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Abstract

In the contemporary classical electrodynamics sxisiny unresolved problems. The law of
the induction of Faraday does not describe all kmomanifestations of induction. Unipolar
generator is exception. Incomprehensible is thesighy cause for induction. Long time was
considered that such material parameters, as thelaod magnetic constant they can depend on
frequency. It turned out that this not thus. To #éxamination this problems is dedicated the
article.

| ntroduction

Until now, some problems of classicatetedynamics involving the laws of
electromagnetic induction have been interpreted khual or even contraversal
way.

As an example, let us consider how the homopolarain is explained in
different works. In [1] this is done using the FK#ag low specified for the
“discontinuous motion” case. In [2] the rule ofvllos rejected and the operation of
the homopolar generator is explained on the bddiseolorentz force acting upon
charges.

The contradictory approaches are most evident ymiRan’s work [2] (see
page 53): the rule of flow states that the contonor.f. is equal to the opposite-sign
rate of change in the magnetic flux through thet@enwhen the flux varies either
with the changing field or due to the motion of ttentour (or to both). Two
options — “the contour moves” or “the field charigase indistinguishable within
the rule. Nevertheless, we use these two compleliffisrent laws to explain the

B

rule for the two casesNXél for the “moving contour” and*E=~— for the

“changing field”. And further on: There is hardip@her case in physics when a

simple and accurate general law has to be integbret terms of two different

phenomena. Normally, such beautiful generalizasibould be based on a unified
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fundamental principle. Such principle is absenbuim case. The interpretation of
the Faraday law in [2] is also commonly acceptedaBay’s observation led to the
discovery of a new law relating electric and magnéelds: the electric field is
generated in the region where the magnetic fieldesawith time. There is
however an exception to this rule too, though theva studies do not mention it.
However, as soon as the current through such a@dles changed, an electric
field is excited externally. The exception seenbéotoo numerous. The situation
really causes concern when such noted physigst@aam and Feynman have no
common approach to this seemingly simple question.

It is knowing [3] that classical electrodynamicsildato explain the
phenomenon of phase aberration. As applied to padma of light, the
phenomenon can be explained only in terms of trexiaptheory of relativity
(STR). However, the Maxwell equations are invariaith respect to the covariant
STR transformations, and there is therefore eveasan to hope that they can
furnish the required explanation of the phenomenon.

It is well known that electric and magnetic induities of material media
can depend on frequency, i.e. they can exhibitedspn. But even Maxwell
himself, who was the author of the basic equatminslectrodynamics, believed
thate andpu were frequency-independent fundamental constants.

How the idea ofe and p-dispersion appeared and evolved is illustrated
vividly in the monograph of well-known specialistsphysics of plasma [4]: while
working at the equations of electrodynamics of malte media, G. Maxwell
looked upon electric and magnetic inductivities camstants (that is why this
approach was so lasting). Much later, at the baggwf the XX century, G.
Heavisidr and R.Wull put forward their explanatitor phenomena of optical
dispersion (in particular rainbow) in which elect@and magnetic inductivities
came as functions of frequency. Quite recentlyhenmid-50ies of the last century,
physicists arrived at the conclusion that thesarpaters were dependent not only
on the frequency but on the wave vector as wellatTlwas a revolutionary
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breakaway from the current concepts. The importaicthe problem is clearly
illustrated by what happened at a seminar held.dy.lLandau in 1954, where he
interrupted A. L. Akhiezer reporting on the subjethlonsense, the refractive
index cannot be a function of the refractive indedbdte, this was said by L. D.
Landau, an outstanding physicist of our time.

What is the actual situation? Running ahead, la@mit that Maxwell was
right: bothe andu are frequency — independent constants charactgrame or
another material medium. Since dispersion of aleamnd magnetic inductivities of
material media is one of the basic problems of ghesent — day physics and
electrodynamics, the system of views on these gumsshas to be radically altered
again (for the second time!).

In this context the challenge of this study wagtovide a comprehensive
answer to the above questions and thus to arrive wtified and unambiguous
standpoint. This will certainly require a revisiohthe relevant interpretations in

many fundamental works.

1. Equations of electromagnetic induction

INn moving coor dinates

The Maxwell equations do not permit us to write dawe fields in moving
coordinates proceeding from the known fields meadum the stationary
coordinates. Generally, this can be done throughLtbrentz transformations but
they so not follow from classical electrodynamibs.a homopolar generator, the
electric fields are measured in the stationary dioates but they are actually
excited in the elements which move relative to stetionary coordinate system.
Therefore, the principle of the homopolar generatperation can be described
correctly only in the framework of the special theof relativity (STR). This

brings up the question: Can classical electrodyoaruirnish correct results for the



4

fields in a moving coordinate system, or at leadfero an acceptable
approximation? If so, what form will the equatioofselectromagnetic induction
have?

The Lorentz force is
F'=e E+ e[Vx *E‘ﬂ (1.1)

It bears the name of Lorentz it follows from hisrtsformations which
permit writing the fields in the moving coordinatéghe fields in the stationary
coordinates are known. Henceforward, the fieldsfances generated in a moving
coordinate system will be indicated with primed byhs.

The clues of how to write the fields in moving cdioiates if they are known
in the stationary system are available even inRls@aday law. Let us specify the

form of the Faraday law:

@E'd?z—ddq)tB (1.2)

The specified law, or, more precisely, its spedifierm, means thaE and

di should be primed if the contour integral is soufgitin moving coordinates
and unprimed for stationary coordinates. In théetatase the right-hand side of
Eq. (1.2) should contain a partial derivative wilspect to time which fact is
generally not mentioned in literature.

The total derivative with respect to time in Eg.2{limplies that the final

result for the contour e.m.f. is independent of thariation mode of the flux. In

other words, the flux can change either purely \iitie variations ofB or because
the system, in whictjg Edl" is measured, is moving in the spatially varyingdi
B. In Eq. (1.2)

®,=[BdS (1.3)
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where the magnetic inductioB =xH is measured in the stationary coordinates

and the elemend S in the moving coordinates.

Taking into account Eqg. (1.3), we can find from E2)

§I§'d K :—%J‘B d §. (1.4)
Since % P! +V grad we can write
= F':—ji—? d $-[[BxV]d "~ [VdivBd & (1.5)

In this case contour integral is taken over theamard r', covering the spacéé.
Henceforward, we assume the validity of the Gafilgaansformations, i.e.

dI'=dl anddS =dS. Eq. (1.5) furnishes the well-known result:
E'=E+Vx8|, (1.6)
which suggests that the motion in the magnetid festcites an additional electric
field described by the final term in Eq. (1.6).tBldhat Eq. (1.6) is obtained from
the slightly specified Faraday law and not from ltloeentz transformations.
According to Eg. (1.6), a charge moving in the netg field is influenced
by a force perpendicular to the direction of thetiom However, the physical
nature of this force has never been considereds Bhngs confusion into the
explanation of the homopolar generator operati@ahdoes not permit us to explain
the electric fields outside an infinitely long sobéd on the basis of the Maxwell

equations.
To clear up the physical origin of the final termEq. (1.6), let us writeB

and E in terms of the magnetic vector potentf@l:



B} B, . OA
B=rot A, E=—— 1.7
A TR (1.7)
Then, Eqg. (1.6) can be re-written as
. A [ B
E'=- i +B/><rot AB] (1.8)
ot ’
and further:
LA [\ L

The first two terms in the right-hand side of Ef9) can be considered as the total

derivative of the vector potential with respectitoe:

d A

T +grad67,5\3). (1.10)

EI

As seen in Eq. (1.9), the field strength, and hdheeforce acting upon a charge
consists of three components.

The first component describes the pure time vamatiof the magnetic
vector potential. The second term in the right-hai® of Eq. (1.9) is evidently
connected with the changes in the vector potewtalsed by the motion of a
charge in the spatially varying field of this paiah The origin of the last term in

the right-hand side of Eq. (1.9) is quite differdbis connected with the potential

forces because the potential energy of a chargengav the potential fieldoE\3 at

the velocityV is equal toe 67 /53) The magnitudee grad 67 AB) describes the

force just as the scalar potential gradient does.

Using Eq. (1.9), we can explain physically all #teength components of the
electronic field excited in the moving and statigneooperates. If our concern is
with the electric fields outside a long solenoidjere the no magnetic field, the
first term in the right-hand side of Eq. (1.9) coméo play. In the case of a
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homopolar generator, the force acting upon a chiargetermined by the last two
terms in the right-hand side of Eq.(1.9), bothh&h contributing equally.

It is therefore incorrect to look upon the homopofgenerator as the
exception to the flow rule because, as we saw ghitne rule allows for all the
three components. Using the rotor in both sides (E40) and taking into account

rot grad= 0, we obtain
rot E’ == 11)

If motion is absent, Eg. (1.11) turns into Maxwadjuation (1.2). Equation (1.11)

Is certainly less informative than Eq. (1.2): dewe rot grad = O, it does not

include the forces defined in tern® grad 67 /5\3) It is therefore more reasonable

to use Eqg. (1.2) if we want to allow for all comgoits of the electric fields acting
upon a charge both in the stationary and in theimgosoordinates.

