  from  the  clock  during  the time of motion, 
d = r/sin θ, where r = √y2+z2, and θ is the angle of the detector relative to 
the x-axis at the location of the clock during the time  of  travel,  or 
equivalently, d = √x2+y2+z2. 
 
Similarly, it seems to me that formal properties such as the invariance of 
the transformed form of the unbounded Maxwell and quantum wave 
equations in free space do not necessarily imply the correctness of the 
transformations when applied to equations with arbitrary boundary 
conditions and including potential functions.    That is, the effects from the 
changes in the spatial and temporal boundaries and potentials on 
observable quantities due to the transformations would have to be verified 
empirically.   It should also be noted that some of the issues treated here 
have been raised elsewhere. [3] 
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