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Abstract 

Heap together equivalent spheres into a cube up to most possible, then variant 

general volumes of equivalent spheres inside the cube depend on variant 

arrangements of equivalent spheres fundamentally. This π/√18 which the 

Kepler’s conjecture mentions is the ratio of the general volume of equivalent 

spheres under the maximum to the volume of the cube. We will do a closer 

arrangement of equivalent spheres inside a cube. Further let a general volume of 

equivalent spheres to getting greater and greater, up to tend upwards the 

super-limit, in pace with which each of equivalent spheres is getting smaller and 

smaller, and their amount is getting more and more. We will prove the Kepler’s 

conjecture by such a way in this article.  
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Basic Concepts 

First let us review following a few of basic concepts once more, for they 

relating to the proof.  

The Kepler’s conjecture states that heap together equivalent spheres into 

a cube, then, a ratio of any general volume of equivalent spheres inside 

the cube to the volume of the cube is not greater than π/√18 always.  

Suppose that the length of each edge of a cube is α, then the volume of 

the cube is α3, and the volume of internal tangent sphere of the cube is 
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equal to πα3/6.  

The ratio of the volume of internal tangent sphere of a cube to the volume 

of the cube is equal to π/6.  

Suppose that the length of edges of a cuboid is α, β and γ respectively, 

then the volume of the cuboid is α β γ. 

Suppose that the length of a rectangle is α , and its breadth is β，then its 

area is α β. 

Suppose that the length of each side of a square is α , then its area is α2. 

Aforementioned α , β and γ are real numbers. Here we need to stress a bit 

that you can get a line segment whereby any real number measures from 

the number axis to act as an edge of rectangular parallelopiped or a 

diameter of sphere.  

The Proof 

Suppose that the length of each edge of cube K is L, then its volume is 

equal to L3, and either diagonal of each square surface of cube K is equal 

to √2L, where L is a real number.  

We will use cube K2 which is equivalent to cube K to act as a container 

which holds equivalent spheres, in this proof.  

 

Suppose that the length of each edge of cube N is 6√2L, then its volume is 

equal to √2L3, and its internal tangent sphere’s volume is equal to 

√2L3π/6.  
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Thus it can computed, the ratio of the volume of the internal tangent 

sphere of cube N to the volume of cube K is equal to √2π/6, i.e. π /√18. 

This ratio is just that ratio which the Kepler’s conjecture mentions. 

 

Suppose that the length of each edge of cube M is √2L, then its volume is 

equal to 2√2L3. 

 

Since there is L<6√2L<√2L, thus we let cube K lie amidst cube N, and let 

cube N lie amidst cube M, also enable each of them to have two 

horizontal surfaces, and any pair of opposite surfaces of each of them 

parallels a pair of opposite surfaces of either of the other two. 

 

The volume of the annular solid between six square surfaces of cube K 

and six square surfaces of cube N is equal to (√2-1)L3, including the area 

of six square surface of cube N theoretically.  

 

There is a rectangular parallelepiped between the upper horizontal square 

surface of cube K and the surface of amidst the upper horizontal square 

surface of cube M. Also there is a rectangular parallelepiped between the 

bottom horizontal square surface of cube K and the square of amidst the 

bottom horizontal square surface of cube M, and either rectangular 
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parallelepiped has four edges whose each equals 1/2(√2L-L) and eight 

edges whose each equals L. So via the simple computation, the general 

volume of the two rectangular parallelepipeds is equal to (√2-1)L3 

including two areas 2L2 of two square of amidst the upper and bottom 

horizontal square surfaces of cube M theoretically.  

 

Thus it can seen, the general volume of two such rectangular 

parallelepipeds is just equal to the general volume of aforementioned the 

annular solid, for either general volume is equal to (√2-1)L3.  

 

Two such rectangular parallelepipeds plus cube K constitute a larger 

rectangular parallelepiped, and we name the larger rectangular 

parallelepiped “cuboid R”.  

The length, width and height of cuboid R be L, L and √2L respectively, 

so its volume is equal to √2L3.  

It is known that the length of each edge of cube N is 6√2L, and its volume 

is equal to √2L3 too.  

So the volume of cuboid R is equal to the volume of cube N, clearly cube 

K is both central section of cube N and the middle of cuboid R. 

 

Now let us divide M into y3 smaller equivalent cubes or y3 smaller 

equivalent cubes plus the remainders which cannot form any such smaller 
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cube, where y is a natural number. 