As a preliminary conclusion, we may state thatRaeaday Law, Eq. (1.2),
when examined closely, explains clearly all feaguoé the homopolar generator

operation, and this operation principle is a consege, rather than an exception,

of the flow rule, Eq. (1.2). Feynman’s statemer&ttWXI§J for the “moving

—

contour” andDXE: It for the “varying field” are absolutely differeraws is

contrary to fact. The Faraday law is just the solfied fundamental principle
which Feynman declared to be missing. Let us clgaranother Feynman’s
interpretation. Faraday’s observation in fact lech ho discovery of a new law
relating electric and magnetic fields in the regwmere the magnetic field varies
with time and thus generates the electric fieldsTdorrelation is essentially true
but not complete. As shown above, the electridfiehn also be excited where

there is no magnetic field, namely, outside annitdly long solenoid. A more
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complete formulation follows from Eq. (1.9) and MeadaationshipE:‘F IS
. OB
more general tharfOt E T

This suggests that a moving or stationary chamggracts with the field of
the magnetic vector potential rather than with tiegnetic field. The knowledge
of this potential and its evolution can only permg to calculate all the force
components acting upon charges. The magnetic iBalgerely a spatial derivative
of the vector field.

As follows from the above consideration, it is maggropriate to write the

Lotentz force in terms of the magnetic vector pbéatn

—

E ze E+e[Vxrot AJ]=eE-e(V O)A, +egrad(V A,) , (1.12)
which visualizes the complete structure of thedorc

The Faraday law, Eq. (1.2) is referred to as the bf electromagnetic
induction because it shows how varying magnetitdgiecan generate electric
fields. However, classical electrodynamics contamas law of magnetoelectric
induction showing how magnetic fields can be extcidy varying electric fields.
This aspect of classical electrodynamics evolvemala different pathway. First,

the law

§ Hdl=1 13)
was known, in whichl was the current crossing the area of the integratontour.
In the differential from Eq. (1.13) becomes

rotH = TU , 13)
where j; Is the conduction current density.

Maxwell supplemented Eqg. (1.14) with thggment current
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rotH=j, AT (115

However, if Faraday had performed measurementanying electric induction

fluxes, he would have inferred the following law

I rl _ d CDD
fHAT" = el @)1
where P, =_[5d S is the electric induction flux. Then
§Hd T’:Id—f)d S+{[DxVId ["+[VdivDd S (1.17)
ot

Unlike divB =001 in magnetic fields, electric fields are charactedi bydivf) =p
and the last term in the right-hand side Eq. (LdEscribes the conduction current

I, i.e. the Ampere law follows from Eq. (1.16). Ef}.17) gives
H=[DxV], (1)18
which was earlier obtainable only from the Loretnénsformation.
Moreover, as was shown convincingly in [2], Eq1@) also leads out of the
Biot-Savart law if magnetic fields are calculateonh the electric fields excited by
moving charges. In this case the last term in ig@+hand side Eq. (1.17) can be

omitted and the induction laws become completelgragtrical.

"dl’ :—jj—?d s—§[éx\7]d ",

{E
fHa T —jd D, S+{[DxV]d " -
ot '
E'=E+[VxB] ,
H'=F -V xD] . (120
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Earlier, Egs. (1.20) were only obtainable from tlwevariant Lorentz

transformations, i.e. in the framework of speciadry of relativity (STR). Thus,
\%

the STR results accurate to theE~terms can be derived from the induction laws

2
through the Galilean transformations. The STR tesatcurate to thecy terms

can be obtained through transformation of Eq (1.1A8) first, however, we shall
introduce another vector potential which is notduseclassical electrodynamics.

Let us assume for vortex fields [5] that
D=rot A, . 11)

WherefdD is the electric vector potential. It then follolwsm Eq. (1.19) that

L OA o L
Hi=— 1 *IVHA —gradlV A (1.22)
or
L OA _
H :7—[\/ xrot A,] (1.23)
or
L, dA L
H ZW—grad[\/AD] : (1.24)

These equations present the law of magnetoelaottiection written in terms of
the electric vector potential.
To illustrate the importance of the introductioh the electric vector

potential, we come back to an infinitely long saleh The situation is much the

same, and the only change is that the vecBe replaced with the vectoB.

Such situation is quite realistic: it occurs whika space between the flat capacitor
10
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plates is filled with high electric inductivitiek this case the displacement flux is

almost entirely inside the dielectric. The attemjat calculate the magnetic field
outside the space occupied by the dielectric (WHEIEO) runs into the same

problem that existed for the calculation beyond fibkls E of an infinitely long
solenoid. The introduction of the electric vectotgntial permits a correct solution
of this problem. This however brings up the questd priority: what is primary
and what is secondary? The electric vector poteistino doubt primary because
electric vortex fields are excited only where th®r of such potential is non-zero.

As follows from Egs. (1.20), if the reference gyst move relative to each
other, the fieldsE and H are mutually connected, i.e. the movement in ibleld

H induces the field€ and vice versa. But new consequences appear, wiach
not considered in classical electrodynamics. Hosstilation, let us analyze two
parallel conducting plates with the electric field in between. In this case the
surface charg@s per unit area of each plateds. If the other reference system is
made to move parallel to the plates in the figldt the velocity4V, this motion
will generate an additional fieldH = AVEE. If a third reference system starts to
move at the velocitylV, within the above moving system, this motion ie freld
AH will generatedE = ue/NV?E, which is another contribution to the field The

field E' thus becomes stronger in the moving system thaniit the stationary

one. It is reasonable to suppose that the surfagege at the plates of the initial

system has increased pig’AV *E as well.

This technique of field calculation was descriled6]. If we put E‘ and

I:IH for the field components parallel to the velodiyection andED and I:ID for

the perpendicular components, the final fieldhatvelocityV can be written as

11
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VxHJshY,
C
H' =H, (1.25)

T 2 A Y
H =H ch———[VxE.|]sh—,
O O C ZV[\/ D] C

0

/ 1
where %, :\/% is the space impedance; ﬁ‘ Is the velocity of light in the

medium under consideration.
The results of these transformations coincide \hilh STR data with the

2
accuracy to thezz— terms. The higher-order corrections do not coacltdshould

be noted that until now experimental tests of thecsl theory of relativity have

not gone beyond the—g2 accuracy.

As an example, let us analyze how Egs. (1.25) aecount for the
phenomenon of phase aberration which was inexpécalm classical
electrodynamics.

Assume that there are plane wave componkegatand Ex, and the primed
system is moving along theaxis at the velocity¥/y. The field components with in

the primed coordinates can be written as

I

Ex =Ex,
E, = sth\ﬁ(,

C (1.27)
H, = Hzch\i.

Cc

The total field £ in the moving system is

12
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e[ (e )| e az

Hence, the Poynting vector no longer follows thection of they-axis. It is in the
xy-plane and tilted about thyeaxis at an angle determined by Egs. (1.27). The ra
between the absolute values of the veckbasmidH is the same in both the systems.

This is just what is known as phase aberratioaasical electrodynamics.

2. Magnetic field problem

As follows from the transformations in Eq. (1.25)wo charges move at the

relative velocity\7, their interaction is determined not only by ths@ute values
of the charges but by the relative motion veloasywell. The new value of the

interaction force is found as [7-9]

99 ch—= .
E = C 12 2.1)
dire 15 (2.

wherer, is the vector connecting the chargésis the component of the velocity

V , normal to the vectof,,.

If opposite-sign charges are engaged in the velatiotion, their attraction

increases. If the charges have the same signs,rémpeilsion enhances. Fyr= 0,
Eq. (2.1) becomes the Coulomb law .

Using Eq. (2.1), a mew value of the potent¥@l) can be introduced at the
point, where the chargg is located, assuming thgt is immobile and onlyg,

executes the relative motion

13



pr)=—-°S 2.2)

We can denote this potential as “scalar-vectortabse its value is dependent not
only on the charge involved but on the value areldhection of its velocity as

well. The potential energy of the charge interact®

Vo

_gngCh c

W= qirer (2.3)

Egs. (2.1), (2.2) and (2.3) apparently accounttigr change in the value of the
moving charges.

Using these equations, it is possible to calculaeforce of the conductor-
current interactions and allow, through superpaosijtfor the interaction forces of
all moving and immobile charges in the conductdve thus obtain all currently
existing laws of electromagneticm.

Let us examine the force, interaction of twspaced conductor@=ig. 1)
assuming that the electron velocities in the cotatacareV,; andV,. The moving
charge values per unit length of the conductorgaamdgs.

In terms of the present-day theory of electrom#gme the forces of the
interaction of the conductors can be found by tvathuds.

One of the conductors (e.g., the lower one) geestitiie magnetic fieldl(r)

in the location of the first conductor. This fietd

9V

H(r) = e 2.4)

14
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g2_ > V2
N '
4,
<
Z
g >
A A !
g > V,

Fig. 1. Schematic view of force interaction betwearrent-carreging conductors

of a two-conductor line in terms of the present-dedel.

