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1. ABSTRACT

This article describes about that L is not P and P is not NP by using bijection
reduction between each problems.

Deterministic Turing Machine (DTM) can easily change bijection DTM. There-
fore, if L is P then bijection LDTM can reduce CIRCUIT-VALUE to UNDIRECTED-
PATH. But CIRCUIT-VALUE have same cardinals’ co-problem and UNDIRECTED-
PATH have little cardinals’ co-problem. Therefore, bijection LDTM cannot reduce
CIRCUIT-VALUE to co-UNDIRECTED-PATH and L is not P.

And using L is not P, we can prove P is not NP. All P problem have equivalent
reversible function and DTM can reduce from NP-Complete problem to another
NP-Complete problem by using this reversible function. If P is NP, equivalent
Logarithm space reductcion exists. But that means L is P and contradict L is not
P. Therefore, P is not NP.

2. PREPARATION

In this article, we will use words and theorems of References [1, 2, 3] in this

paper.
About problem and turing machine types, we use description as follows;

Definition 1. We will use the term “Input” as data that Turing Machine compute,
“Output” as result that Turing Machine compute. “Problem” as set of all input
that same Turing Machine can compute same output. “L” as L problem set, “P” as
P problem set, “P — Complete” as P-Complete problem set, “NP — Complete” as
NP-Complete problem set, “F'L” as Logarithm space function problem set, “F' P” as
Polynomial time function problem set. “DTM” as Deterministic Turing Machine
set. “LDT M” as Turing Machine set that compute L and F'L, “pDTM” as Turing
Machine set that compute P and FP. “RpDTM” as Reversible pDT M.

Define concrete problem as follows;

Definition 2. We will use the term “CIRCUIT — VALUE” as a P-Complete
problem of computing circuit output value. To simplify, we add YES gate that
output input value (reverse NOT gate). “UNDIRECTED — PATH” as a L-
Complete problem of finding undirected graph path between assigned two vertexes.
To simplify, we describe each edge exist or not. That is, each vertex are array of
edges existence that listed another vertexes.

Define problems cardinals within finite.

Definition 3. We will use the term “Problem cardinals” and “|P|,,” as a cardinals
of problem that input length is n.
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3. LisNor P

Prove L # P by using cardinals difference of between CIRCUIT — VALUE
and UNDIRECTED — PATH. CIRCUIT — VALUEFE have high resolution and
|CIRCUIT — VALUE|, = |CIRCUIT — VALUE| . And all P,Q € P—Complete
have bijection LDTM reduction. But UNDIRECTED — PAT H have low resolu-
tion and [UNDIRECTED — PATH|, > [UNDIRECTED — PATH|, . There-

fore CIRCUIT — VALUE cannot reduce to UNDIRECTED — PATH.

Theorem 4. CIRCUIT — VALUE cardinals is same as CIRCUIT — VALUE
cardinals. That is,
|CIRCUIT — VALUE|, = |CIRCUIT — VALUE|

Proof. This is trivial because all p € CIRCUIT — VALUFE have dual circuit ¢ €
CIRCUIT — VALUE. O

Theorem 5. UNDIRECTED—PATH cardinals is more than UNDIRECTED — PATH
cardinals. That is,
[UNDIRECTED — PATH|, > ‘UNDIREC’TED - PATH‘n

and
[UNDIRECTED — PATH|,
|UNDIRECTED — PATH|

O (c")

Proof. Set finding path problem as graph p start vertex s to goal vertex ¢ in k
vertices. All p € UNDIRECTED — PATH if p have edge that link s to ¢, but
some p € UNDIRECTED — PATH if p have no edge that link s to ¢t. Number
of graph that have edge that link s to ¢ is equal that have no edge that link s to ¢.
Therefore,

[UNDIRECTED — PATH|, > ‘UNDIRECTED — PATH‘n

Some graph that have no link stotisin UNDIRECTED—PAT H to get around
another vertex. Number of such graph is amount O (¢") because atmost O (c)
edges are fixed and another edges are acceptable that edge exist or not. Therefore,
[UNDIRECTED — PATH| is very larger than [UNDIRECTED — PATH)|

[UNDIRECTED — PATH|

L =0(c") O

|UNDIRECTED — PATH|

Theorem 6. P, € P — Complete have bijection reduction. That is,
VP,Q € P (Elh € LDTM (hil (P)=Q))

Proof. This is trivial by using The Cantor-Bernstein-Schroeder theorem[4].

Define injection

fiP=Q,9:Q—p

then bijection h is

h(z) = g 1(x) if x in target of g

f(x) else

LDTM can compute h because DTM can easily reverse to NTM and if g~
compute nondeterministic transition then h compute f. Therefore, this theorem
was shown. (]

1

Theorem 7. L # P
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Proof. We prove it using reduction to absurdity. We assume that L = P. Therefore,
bijective LDTM can reduce CIRCUIT — VALUE to UNDIRECTED — PATH.
But mentioned above 45,[CIRCUIT — VALUE)|, = |CIRCUIT — VALUE|n
\UNDIRECTED — PATH|,
" [UNDIRECTED — PATH]|
is too small to reduce bijective to |[CIRCUIT — VALUE|,. Therefore LDTM can-
not compute this reduction and contradict L = P.
Therefore, this theorem was shown than reduction to absurdity. O

O (c™). Therefore[UNDIRECTED — PATH| |

4. P 1s NOoT NP
Prove P # NP by using L # P.
Theorem 8. P # NP

Proof. We prove it using reduction to absurdity. We assume that P = N P, there-
fore all p,q € NP — Complete have f € LDTM that reduce p to q.

Vp,q € NP — Completedf € LDTM (f (p) = q)

If pe NP — Complete and g € RpDT M then

P<pg(p)
and

g() <p 9" (g(p)) =pE NP = g(p) € NP

Therefore

g (p) € NP — Complete

That is,

Vp € NP — Complete¥g € RpDTM3f € LDTM (f (p) = g (p))

But mentioned above7, RpDTM # LDT M and contradict it.

Therefore, this theorem was shown than reduction to absurdity. ([
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