 

In pace with which y is getting greater and greater, cube M is divided into 

smaller and smaller equivalent cubes or such smaller cubes plus the 

remainders, of course not excepting cube N and cuboid R inside cube M.  

 

After cube M is divided for each once, there is a difference between the 

volume of cube N and a general volume of all smaller equivalent cubes 

within cube N, and there is a difference between the volume of cuboid R 

and a general volume of all smaller equivalent cubes within cuboid R. 

And two such differences are getting less and less in pace with which y is 

getting greater and greater.  

If y tends upwards infinity, then two such differences tend downwards the 

zero, or at most one is equal to the zero because the length or width of 

cuboid R is L, while the length of each edge of cube N is 6√2L, obviously 

L and 6√2L have not any common factor within the limits of real numbers, 

yet can only whereby such a common factor acts as the length of every 

edge of smaller equivalent cubes, justly the two differences are 

equal-ability to the zero simultaneously.   

 

That is to say, a general volume of all very tiny equivalent cubes within 

cube N tends upwards the volume of cube N, and a general volume of all 
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very tiny equivalent cubes within cuboid R tends upwards the volume of 

cuboid R, when y tends upwards infinity.  

In addition, the volume of cuboid R is equal to the volume of cube N, 

therefore a general volume of all very tiny equivalent cubes within cuboid 

R tends towards a general volume of all very tiny equivalent cubes within 

cube N. 

 

Thus it can otherwise seen, on the one hand, there are merely very tiny 

equivalent cubes or very tiny equivalent cubes plus the remainders within 

cube M when y tends upwards infinity; on the other, very tiny equivalent 

cubes and their internal tangent spheres within cube M can only come 

into being after tends upwards infinitely divide cube M.  Hereinafter 

such very tiny equivalent cubes are termed “differential cubes”, and very 

tiny equivalent internal tangent spheres of differential cubes are termed 

“point-like spheres”.  

 

Also differential cubes within cube M equal one another, so the sum total 

of all differential cubes within cuboid R tends towards the sum total of all 

differential cubes within cube N. 

Moreover there is a point-like sphere within every differential cube only, 

thus the general volume of all point-like spheres inside cuboid R tends 

towards the general volume of all point-like spheres inside cube N.  
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Also the ratio of the volume of the internal tangent sphere of a cube to the 

volume of the cube is equal to π/6. Then, the ratio of the general volume 

of all point-like spheres inside cube N to the general volume of all 

differential cubes within cube N is equal to π/6.  

In addition, the ratio of the volume of the internal tangent sphere of cube 

N to the volume of cube N is equal to π/6, and the general volume of all 

differential cubes within cube N tends upwards the volume of cube N, 

therefore the general volume of all point-like spheres inside cube N tends 

upwards the volume of the internal tangent sphere of cube N. 

 

Moreover the general volume of all point-like spheres inside cuboid R 

tends towards the general volume of all point-like spheres inside cube N, 

therefore the general volume of all point-like spheres inside cuboid R 

tends upwards the volume of the internal tangent sphere of cube N.  

 

In addition, the ratio of the volume of the internal tangent sphere of cube 

N to the volume of cube K is equal to π /√18, therefore the ratio of the 

general volume of all point-like spheres inside cuboid R to the volume of 

cube K tends upwards π /√18.  

 

After cube M is divided to y3 smaller equivalent cubes or y3 smaller 

equivalent cubes plus the remainders, spherical centers of internal tangent 
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spheres of smaller equivalent cubes within cuboid R including cube K lie 

both at some equivalent horizontal squares and at some equivalent 

vertical rectangles. Besides two adjacent such horizontal squares are a 

diameter of the internal tangent sphere apart, and two adjacent such 

vertical rectangles are the diameter apart too.   

Every such sphere’s center arranges both at a rank which has more such 

spheres’ centers and at a file which has more such spheres’ centers at each 

such horizontal square inside cuboid R including cube K. Besides two 

adjacent spheres’ centers at a line tend downward a diameter of the 

internal tangent sphere apart, and here “line” denotes both “rank” and 

“file”, the same below. The arrangement of the spheres’ centers at every 

such horizontal square be just the same as compared with the other each.   

 

Every sphere’s center arranges both at a rank which has more such 

spheres’ centers and at a file which has more such spheres’ centers at each 

such vertical rectangle inside cuboid R. Besides, two adjacent spheres’ 

centers at a line tend downward a diameter of the internal tangent sphere 

apart.  