The field E' is excited in the coordinate system moving togettith the charges

of the upper conductor:

E :NXEJ:VZ LH(r) (2.5)
l.e. the charges moving in the upper conductor eapee the Lorentz force. This
force per unit length of the conductor is
A A P

F - 2
27T Y 2TECT

(2.6)

Eqg. (2.6) can be obtained in a different way. Assuimat the lower conductor
excites a vector potential in the region of thearpgnductor. The-component of
the vector potential is

gV Inr g dnr

A= el 2TECE

(2.7)

15
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The potential energy per unit length of the uppmrdtictor carrying the curreig
in the field of the vector potenti&l; is

W=LA == (2.8)

Since the force is the derivative of the potengalergy with respect to the
opposite-sign coordinate, it is written as

oW 11,
Cdr  2mechr

(2.9)

Both the approaches show that the interactiorefofdwo conductors is the
result of the interaction of moving charges: sorhéhem excite fields, the others
interact with them. The immobile charges represgntine lattice do not participate
in the interaction in this scheme. But the forcdstlee magnetic interaction
between the conductors act just on the latticessital electrodynamics does mot
explain how the moving charges experiencing thixdocan transfer it to the
lattice.

The above models of iteration are in unsolvableflat, and experts in
classical electrodynamics prefer to pass it ovesilance. The conflict is connected
with estimation of the interaction force of twargkdel-moving charges. Within the
above models such two charges should be attradcigdeled, the inductioB caused
by the moving charge, at the distanceis

- 9V
recy? @1
If another charge), moves at the same velocity in the same direction at the

distancer from the first charge, the inductioh at the locatiorg, produces the

force attractingy; andg..

9.9V’

F=_—~"7
4T e cr?-

(2)11

16
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An immovable observer would expect these chargexperience attraction along
with the Coulomb repulsion. For an observer moviogether with the charges
there is only the Coulomb repulsion and no attoacti Neither classical
electrodynamics not the special theory of relatican solve the problem.

Physically, the introduction of magnetic fieldSleets certain experimental
facts, but so far we can hardly understand whegsetfields come from.

In 1976 it was reported in a serious experimentatlys that a charge
appeared on a short-circuited superconducting smemhen the current in it was
attenuating. The results of [11] suggest that #ilaesof the charge is dependent on
its velocity, which is first of all in contradictiowith the charge conservation law.
The author of this study has also investigated ghiblem [12] (see below). It is
useful to analyze here the interaction of curremtyeng systems in terms of Egs.
(2.1), (2.2) and (2.3) .

We come back again to the interaction of two #tonductors with charges

moving at the velocitie¥; andV, (Fig. 2).

—|—A ; : ; I |
g’ g

< F, F| — f
g1 + g1_

L|— : : : : ]

Fig. 2. Schematic view of force interaction betwearrent-carrying wires

of a two-conductor line. The lattice is chargediipaaly.
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0., @ andg,, g are the immobile and moving charges, respectiyalg, unit
length of the conductors,™ andg,” refer to the positively charged lattice in the
lower and upper conductors, respectively. Before dharges start moving, both
the conductors are assumed to be neutral eletyrica. they contain the same
number of positive and negative charges.

Each conductor has two systems of unlike chargésthe specific densities
0., & andg,’, g . The charges neutralize each other electricillymake the
analysis of the interaction forces more conveniemtfFig. 2 the systems are
separated along the-axis. The negative-sign subsystems (electrons)e hav
velocitiesV, and V,. The force of the interaction between the lowed apper
conductors can be considered as a sum of four dospecified in Fig. 2 (the
direction is shown by arrows). The attraction ferEg andF, are positive, and the
repulsion force$; andF, are negative.

According to Eq. (1.1), the forces between theviddal charge subsystems
(Fig. 2) are

Fo-90
2ITE Y

F,=- 9,9, Chvl -V,

20TEY C
£ oy 90 Vi (2.12)
* omer ¢’
F, =4 90 Vo

2ITEY C

By adding up the four forces and remembering thatgroduct of unlike charges
and the product of like charges correspond to ttraciion and repulsion forces,

respectively, we obtain the total specific force pait length of the conductor

F = % 9 (Ch\i +Ch\é —cl IL1 Vv, —lj (2.13)
2ITEY C C C ' '

18
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whereg; andg, are the absolute values of charges. The signseofarces appear

in the bracketed expression. Assumifigk ¢, we use only the two first terms in the

2

.V .V 1V _
expreSS|onChE, ie. Chz E&+§C—2. Eq. (2.13) gives

= _glvlgzvz_ I, 1,
oomeckr 2meckh’

(2.14)

whereg; andg, are the absolute values of specific charges \andv/, are taken
with their signs.

It is seen that Egs. (2.6), (2.9) and (2.13) adm¢hough they were obtained
by different methods.

According to Feynman (see the introduction), tme.fe of the circuit can be
interpreted using two absolutely different laws.eTaradox has however been
clarified. The force of the enteraction betweendugent-carrying systems can be
obtained even by three absolutely different meth&ds in the third method, the
motion “magnetic field” is no longer necessary aiin@ lattice can directly
participate in the formation of the interactiondes. This was impossible with the
previous two techniques.

In practice the third method however runs int@aogis obstacle. Assuming
g, = 0 andV, = 0, i.e. the interaction, for example, betweea lbwer current-
carrying system and the immobile chaggethe interaction force is

__1. Ggl gz\/12

25 2 omeckh (2.14)

This means that the current in the conductor is etettrically neutral, and the

electric field

E =75 (2.15)

Is excited around the conductor, which is equivialenan extra specific static
charge on the conductor
19
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_ W
g=-0 ? @)1
Before [11], there was no evidence for generawbrelectric fields by d.c.
currents.

When Faraday and Maxwell formulated the basic lafrnsectrodynamics, it
was impossible to confirm Eq. (2.16) experimentéicause the current densities
in ordinary conductors are too small to detectdffect. The assumption that the
charge is independent of its velocity and the sgipset introduction of a magnetic
field were merely voluntaristic acts.

In superconductors the current densities permibu#d the correction for

2
the charge™ gc—lz experimentally. Initially, [11] was taken as evide for the

dependence of the value of the charge on its wglothe author of this study has
also investigated this problem [12], but, unlik&][lin his experiments current was
introduced into a superconducting coil by an intkéchon-contact method. Even
in this case a charge appeared on the coil [12¢ @xperimental objects were
superconducting composite Nb — Ti wires coated wdpper, and it is not cleat
what mechanism is responsible for the charge orcdlie It may be brought by
mechanical deformation which causes a displacemtlhe Fermi level in the
copper. Experiments on non-coated superconductinggswmay be more
informative. Anyhow, the subject has not been egtexiand further experimental
findings are of paramount importance to fundamephgisics. Using this model,
we should remember that there is no reliable erpantal data on static electric
fields around the conductor. According to Eq. (2.1%uch fields are excited
because the value of the charge is dependent eeldsity. Is there any physical
mechanism which could maintain the interacting ewmidcarrying systems
electrically neutral within this model? Such medsan does exist. To explain it,
let us consider the current-carrying circuit in.F3g This is a superconducting thin
film whose thickness is smaller than the field peat®on depth in the
20



21

superconductor. The current is therefore distridutamiformly over the film
thickness. Assume that the bridge connecting trde yiarts of the film is much
narrower than the rest of the current-carrying filhpersistent current is excited in
such a circuit, the current density and hence thieent carrier velocity; in the
bridge will much exceed the velocy in the wide parts of the film.

Such situation is possible if the current carregmes accelerated in the palt
and slowed down in the pad,. But acceleration and slowing-down of charges is
possible only in electric fields. N, > V,, the potential difference between the
partsd; andd, which causes acceleration or slowing-down is datezd as

_mV;
U=—s . 2)1

This potential difference can appear only due ¢darge density gradient in the
partsd; andd,, i.e. the density of charge carriers decreasdsadteleration and
increases with slowing down. The relatigy™ n, should be fulfilled, where, and

n, are the current-carrier densities in the wide @awow bridge parts of the film,

d1 d2
% Vi
’ —»

Vo

-«

Fig. 3. Schematic view of a current-carryimgut based on a superconducting
film.
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respectively. It is clear that some energy is ndemeaccelerate charges which
have masses. Let us find out where this energy sdrom.

On acceleration the electrostatic energy availabtee electrostatic field of
the current carriers converts into kinetic energge difference in electrostatic
energy between two identical volumes having diffierelectron densities can be

written as

2

_ e
AW_An8775 r (2.18)
wheredn = ny — ny, e is the electron chargejs the electron radius.
Since
e
grrer -me (2.19)
wherem s the electron mass, Eq. (1.46) can be rewrdten
AW=Amc* @)2
This energy is used to accelerate the currenterarri
Hence,
2
n, MV,
AW = > (2)21
and
_ 1V
n=n3ts @2

The electron density in a moving flow is

1 V7
n :n{l_a %J . (2.23)
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We see that the change in the current-carrier terssguite small, but this
change is just responsible for the existence of ltmgitudinal electric field
accelerating or slowing down the charges in thesghrandd,. Let us call such
fields “configuration fields” as they are connectgih a certain configuration of
the conductor. These fields are available in norocmmductors too, but they are
much smaller than the fields related to the Ohmsistance.

