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1. ABSTRACT

This article describes about that P is not NP by using bijection reduction be-
tween each problems. If injective reduction of each directions between CNFSAT
and HornSAT exist, bijection between CNFSAT and HornSAT also exist. If P
is NP, this bijection is polynomial time. But HornSAT description is polynomial
complex and CNFSAT description is exponential complex. It means that there is
no bijection in polynomial time. Therefore P is not NP.

2. PREPARATION

In this article, we will use words and theorems of References [1, 2, 3| in this
paper. About problem and turing machine types, we use description as follows;

Definition 1. We will use the term “A <j; B” that injection reduction from A
to B that compute complexity class M exist, “A ~j; B” that bijection reduction
between A and B that compute complexity class M exist.

Define concrete problem as follows;

Definition 2. We will use the term “HornSAT” as a HornCNF Satisfiability prob-
lem set. To simplify, p € HornSAT description is arranged by HornCNF partially
ordered set structure. We will use the term “CNFSAT” as a CNF Satisfiability
problem set. To simplify, p € CNFSAT description is arranged by CNF clauses
variables set.

Define problems cardinals within finite.

Definition 3. We will use the term “Problem cardinals” and “|P|,,” as a cardinals
of problem that input length is n.

3. P 1s NoT NP

Prove P # N P by using cardinals difference between HornSAT and CNFSAT.
All A € P have injection reduction to HornSAT and all B € NP have injection
reduction to CN FSAT. Therefore polynomial time reduction as bijection between
HornSAT and CNFSAT exists if P = NP. But HornSAT description is poly-
nomial complex and CNFSAT description is exponential complex. It means that
there is no polynomail time reduction between HornSAT and CNFSAT. There-
fore P # NP.

Theorem 4. Logarithm space reduction as injection from A € P to HornSAT
exist that output size bigger than input size. And polynomial time reduction as
1
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injection from B € NP to CNFSAT exist that output size bigger than input size.
That is,

VA e P(A =<y HornSAT)

VB e NP (B <p CNFSAT)

Proof. This is trivial because some Turing Machine can compute output that in-
clude input structure. For example, output include input that will not affect
HornSAT and CNFSAT clauses. Therefore, output become unique and bigger
than input. ([

Theorem 5. If P = NP, there exists polynomial time bijection reduction between
HornSAT and CNFSAT. That is,
(P=NP)— HornSAT ~, CNFSAT

Proof. From P = NP, we can define injection reduction
f:CNFSAT — HornSAT, g: HornSAT — CNFSAT
and bijection h : CNFSAT — HkornSAT is
i@ i (Fog ) (@) eaistandg o (1o g Y)
he) g (z) others
from The Cantor-Bernstein-Schroeder theorem[4].
Mentioned above 4, pDTM can compute h because f~1, g~! reduce output size

and f~1og~! can repeat atmost O (n¢) times. Therefore, this theorem was shown.
(I

¥ (x) not exist

Theorem 6. |HornSAT|, = O (n®), |CNFSAT|, = O (c")

Proof. This is trivial by constraint of clauses description. HornSAT clauses have
atmost one positive literal in each clauses. Therefore we can arrange HornSAT
clauses by positive literal and matrix of negative literals existences. And this matrix
have meaning Triangular matrix because each clauses imply positive literals by
usnig unit resolution. Therefore |[HornSAT|, = O (n°).

But CNFSAT clauses have no limit like HornSAT. We can build CNFSAT as
direct product of clauses that made same variables set. Therefore [CNFSAT|, =
O (c"). O

Theorem 7. P # NP

Proof. We prove it using reduction to absurdity. We assume that P = NP. Men-
tioned above 5, HornSAT ~, CNFSAT.

But mentioned above 6, |[HornSAT|, = O(n®) and |[CNFSAT|, = O(c").
Therefore bijection require O (") size HornSAT to map to CNFSAT. Therefore
pDTM cannot compute this bijection and contradict P = N P.

Therefore, this theorem was shown than reduction to absurdity. ([
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