The arrangement of the spheres’ centers at every such vertical rectangle 

be just the same as compared with the other each.   

 

Two adjacent point-like spheres inside cuboid R tend downward 
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externally tangent, namely the distance between two adjacent point-like 

spheres’ centers tends downwards a diameter of point-like sphere, also 

point-like spheres on the marginality inside cuboid R and surfaces of 

cuboid R tend downward internally tangent.    

 

Now we will make an attempt to put all point-like spheres inside cuboid 

R into cube K, of course this is merely an explanation at the theory.  

 

Since cube K is a part of cuboid R, thus in order to differentiate between 

cube K and cuboid R, let us adopt a reproduction of cube K to replace 

cube K, and put the reproduction out of cuboid R, and enable it to have 

two horizontal surfaces. We otherwise term the reproduction “cube K2”. 

Justly cube K2 is equivalent to cube K，but there are no spheres inside 

cube K2 by now.  

 

For the sake of aforementioned purpose, first we need to determine points 

as spheres’ centers of all point-like spheres inside cube K2 under the 

prerequisite which can inlay every point-like sphere inside cuboid R, and 

the way of doing is as the follows.  

 

Let us name the common rectangular bisector of any pair of opposite 

right dihedral angles which have two horizontal surfaces and two vertical 
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surfaces inside cube K2 “rectangle Bk ”.  

Obviously rectangle Bk and the either horizontal surface form a dihedral 

angle of π/4, and rectangle Bk and the either vertical surface form a 

dihedral angle of π/4 too. Thereupon we reckon rectangle Bk as a 

slantwise rectangle.  

Also we name any vertical rectangle which has more spheres’ centers of 

point-like spheres inside cuboid R “rectangle HR”.  

Since the breadth of rectangle Bk is equal to the breadth of rectangle HR, 

and the length of rectangle Bk is equal to the length of rectangle HR, so 

rectangle Bk is equivalent to rectangle HR.  

 

Up to now, we may make a breakthrough exactly to the beginning. First 

determine points as point-like spheres’ centers at rectangle Bk according 

to the arrangement of all point-like spheres’ centers at rectangle HR.   

Then the sum total of ranks of point-like spheres’ centers at rectangle Bk 

is equal to the sum total of ranks of point-like spheres’ centers at 

rectangle HR, and the sum total of point-like spheres’ centers at the each 

rank at rectangle Bk is equal to the sum total of point-like spheres’ centers 

at the each rank at rectangle HR.   

 

Secondly, determine a horizontal square inside cube K2 by means of each 

rank of point-like spheres’ centers at rectangle Bk , of course each such 
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horizontal square inside cube K2 is equivalent to each horizontal square 

inside cuboid R, and every such horizontal square inside cube K2 

continues to have a rank of point-like spheres’ centers at rectangle Bk.. 

Moreover take such a rank as the datum rank wherewith to determine 

other ranks of point-like spheres’ centers at each such horizontal square. 

After that, leave from such a datum rank to determine orderly other ranks 

of point-like spheres’ centers at each and every such horizontal square 

inside cube K2 according to the interval between two adjacent ranks of 

point-like spheres’ centers at any such horizontal square inside cuboid R, 

viz. two adjacent spheres’ centers tend downward a diameter of point-like 

sphere apart, until cannot continue to determine such sphere’s center.  

 

Since the sum total of ranks of point-like spheres’ centers at rectangle Bk 

is equal to the sum total of ranks of point-like spheres’ centers at 

rectangle HR, from this determined that the sum total of horizontal 

squares which contain more point-like spheres’ centers inside cube K2 is 

equal to the sum total of horizontal squares which contain more point-like 

spheres’ centers inside cuboid R.   

Moreover every horizontal square inside cube K2 is equivalent to every 

horizontal square inside cuboid R, and the arrangement of point-like 

spheres’ centers at each horizontal square inside cube K2 and the 

arrangement of point-like spheres’ centers at each horizontal square 
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inside cuboid R are just the same, to wit the identical number of 

point-like spheres’ centers to the both, consequently the sum total of 

determined point-like spheres’ centers inside cube K2 is equal to the sum 

total of point-like spheres’ centers inside cuboid R.  