We can expect that a voltmeter connected to tloeiti like is shown in Fig.
3, would be capable of registering the configuratipotential difference in
accordance with Eq. (2.17). If we used an orditiginyid and a manometer instead
of a voltameter, according to the Bernoulli equatiihe manometer could register
the pressure difference. For lead films, the camgon potential difference is
~10" B, though it is not observablt experimentally. Wen explain this before
hand. As the velocities of the current carriersease and their densities decrease,
the electric fields njrmal to their motion enhancéhese two precesses
counterbalance each other. As a result, the nocoraponent of the electric field

has a zero balue in all parts of the film. In tewhthe considered, this looks like

F=-90
2rer

- - 2 2 _
F = (1—% éij cél-i Yz jchvl CV2

2TET c? 2 c? ’
_ 9,9, 1.V vV,
F,= =192 |1~ h—L,
’ 2n£r( 2 czjc c (2.24)
+ N 2
Fo=9i% g 1ph |V
2;TEY 2 C C

The bracketed expressions in Egs. (2.24) allowwtfermotion-related change in the
density of the charges™ andg, .
23



24

After expanding ch , multiplying out and allowing only for the V2 c?
terms, EQgs. (2.24) give

Fl D_ gl gZ ’
2ITEY

Fz D_ gl 92 (1_V1\2/2j y
2ITEY C

F,O%9% (2.25)

2;TEY

F4 D gl gZ .
2lTETY
By adding ug~,, F,, F; andF,, we obtain the total force of the interaction

A A7 PR P

b 2 2 .
2EC T 2TECT

(2.26)

Again, we have a relation coinciding with Egs. 6j2and (2.9). However, in this
case the current-carrying conductors are neutegtrtally. Indeed, if we analyze
the force interaction. For example, between theelosonductor and the upper
immobile chargey, (putting g,'=0 andV,=0), the total interaction force will be
zero, i.e. the conductor with flowing current isatically neutral.

If we consider the interaction of two parallel —\imgy electron flows (taking
0. =g, =0 andV;=V,) , according to Eq. (2.12), the total force is

. %G

o 2mer (2)2

It is seen that two electron flows moving at themsavelocity in the absence
of a lattice experience only the Coulomb repulsaod no attraction included into

the magnetic field concepit.
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Physically, in this model the force interaction thfe current-carrying
systems is not connected with any now field. Theeraction is due to the
enhancement of the electric fields normal to timedfion of the charge motion.

The phenomenological concept of the magnetic fe#l@dorrect only when
the charges of the current carriers are compensaittd the charges of the
immobile lattice, the current carriers excite a metg field. The magnetic field
concept is not correct for freely moving chargeswlhere are no compensating
charges of the lattice. In this case a moving dangarticle or a flow of charged
particles does not excite a magnetic field. Thube tconcept of the
phenomenological magnetic field is true but for ébeve case.

It is easy to show that using the scalar-vectoemil, we can obtain all the
presently existing laws of magnetism. Besides, abproach proposed permits a
solution of the problem of the interaction betwdei parallel-moving charges

which could not be solved in terms of the magnkid concept.

2. Problem of electromagnetic radiation

Whatever occurs in electrodynamic, it is connectatth the interaction of
moving and immobile charges. The introduction oé tcalar-vector potential
answers this question. The potential is based erlaWws of electromagnetic and
magnetoelectric induction. The Maxwell equationsadibing the wave processes
in material media also follow from these laws. TWaxwell equations suggest that
the velocity of field propagation is finite and edjto the velocity of light.

The problem of electromagnetic radiation can dgesbof the elementary
level using the scalar-vector potential and théedmess of propagation of electric
processes.

For this purpose, the retarded scalar-vector piaient
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o, ch'2
C

#r'.t)= (3.1)

direr’’

I

, r
is introduced, wherd/, is the velocity of the chargg at the moment =t —;,

normal to the vector', r' is the distance between the chaggend point 2 (Fig.

4), where the field is sought for at the momé&nThe field at point 2 can be found

I

_ r
from the relationE =—grad ¢ . Assume that at the momehrz the charge), is

at the origin of the coordinates and its velocity(i(t). The fieldE, at point 2 is

_oY)__ e o VO
g ay direr’ dy ¢

(3.2)

Differentiation is performed assuming to be a constant magnitude. From Eq.
(3.2) we obtain

J V. (t ’ IV (t !
& B D()Shvm(t):_ 5 Dl B D()Shvu(t)

Ey__4ﬂ£cr’ oy C 4irecr’ V() Jt "o - 83
. . . Vi) .
Using only the first term of the expansion ¢fh we can obtain from Eq.
(3.3)

X X
V — —

E (xt)=- © ay(t Cj‘—eay(t Cj (3.4)

g ArE, X Ot ATE,C X '
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P
(2)

Fig. 4. Formation of the retarded scalar-vectueptial.

X
In this equation oey(t —E) Is the being late acceleration of charge. Thisaggn

Is wave equation and defines both the amplitudepdrade responses of the wave of
the electric field, radiated by the moving charge.
If we as the direction of emission take the vecoidrich composes with the axis of

y the angle ofr, then Eg. (3.4) will be written down:

X .
eay(t—cjsma

3.5
ATE,C* X (5:5)

E (xta)=-

Eg. (8.5) determines the radiation pattern. Sthege is a axial symmetry relative

to the axisy, it is possible to calculate the complete radrapattern of the emitter

examined. This diagram corresponds to the radiguattern of dipole emission.

Consequently
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there is the being late vector potential, the E35) can be rewritten

eay(t—é)sina 1 aAH(t—)C(j GAH[t—zj
E (xta)=- =- =-
(1) 47E,C* X g, ot ot

IS again obtained complete agreement with the eqpsabf the being late vector
potential, but vector potential is introduced heot¢ by phenomenological method,
but with the use of a concept of the being latdascaector potential. Let us note
one important circumstance. In the Maxwell equateectric fields it appears
vortex. In this case the electric fields bear geatinature.

Let us demonstrate the still one possibility, iahgives Eg. (3.5). It is known that
in the electrodynamics there is this concept, as dlectric dipole and dipole

emission. Two charges with the opposite signs tlaeelipole moment:

p=ed, (3.6)
Therefore current can be expressed through thgadime of dipole moment on the
time of
ev= e(‘ﬁ _9p
ot t
Consequently
__10p
V==——,
e dt
and
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5= ov _ } 0°p
ot eot?
Substituting this equation into Eg. (2.5), we abtae law of the dipole emission
r
0°p(t—-—
Eo_ 1 p( C) |

3.7
Airec? ot? 5:7)

This is also known equation [1].

In the process of fluctuating the electripale are created the electric fields of
two forms. In addition to this, around the beingied dipole are formed the electric
fields of static dipole, which change in the timeconnection with the fact that the
distance between the charges it depends on tinexgiof these pour on and it is
expended on the emission. However, the summarnewaidield around this dipole
at any moment of time defines as superposition pwurstatic dipole pour on
emissions.

Laws (3.4), (3.5), (3.7) are the laws of direct action, in which already there is
neither magnetic pour on nor vector potentials.these structures, by which there
were the magnetic field and magnetic vector paadrdre already taken and they no
longer were necessary to us.

Using Eg. (3.5) it is possible to obtain taes of reflection and scattering both
for the single charges and, for any quantity ofrthen this case each moving charge
emits the electric fields, determined by Eg. (3'H)e superposition of electrical

pour on all charges in the distant zone and ilgstecal wave.

If on the charge acts the electric field, = E,sinat, then its acceleration

takes the form of
e ., .
a=-— E,Sinat.

Consequently
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e’ sina . X. K . X
E(xtqg)=——— sinw(t—-—)=— sinw (t—— |, 3.8
)= B SN (t=5)= S By siwo (=03, 39
. e’ sing . o
the coefficient K =———— can be named the coefficient of the re-emission of
47E,LoM

single charge in the assigned direction.

The current wave of the displacement accompaneewve of electric field:

2 _X
. _ _OE, esincra Vy(t Cj
Jy(X’t) _EO 6’[ __4nC2X atZ '

If charge accomplishes its motion under the actioin the electric field

E' = E;sinwit, then bias current in the distant zone will betteri down as

2

: __ Ew _ X
J,(x,t) = —4m2mXEyocosa)(t cj' (3.9)

The sum wave, which presents the propagation etretal pour on Eg. (3.8) and
bias currents Eg. (3.9) can be named electrocuwane.

It is possible to introduce also magnetic wavesyasng that

j= goa—ItE =rotH , (3.10)

divH =0

introduced thus magnetic field is vortex. Compartbg (3.9) and Eg. (3.10) we

obtain:
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oH_(x,t) _ €w sina -

cosa| t—2
0x amc’mx ° c)

Integrating this relationship on the coordinate, fimel the value of the magnetic
field

e sina _, . X

Thus, Egs. (3.8), (3.9) and (3.11) can be narhedaws of electrical induction,
since. they give the direct coupling between tleetek fields, applied to the charge,
and by fields and by currents induced by this chargits environment. Here
charge plays the role of the transformer, whichuess this reemission. The
magnetic field, which can be calculated with thd af Eg. (3.11), is directed
normally both toward the electric field and towd#ne direction of propagation, and

their relation at each point of the space is eqtial

H,(x,t) &c \ &

In this equation oZ is wave drag of free space.

Wave drag determines the active powdosdes on the single area, located

normal to the direction of propagation of the wave:

_lo
P=3ZE,,
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Therefore electrocurrent wave, crossing this anemsfers through it the power,
determined by the data by relationship. This isated in accordance with by the
Poynting theorem about the power flux of electronsgy wave. Therefore, for
finding all parameters, which characterize wavecpss, it is sufficient examination
only of electrocurrent wave and knowledge of theevdrag of space. In this case it
Is in no way compulsory to introduce this conceptraagnetic field” and its vector
potential, although there is nothing illegal insthihe fields, obtained thus, satisfy

Helmholtz's theorem. This theorem says, that anglsivalued and continuous

vector field F, which turns into zero at infinity, can be reprase uniquely as the

sum of the gradient of a certain scalar functign and rotor of a certain vector

function C, whose divergence is equal to zero:
F = gradg + rotC,

divC =0.

Consequently, must exist clear separation poundhd gradient and the vortex. It
iIs evident that in the expressions, obtained fays¢hinduced pour on, this
separation is located. Electric fields bear gradmature, and magnetic - vortex.
Thus, the construction of electrodynamics shouwdehbeen begun from the
acknowledgement of the dependence of scalar pateotti the speed. But nature
very deeply hides its secrets, and in order to ctantbkis simple conclusion, it was
necessary to pass way by length almost into twduces. The grit, which so
harmoniously were erected around the magnet polesstraight manner indicated
the presence of some power pour on potential naluteto this they did not turn
attention. Therefore it turned out that all exardimaly tip of the iceberg, whose

substantial part remained invisible of almost twadired years.
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Taking into account entire aforesaid gheuld assume that at the basis of
the overwhelming majority of static and dynamic piv@ena at the electrodynamics
only Eg. (3.1), which assumes the dependence o$dhkar potential of charge on
the speed, lies. From this formula it follows andtis interaction of charges, and
laws of power interaction in the case of their nalitmotion, and emission laws and
scattering. This approach made it possible to @xptam the positions of classical
electrodynamics such phenomena as phase aberaatioine transverse the Doppler
effect, which within the framework the classicaatodynamics of explanation did
not find.

Let us point out that one of the fundatakequations of induction Eg. (3.4)
could be obtained directly from the Ampere law]l $tng before appeared the
Maksvell equation. The Ampere law, expressed in \thetor form, determines
magnetic field

=1 cldlxr

H=—[—
4T r

In this equationl - current, which flows through the element

dl , r - vector, directed frondll to the point ofX, y, z.

It is possible to show that

[C";] — grad(ljx dl = rot[ﬂ] 1 rot dl .
r r r r

But the rotor ofdl is equal to zero therefore

H :rotjl{%]:rot A,.

Consequently

A, :Il(%j- (3.12)
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The remarkable property of this expression is that the vector potential depends

1
from the distance to the observation pointFasSpecifically, this property makes it

possible to obtain emission laws.

Since ofl =gv, where g the quantity of charges, which falls per unit of

the length of conductor, from (3.12) we obtain:

I gv dl
For the single charge @ this equation takes the form:
=)
A=
In connection with the fact that electric fielddstermined from the equation
- 0A
E=—-u——,
Mot
for this case obtain
ov
q g5 I gad
E=-pu[—9%L jg . (3.13)

In this equatioma is acceleration of charge.

This equation appears as follows for the singlegda

_pea

E= 3.14
4 ( )
In Eg. (3.13) and Eg. (3.14) it is necessary dascder that the potentials are

r
extended with the final speed they be late to #eopd s Taking into account the

fact that for the vacuuny =

0

r —
ga(t-) dl ga(t-" o d
dmr j 477£c2

E:—yj (3.15)
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T
ea(t—E)

E=—— C
4rE,CI

(3.16)

Of Eg. (3.15) and Eg. (3.16) represent waveagguns and are the solutions. Of
the Maksvell equation, but in this case they ar@iabd directly from the Ampere
law. To there remains only present the questiory, @lactrodynamics in its time is

not banal by this method?

4. Isthere any dispersion of electric and magnetic inductivitiesin

material media?

It is noted in the introduction that dispersion @éctric and magnetic
inductivities of material media is a commonly gueel idea. The idea is however
not correct.

To explain this statement and to gain a better rstaleding of the physical
essence of the problem, we start with a simple ekarmmhowing how electric
lumped-parameter circuits can be described. Asamesee below, this example is
directly concerned with the problem of our interastl will give us a better insight
into the physical picture of the electrodynamiogasses in material media.

In a parallel resonance circuit including a camadcitand an inductance coill

L, the applied voltagdl and the total currert through the circuit are related as
du 1
'Z_'CHL_CFJTJU dt (4.1)

du

1
where lc :CE is the current through the capacitd)LrFE_fU dt is the current

through the inductance coil. For the harmonic \getd = Ug sin at
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B 1
IZ —[WC_E}JO coswt _ (4.2)

The term in brackets is the total susceptamcef the circuit, which consists of the

capacitiveg, and inductivegp components

e o L
0,=0.+0 =w E . (4.3)

Eq. (4.2) can be re-written as
|z :w{l—gjuo COS Cdt’ (4.4)

1
where & :E: Is the resonance frequency of a parallel circuit.

From the mathematical (i.e. other than physidaijdpoint, we may assume

a circuit that has only a capacitor and no induzeacoil. Its frequency — dependent

c@=d1-4
C(CU)-C( wJ. (4.5)

Another approach is possible, which is correct too.

capacitance is

Eq. (4.2) can be re-written as

(a’z _
23
IZ :_TUO cos wt _ (4.6)

In this case the circuit is assumed to include aaty inductance coil and no

capacitor. Its frequency — dependent inductance is
L

@ . (4.7)
23

Using the notion Egs. (4.5) and (4.7), we can write
36

L* ()=



37

|, =wC* (WU, cos wt, (4.8)
or

|, =- L U t

) o COSWL (4.9)

Egs (4.8) and (4.9) are equivalent and each of thpgovides a complete

mathematical description of the circuit. From theysical point of view,C* (&)

and L*(&) do not represent capacitance and inductance thtugh have the

corresponding dimensions. Their physical sense felbws:

C*(w)=% , (410

i.e. C*(«) is the total susceptance of this circuit dividgdrequency:

1
L* (@) =——
(@) w0, (4.11)

and L*(«) is the inverse value of the product of the totaceptance and the

frequency.
AmountC*(«) is constricted mathematically so that it includeésand L

simultaneously. The same is true fof(a).

We shall not consider here any other cases, &ges or more complex
circuits. It is however important to note that appd the above method, any circuit
consisting of the reactive componefiisand L can be described either through
frequency — dependent inductance or frequency erdgnt capacitance.

But this is only a mathematical description of re@tuits with constant —
value reactive elements.

It is well known that the energy stored in the @aoa and inductance coll
can be found as

W, :%CUZ , @)1
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W, =%L 1% 13)
But what can be done if we ha¥e* () and L*(«)? There is no way of

substituting them into Eqgs. (4.12) and (4.13) beeahey can be both positive and

negative. It can be shown readily that the enetgred in the circuit analyzed is

1doy .,
V\é—E%U , (4.14)
or
1 dec* @)
= do , (4.15)
or
o)
1 _\wl* (@) |
V\éZED o us (4.16)

Having written Eqs. (4.14), (4.15) or (4.16) in gexr detail, we arrive at the same

result:

1 1
\/\é:ECU2+§L|2, (4.17)

whereU is the voltage at the capacitor dnd the current through the inductance
coil. Below we consider the physical meaning jog thagnitudes(«) and ()

for material media.

2.1 Plasma media

A superconductor is a perfect plasma medium inclvigharge carriers

(electrons) can move without friction. In this célse equation of motion is
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m——=eE (4.18)

wherem ande are the electron mass and charge, respecti\élis the electric

field strength,\7 Is the velocity. Taking into account the curreansity

-

j=neV, (4.19)

we can obtain from Eq. (4.18)

2

. he ..
JL:FJ‘Edt . (4.20)
In Egs. (4.19) and (4.20)is the specific charge density. Introducing thearo
. m
L= 23)
we can write
e 1 —
JﬁfIEdt. (4.22)
k

HereL, is the kinetic inductivity of the medium. Its etaace is based on the fact

that a charge carrier has a mass and hence itgsessiertia properties.

For harmonic fields we havE=|§O sin wt and Eq. (4.22) becomes

N :—EEOCOSN . (4.23)

Egs. (4.22) and (4.23) show thatis the current through the inductance coil.

In this case the Maxwell equations take the foifgaform

(E JH
rot E=—-4,—,
Ho at
. JE 1 .- (4.24)
rotH:C+JL:£o—+L—JEdt,
k
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where &g and /4 are the electric and magnetic inductivities inwau, j. and j,
are the displacement and conduction currents, casply. As was shown above,
j_ is the inductive current.