 

After points as point-like spheres’ centers inside cube K2 are determined, 

we are not difficult to seen, all point-like spheres’ centers inside cube K2 

are both at some equivalent horizontal squares and at slantwise rectangle 

Bk plus some slantwise rectangles which parallel slantwise rectangle Bk , 

and the farther slantwise rectangle leaves from slantwise rectangle Bk, the 

smaller is it.  

 

Hereunder we need to test and verify whether can inlay a point-like 

sphere for every determined point-like sphere’s center inside cube K2.  

 

First, considering the horizontal direction, two determined adjacent 

point-like spheres’ centers tend downward a diameter of point-like sphere 

apart. If whereby both of them act as two point-like spheres’ centers, then 

inlaid two point-like spheres tend toward the externally tangent on the 

horizontal direction.   

 

Secondly, considering the slantwise direction whose inclination is π/4, 
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two determined adjacent point-like spheres’ centers tend downward a 

diameter of point-like sphere apart. If whereby both of them act as two 

point-like spheres’ centers, then inlaid two point-like spheres tend toward 

the externally tangent on the slantwise direction whose inclination is π/4.  

 

Thirdly, since the distance between two adjacent horizontal squares which 

contain point-like spheres’ centers tend downward √2/2 diameter of 

point-like sphere apart, and the distance between two adjacent slantwise 

rectangles which contain point-like spheres’ centers tend downward √2/2 

diameter of point-like sphere apart too, thus it can seen, the distance 

between the two adjacent planes on the either direction is greater than a 

radius of point-like sphere. If whereby every determined point-like 

sphere’s center’s point acts as a point-like sphere’s center, then can inlay 

all point-like spheres enough on the vertical direction and slantwise 

direction whose inclination is 3π/4.  

 

Altogether, there is possible on eight directions which divide averagely 

the 2π-space round every determined point-like sphere’s center inside 

cube K2, consequently it is able to inlay all point-like spheres inside 

cuboid R into cube K2 barely enough. 

 

After put all point-like spheres inside cuboid R into cube K2, the ratio of 



 

 14

the general volume of all point-like spheres inside cube K2 to the volume 

of cube K2 tends upwards π /√18. 

In other words, the ratio of the general volume of all point-like spheres 

after the rearrangement inside cube K to the volume of cube K tends 

upwards π /√18. 

 

For above-mentioned the way of doing, we can only from the theory to 

understand, because after tend upwards infinitely divide cube M in pace 

with which y tends upwards infinity, we utterly impossibly probe to being 

any point-like sphere.    

Nevertheless we may let y to equal a non-large natural number first, then, 

put internal tangent spheres of all equivalent cubes inside cuboid R into 

cube K2 really according to aforementioned the way of doing.  

 

After that, once by once put internal tangent spheres of smaller and 

smaller equivalent cubes inside cuboid R into cube K2 according to the 

way of doing, in pace with which y be getting greater and greater, and so 

on and so forth, up to y tends upwards infinity, then the way of doing is 

from feasibility on the practice up to feasibility at the theory.  

 

If y tends upwards infinity, then it reaches to the super-limit as to put all 

point-like spheres inside cuboid R into cube K2 barely enough. Under this 
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case, two adjacent point-like spheres tend toward the externally tangent, 

and each and every point-like sphere on the marginality and a surface of 

cube K2 tend toward the internally tangent.  

Since there are infinitely many natural numbers, namely there are 

infinitely many values of y, thus y has not a maximum value, therefore 

the ratio of the general volume of all point-like spheres inside cube K2 to 

the volume of cube K2 can only tend infinitesimally upwards π/√18, 

however it cannot equal π/√18 always. In other words, the super-limit of 

the ratio is π/√18.  

 

We may also so imagine that the volume of a smallest sphere is less than 

a volume of any point-like sphere, if the ratio is equal to π/√18, then the 

general volume of all smallest spheres within cube K2 is equal to the 

volume of the internal tangent sphere of cube N. But, every contact 

among smallest spheres, among smallest spheres on the marginality and 

surfaces of cube K2 is a common tangent point of two geometrical solids. 

So all smallest spheres within cube K2 and cube K2 link into an impartible 

object, yet the object is neither a cube nor many independent smallest 

spheres, even it is no a geometrical solid. Thus the ratio of the general 

volume of all point-like spheres inside cube K2 to the volume of cube K2 

always cannot come up to π/√18.        
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Thus far, proving for the Kepler’s conjecture has ended. If there is no any 

nonlogical inference, then the conjecture is proven as the true.  