Eq. (4.24) gives

0"2H
rot rot H + 14g, st = 0 (4.25)
For time-independent fields, Eq. (4.25) transformis the London equation
Ho 5 _
rot rot H +22 L H=0 1 (4.26)

Where/ﬁ :; is the London depth of penetration.
0

As Eq. (4.24) shows, the inductivities of plasrnatll electric and magnetic)
are frequency — independent and equal to the qmmnelng parameters for
vacuum. Besides, such plasma has another fundammeaterial characteristic —
kinetic inductivity.

Egs. (4.24) hold for both constant and variab&dg. For harmonic fields

E=E, sin wt, Eq.(4.24) gives

- 1 )=
rot H —(eow—@)Eo coswt (4.27)

Taking the bracketed value as the specific susoeptg, of plasma, we can write

rot H =0, E,coswt (4.28)
where
o :gw—i:a‘ —% =wer (W)
X ~ %o wl, 0 o : (4.29)
* - wf’ 2 _ 1 .
and €* (@) =&| 1=—=| where®, = is the plasma frequency.
w &L,
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Now Eg. (4.28) can be re-written as

SN\@N

rot H ws( ]Eocoswt , (4.30)

or
rot H =w &* (w)E, cos wt (4.31)

The &(w) —parameter is conventionally called the frequetegendent electric
inductivity of plasma. In reality however this magde includes simultaneously
the electric inductivity of vacuum aid the kinetructivity of plasma. It can be

found as
g
X (W) =—" (4)32
w

It is evident that there is another way of writitig

Oy =&W— -1 wz—l -1
0wl wh | wl, *’ (4.33)
where
* = Lk = 1
L@ N e (4.34)
o

L*( @) written this way includes boty andL,.

Egs. (4.29) and (4.33) are equivalent, and itai® g0 say that plasma is
characterized by the frequency-dependent kinetladgtancel*( &) rather than by
the frequency-dependent electric inductiaty ).

Eq. (4.27) can be re-written using the paramettrs) andL,*( «)

rot H=we* (WE,coswt (4.35)
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or

- 1 -
rot H ——Eocos wt 4.36
wl * (@) ' (4.36)

Egs. (4.35) and (4.36) are equivalent.
Thus, the parameteg*(«) is not an electric inductivity though it has its

dimensions. The same can be said ab@t).

We can see readily that

£*(w) =%X , (4.37)

L (@)=—r (4.38)

These relations describe the physical meaningj(af) andL*( «).
Of course, the parametegf o) andL,*(«) are hardly usable for calculating

energy by the following equations

1
=€ E, (4.39)
and
1, .
W =3 Lo, (4.40)
For this purpose the Eq. (4.15)-type fotmula wasssel in [7]:
1 d[a E* (a)]
w=3 1o E (4.41)

Using Eq. (4.41), we can obtain
1

1 1 .
oEo 2 sz E§:§50E5+§Lk Jg. (4.42)

The same result is obtainable from
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4 1
ol lOLr @],

=3 oy =3 (4.43)

As in the case of a parallel circuit, either ofe tharameters*(«) and L *( @),

similarly to C*(«) and L*(«), characterize completely the electrodynamic

properties of plasma. The case

(@) =0
L) = o (4)44

corresponds to the resonance of current.

It is shown below that under certain conditionis tesonance can be
transverse with respect to the direction of elentignetic waves.

It is known that the Langmuir resonance is longitatl No other resonances
have ever been detected in nonmagnetized plasmaertReless, transverse
resonance is also possible in such plasma, arficegaency coincides with that of
the Langmuir resonance. To understand the origith@ftransverse resonance, let
us consider a long line consisting of two perfeciyducting planes (see Fig. 5).
First, we examine this line in vacuum.

If a d.c. voltageld) source is connected to an open line the enenygdin

its electric field is

1 1
W ZEEOEZa b ZZECEZU 2 (4.45)

U
where E =g Is the electric field strength in the line, and

Cs =¢,

bz
5 (4.46)
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b
is the total line capacitanc&e :fog Is the linear capacitance agglis electric

inductivities of the medium (plasma) in SI unitgni.
The specific potential energy of the electric fiedd

1
We =26 = (4.47)

AN

Fig. 5. Two-conductor line consisting of two petfg conducting planes.

If the line is short-circuited at the distaredeom its start and connected to a d.c.

current () source, the energy stored in the magnetic fielh@line is

| 2

1 1
W, ZE/'IO H*ab ZZE L5 (4.48)

Since H :_b’ we can write

a’z

L = Ho— (4.49)
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a
whereLys is the total inductance of the ling =ﬂo—b Is linear inductance ang is

the inductivity of the medium (vacuum) in SI (H/m).

The specific energy of the magnetic field is

1
W, =2 Ho H* (4.50)

To make the results obtained more illustrative ceéorward, the method of
equivalent circuits will be used along with mathéioa description. It is seen that
Czs and Ly increase with growingz. The line segmentz can therefore be
regarded as an equivalent circuit (Fig).6

If plasma in which charge carriers can move fre&iofion is placed within
the open line and then the curremt is passed through it, the charge carriers
moving at a certain velocity start storing kinegicergy. Since the current density
is

o
J=p5=nev, (4.51)

the total kinetic energy of all moving charges is

1_m L, 1 _m a
=—3F—abzj*==0——17?
We 2 ne : 2 nebz - (4.52)
On the other hand,
_1
W =5 Le1* (4.53)
whereL,s is the total kinetic inductance of the line. Hence
m _a
= [}—
L by - (4.54)
Thus, the magnitude
. m
L = N (4.55)
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corresponding kinetic inductivity of the medium.

Earlier, we introduced this magnitude by anothey (gs&e Eq. (4.21)).
Eq. (4.55) corresponds to case of uniformly disiteiol d.c. current.

As we can see from Eq. (4.54),s, unlike Czs> andLs , decreases when
grows. This is clear physically because the nunobg@arallel-connected inductive
elements increases with growiry The equivalent circuit of the line with
nondissipative plasma is shown in Fig. &he line itself is equivalent to a parallel

lumped circuit:

andL=——. (4.56)

It is however obvious from calculation that theom@nce frequency is absolutely

independent of whatever dimension. Indeed,

1 _ 1 _né
 CL gL, &m -

(4.57)

This brings us to a very interesting result: theoreance frequency of the
macroscopic resonator is independent of its stzenaly seem that we are dealing
here with the Langmuir resonance because the dudtadirequency corresponds
exactly to that of the Langmuir resonance. We hawdnow that the Langmuir

resonance characterizes longitudinal waves. Theevmepagating in the phase

velocity in thez-direction is equal to infinity and the wave vec'l:{;nlzZ =0, which

corresponds to the solution of Egs. (4.24) foma lof pre-assigned configuration

(Fig. 5). Egs. (4.25) give a well-known result. Maave number is

[, W
k; :—2£1‘jJ . (4.58)

C
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o agz
F—N YN
N — bdz
a
&
o a%z
g /YY)
bdz
_8 . a
0 -y <k bdz
o
adz
Ho )
g YN .
mm . Ddz a _bdz | e
B _— 0y Rl w0\ L
&

Fig. 6. a. Equivalent circuit of the two-conductor line segty

0. Equivalent circuit of the two-conductor line segrh containing
nondissipative plasma,

B. Equivalent circuit of the two-conductor line segrh containing

dissipative plasma.
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The group and phase velocities are

2 o, @
Vg =C 1‘} , (4.59)
2 c’
Vi=__~
F 1_50;2) , (4.60)
i

1/2

whereC = is the velocity of light in vacuum.

Ho &g

For the plasma under consideration, the phase iteloof the
electromagnetic wave is equal to infinity. Hende tistribution of the fields and
currents over the line is uniform at each instdnime and independent of tlze
coordinate. This implies that, on the one hand,nkdectance., > has no effect on
the electrodynamic processes in the line and, emther hand, any two planes can
be used instead of conducting planes to confinenpdaabove and below.

Egs. (4.58) , (4.59) and (4.60) indicate that weehaansverse resonance
with an infinite Q-factor. The fact of transverse resonance, i.demint from the
Langmuir resonance, is most obvious when @factor is not equal to infinity.
Thenk,# 0 and the transverse wave is propagating in tieediong the direction
perpendicular to the movement of charge carrierse,Twe started our analysis
with plasma confined within two planes of a longgli but we have thus found that
the presence of such resonance is entirely indeperaf the line size, i.e. this
resonance can exist in an infinite medium. Morepwemfinite plasma transverse
resonance can coexist with the Langmuir resonahegacterizing longitudinal
waves. Since the frequencies of these resonandasid® both of them are
degenerate. Earlier, the possibility of transvees®nance was not considered. To
approach the problem more comprehensively, letnasyae the energy processes

in loss-free plasma.
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The characteristic resistance of plasma determitiiegelation between the

transverse components of electric and magnetidsfiehn be found from

-1/2
2:5:”"‘0:20( _g} ,

7 (4.61)

_ /#o : e . .
whereZ, = 2 IS the characteristic resistance in vacuum.
0

The obtained value d is typical for transverse electromagnetic waves in
waveguides. Whew - @), Z - o, andH, - 0. At w> «), both the electric and
magnetic field components are present in plasma.specific energy of the fields

IS
1 1
W 2550 Egy +§,uo ng . (4.62)

Thus, the energy accumulated in the magnetic fisa@i—?p] times lower than

that in the electric field. This traditional elemtiynamic analysis is however not
complete because it disregards one more energyaunp— the kinetic energy of
charge carriers. It turns out that in addition he tlectric and magnetic waves
carrying electric and magnetic energy, there is oge wave in plasma — the
kinetic wave carrying the kinetic energy of chaogeriers. The specific energy of

this wave is

1 el . Y
We=Shelo = Lk B —E = ;Eo (4.63)

The total specific energy thus amounts to

V\éHj - EO EOy +— /UO ng + I—k JO . (464)

Hence, to find the total specific energy accumulateunit volume of plasma, it is

not sufficient to allow only for the fields andH.
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At the pointw= w,
Wy =0 (4.65)
We = W,
I.e. there is no magnetic field in the plasma, amel plasma is a macroscopic
electromechanical cavity resonator of frequeagy
At w> w, the wave propagating in plasma carries three tgbenergy —

magnetic, electric and Kkinetic. Such wave can foese be-called
- 1=
magnetoelectrokinetic. The kinetic wave is a curdemsity wave] =L—jE dt,
k

It is shifted byrv2 with respect to the electric wave.

Up to now we have considered a physically unfeasstbse with no losses in
plasma, which corresponds to infinifgfactor of the plasma resonator. If losses
occur, no matter what physical processes causeul, tine Q-factor of the plasma

resonator is a final quantity. For this case thexM&l equations become

tE -iﬂ
rotE=- ,
Fo—r

GE 1. (4.66)
E+80E+L_IEdt'

k

rotH =0,
The termap_efE allows for the loss, and the indek near the active conductivity
emphasizes that we are interested in the fact & lmnd do not care of its
mechanism. Nevertheless, even though we do nototrgnalyze the physical
mechanism of loss, we should be able at least Bsureg; c+.

For this purpose, we choose a line segment ofahgthz, which is much
shorter than the wavelength in dissipative plashis segment is equivalent to a

circuit with the following lumped parameters

b
C=%j§n (4.67)
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, (4.68)

, (4.69)

whereG is the conductance parallel@andL.

The conductancé and theQ-factor of this circuit are related as

1 [c
G-@\E . (4.70)

Taking into account Egs. (4.67) — (4.69), we obfeom Eq. (2.70)

1 [&
o 0

pef :ap L (4.71)

Thus, g, can be found by measuring the bagitactor of the plasma resonator.
Using Egs. (4.71) and (4.66), we obtain

JH

rot E:—,uo—o_,t

1

- - JE - (4.72)
ot H=— iE+‘90—+i'|‘Edt .
QLIL °at L

The equivalent circuit of this line containing dsgive plasma is shown in Fig.

OB.

Lot us consider the solution of Egs. (4.72) atgbmt w= ). Since

—

JE 1

g—+—|Edt=0
0 At LkJ. : (4.73)

We obtain
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rot E= IH
B B (4.74)
rot H :i iE.
b\ L

The solution of these equations is well known. Hére is interface between

vacuum and the medium described by Eqgs. (4.74)stinace impedance of the

Ey _ [Wth
Z=—" = | = (1+i
Htg ZJpef.( ) ' (4.75)
1 |&
where  pes :Q—p,/L—Z-

There is of course some uncertainty in this apgroldecause the surface

medium is

impedance is dependent on the type of the fieldecurrelation (local or non-
local). Although the approach is simplified, theatiative results are quite
adequate. True, a more rigorous solution is passibl

The wave propagating deep inside the medium deesedy the law

4 4
% 1o O . -
€ [e . In this case the phase velocity is
VF :a)apef, (4-76)
0 _ 2 . . o
where Opet =———— is the effective depth of field penetration in fhlasma.
/uoa)po-p.ef

The above relations characterize the wave proceplsma. For good conductors

aef
we usually have "~ >>1 In such a medium the wavelength is
0

Ag=2T0 . (A7
l.e. much shorter than the free-space wavelengttth& on we concentrate on the
casedq>> Ay at the pointw= @), , i.€.Vg L= n>>C.
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We have found that («) is not dielectric inductivity permittivity. Insteait
includes two frequency-independent paramet&randL,. What is the reason for

the physical misunderstanding of the parametér)? This occurs first of all

1 .=
because for the case of plasma rIIIe J Edt. type term is not explicitly present
k

in the second Maxwell equation.

There is however another reason for this seriossaike in the present-day
physics [7] as an example. This study states tmatetis no difference between
dielectrics and conductors at very high frequenc@s this basis the authors
suggest the existence of a polarization vectoimdacting media and this vector

is introduced from the relation

—

P=>er,=ner,, (4.78)

wheren is the charge carrier densit, is the current charge displacement. This

approach is physically erroneous because only balnailges can polarize and
form electric dipoles when the external field owsming the attraction force of the
bound charges accumulates extra electrostatic gmeitpe dipoles. In conductors
the charges are not bound and their displacementdwaot produce any extra
electrostatic energy. This is especially obviouswé employ the induction
technique to induce current (i.e. to displace cégygn a ring conductor. In this
case there is no restoring force to act upon tharges, hence, no electric
polarization is possible. In [7] the polarizatisactor found from Eq. (2.78) is

introduced into the electric induction of condugtmedia

D=¢ E+P, 479

where the vectoP of a metal is obtained from Eq. (4.78), which i®mg.
Since

& .
fm:—mE , (4.80)

53



54

for free carriers, then

P () =——_E
m , (4.81)
for plasma, and
D*(0) =& E+P*(0) =&, 1‘; E (4.82)

Thus, the total accumulated energy is

1 1 1

=—¢ E*+=3—F°
50 2 Lo - (4.83)

However, the second term in the right-hand sideaf(4.83) is the kinetic energy
(in contrast to dielectrics for which this termtie potential energy). Hence, the
electric induction vectoD*( «) does not correspond to the physical definition of

the electric induction vector.

The physical meaning of the introduced veg’[b(w) Is clear from

- g - 1 -
P*(w)=—tE= E
AR (.84

The interpretation of(w) as frequency-dependent inductivity has been hariofu
correct understanding of the real physical pict{ggpecially in the educational
processes). Besides, it has drawn away the resgarditention from some
physical phenomena in plasma, which first of atllunle the transverse plasma
resonance and three energy components of the numigetrokinetic wave
propagating in plasma.

Below, the practical aspects of the results obthiaee analyzed, which
promise new data and refinement of the current siew

Plasma can be used first of all to catste macroscopic single-frequency
cavity for development of a new class of electrekimplasma lasers. Such cavity

can also operate as a band-pass filter.
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At high enoughQ, the magnetic field energy near the transversensesm®e

Is considerably lower than the kinetic energy oé tturrent carriers and the
electrostatic field energy. Besides, under certainditions the phase velocity can
much exceed the velocity of light. Therefore, if want to excite the transverse

plasma resonance, we can put

rot E 0O,

JE
1 ey, —+—jE dt=j., (4.85)
QL ot

where TCT IS the extrinsic current density.

Integrating Eq. (4.84) over time and dividing it &yobtain

. o"E 2E dj
Q VTRT e ot -

Integrating Eqg. (4.86) over the surface normal e tvector E and taking

O :fEd S, we have

, ddD o"chE_i e

af, b + = 4.87
Q, at It & dt (4.87)

wherelct is the extrinsic current.
Eq. (4.87) is the harmonic oscillator equation vwehaght-hand side is typical of
two-level lasers [8]. If there is no excitation soe} we have a “cold”. Laser cavity

in which the oscillation damping follows the expanhal law

®, () =P, (0)e” QP | (4.88)
I.e. the macroscopic electric flo#g(t) oscillates at the frequeney. The

relaxation time can be round as

2Q;
@,

7=

4.89)

55



56

If this cavity is excited by extrinsic currentsetbavity will operate as a band-pass

@
filter with the pass ban@w=—-

2Q, "

Transverse plasma resonance offers another inm@pglication — it can be
used to heat plasma. High-level electric fields,anence, high change-carrier
energies can be obtained in the plasma resonatts @-factor is high, which is
achievable at low concentrations of plasma. Sueitychas the advantage that the
charges attain the highest velocities far from qalhes. Using such charges for
nuclear fusion, we can keep the process far from dbld elements of the
resonator.

Such plasma resonator can be matched easily tedimnunication line.

Indeed, the equivalent resistance of the resomative pointw= «, is

120 [L
R3KB= G b 7 80 ' (490)

The communication lines of sizes and b, should be connected to the cavity

either through a smooth junction or in a stepwisener. Ifb = b, the matching

a |t -39 [l 4ol
h\e bz |s (4.99)
aQ, L _
— =1
az (4.92)

It should be remembered that the choice of thenaso lengthz, must comply

requirement is

with the requirementy<< Aq U op.
Development of devices based on plasma resonatoregjuire coordination

of the resonator and free space. In this caseotleing condition is important:

M _2Q L
e bz e (4.93)
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or

aqQ
S =l (4.94)
bz, | 14

Such plasma resonators can be excited with d.cemtjras is the case with a

monotron microwave oscillator [9]. It is known that microwave diode (the
plasma resonator in our case) with the transit ealngl~5/2t develops negative
resistance and tends to self-excitation. The requant of the transit angle equal to

5/2rtcorrelates with the following d.c. voltage appltedhe resonator:
032" af mc®  03x’ne

U - ’
T are Twldp

(4.95)

whereaq is the distance between the plates in the line.
It is quite probable that this effect is respolesifor the electromagnetic

oscillations in semiconductive lasers.
5. Didlectric media

Applied fields cause polarization of bound chargesdielectrics. The
polarization takes some energy from the field seurend the dielectric
accumulates extra electrostatic energy. The extiedisplacement of the polarized
charges from the equilibrium is dependent on tlkeetat field and the coefficient
of elasticity3, characterizing the elasticity of the charge bofidese parameters
are related as

- Fm+§l7m:%|§, (5.1)
wheref,, is the charge displacement from the equilibrium.

Putting ap for the resonance frequency of the bound chargégaking into

account thaty= /m we obtain from Eq. (5.1)
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L &
T m( -dd) &2
The polarization vector becomes
pe="€p 1 g
m m (f -af) (5.3)
Since
P=¢, (-1 E (5.4)
we obtain
&, *(a))=1—ne2 E 1 :
&M o —af (5.5)

The quantity £, * (@)is commonly called the relative frequency depengabl

electric inductivity. Its absolute value can berfdwas

2

N ne 1
gd (@_80(1_50m|:!(4_)2—a‘g) (56)

Once again, we arrive at the frequency-dependexieéaric permitlivity. Let us

take a closer look at the quanti§y * (@) . As before, we introducé«, =——

ne

1
L &0

and Wy, = and see immediately that the vibrating chargesthef

dielectric have masses and thus possess inerjenies. As a result, their kinetic

inductivity would make itself evident too. Eq. (pd&an be re-written as

& (@) =& 1~

P2
F-af (5.7)
It is appropriate to examine two limiting cases>> ) andw<< w.

If w>> ) ,
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&4 (@=60-—7) | (5.8)

and the dielectric behaves just like plasma. Thsedas prompted the idea that at
high frequencies there is no difference betweerlecliecs and plasma. The idea
served as a basis for introducing the polarizatientor in conductors [7]. The
difference however exists and it is of fundamentaportance. In dielectrics,
because of inertia, the amplitude of charge vibriis very small at high
frequencies and so is the polarization vector. @diarization vector is always zero
in conductors.

Forw<< w

po

o (5.9)

& (@) =&, 1+

a
and the permittivity of the dielectric is independef frequency. It i1+ &% )

times higher than in vacuum. This result is quigarc At w>> «y the inertia
properties are inactive and permittivity approadkesalue in the static field.

The equivalent circuits correspondinghese two cases are shown in Figs.
7a ando. It is seen that in the whole range of frequentiiesequivalent circuit of
the dielectric acts as a series oscillatory cirpaitallel-connected to the capacitor
operating due to the electric inductivitg of vacuum (see Fig.e). The resonance

frequency of this series circuit is obviously ohthle from

(5.10)
Lk 80

1
d.
af
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o adz
b
F—/ Y YN
a —s —b‘;’f bz
o
o acbiz
F— Y YN
5 =, bdz —— (Ung _bdz
a W, a
jo
adz
/@_/\‘Lﬁ\/\bf\
a
Lkd bdz
B = Eo b(ZIZ
—— a)ng _badz
— 0, a
jo

Fig. 7. Equivalent circuit of two-conductor linegseent with a dielectrica -

w>>w,; 0 — w<<w,;B—the whole frequency range.

60



61

Lake in the case of plasmay’ is independent of the line size, i.e. we have a
macroscopic resonator whose frequency is only when there are no bonds

between individual pairs of bound charges.
Like for plasmét, * (@) is specific susceptance of the dielectric divithgd

frequency. However, unlike plasma, this parametemtains three frequency-

independent components;, L, and the static permittivity of the dielectric

o’

pa . .
507. In the dielectric, resonance occurs wierd (&) — — .
0

Three waves-magnetic, electric and kinetic-propagait too. Each of them
carries its own type of energy. It not is not pesbéatic to calculate them but we

omit this here to save room.
6. Magnetic media

The resonance phenomena in plasma anéctties are characterized by
repeated electrostatic-kinetic and kinetic-elec¢atns transformations of the charge
motion energy during oscillations. This can be dbsd as an electrokinetic
process, and devices based on it (lasers, madaerss,fetc.) can be classified as
electrokinetic units.

However, another type of resonance is also possidenely, magnetic
resonance. Within the current concepts of frequelependent permeability, it is
easy to show that such dependence is related taatiagesonance. For example,
let us consider ferromagnetic resonance. A femitggnetized by applying a
stationary field H, parallel to thez-axis will act as an anisotropic magnet in
relation to the variable external field. The compfpermeability of this medium

has the form of a tensor [10]:
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h*@ —ia 0
p=lia  *@ O
0 0 H

where

QY M, 3 wy M,

(W) =l - 2
) /Jo(af_Q) ! /uo(a)2 —Q)

Q=1y|Ho,
Being the natural professional frequency, and
Mo = Ho(M—1)Ho
Is the medium magnetization.

M =1

(6.2)

Taking into account Egs. (6.1) and (6.2) féf * () , we can write

Q*(u-1)

/'IT*(@:]'_ (L)Z_QZ

(6.3)

Assuming that the electromagnetic wave propagdtesydhex-axis and there are

H, andH, components, the first Maxwell equation becomes

2 JE, JH,
rot E= = —
J X Hoktr at -

Taking into account Eq. (6.3), we obtain

Q%u—n}dﬁy

rot E=y|1-
ﬂ{ W -Q% | dt

Forw>>Q

_Q%u—n}dﬁy

rot E= |1
ﬂ{ & | Jt

AssumengH , = H ,sinwt and taking into account that
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d;:y =~/ [H,dt
Eq. (6.4) gives
rot E = 4 IH, + 1, Qz(y—])jﬁy dt
Jt ’
or
rotE:,uOd;:y +C_1l<jﬁydt _
Foruw<< Q
rot E:,uo,ud 1,
ot
The quantity
1
oD

can be described as kinetic capacitance. Whatsiphtysical meaning? If the
direction of the magnetic moment does not coinaidth that of the external
magnetic field, the vector of the moment startscessional motion at the

frequencyQ about the magnetic field vector. The magnetic munf® has the

potential energyJ,, =-mB. Like in a charged condenseJy,, is the potential
energy because the precessional motion is inestial@even though it is
mechanical) and it stops immediately when the migrield is lifted. In the
magnetic field the processional motion lasts uhgl accumulated potential energy
Is exhausted and the vector of the magnetic motmecdames parallel to the vector
H, .

The equivalent circuit for this case is shown ig. B. Magnetic resonance

occurs at the poinb=Q andp,*(w) — —. It is seen that the resonance frequency
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of the macroscopic magnetic resonator is indepenolethe line size and equals
Q.

Thus, the parameter

Q*(u-1)
o —Q°

Is not a frequency-dependent permeability. Accaydothe equivalent circuit in

My * () =u{1—

Fig. 8, it includegly, 1 andCy

pa(-1) 49
Y Y
,_adz
S
¢_/WY\_<_
—— e bdz
Com1 bdz -y
HoQ%(u-1) a

¢

Puc. 8. Equivalent circuit of two-conductor line lnding a magnet.

It is easy to show that three waves propagateisncidse-electric, magnetic and a
wave carrying potential energy of the precessiomaltion of the magnetic
moments about the vectd;’ro. The systems in which these types of waves am@ use

can also be described as electromagnetopotentiede
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Conclusion

Thus, it has been found that along with the furelaiad parameterse, and
Mo characterizing the electric and magnetic energumacilated and transferred in
the medium, there are two more basic material patensl, and C. They
characterize kinetic and potential energy thatlmmaccumulated and transferred in
material medial, was sometimes used to describe certain physiegrhena, for
example, in superconductors [10, has never been known to exist. These four
fundamental parametegs,, Lo, Ly andC, clarify the physical picture of the wave
and resonance processes in material media in dppeliectromagnetic fields.
Previously, only electromagnetic waves were thoughpropagate and transfer
energy in material media. It is clear now thatd¢bacept was not complete. In fact,
magnetoelectrokinetic, or electromagnetopotentaes travel in material media.
The resonances in these media also have speciarés. Unlike closed planes
with electromagnetic resonance and energy exchdmgeeen electric and
magnetic fields, material media have two typesesbnance — electrokinetic and
magnetopotential. Under the electrokinetic resoasthe energy of the electric
field changes to kinetic energy. In the case of me&gpotential resonance the
potential energy accumulated during the preceskimntion can escape outside at
the precession frequency.

The notions of permittivity and permeability dispen thus become
physically groundless thougbi{w) and p{w) are handy for a mathematical
description of the processes in material mediasWild however remember their
true meaning especially where educational processesvolved.

It is surprising that Eq. (3.29) actyalaccounts for the whole of
electrodynamics beause all current electrodynapriocblems can be solved using
this equation. What is then a magnetic field? Tisismerely a convenient

mathematical procedure which is not necessarilgga correct result (e.g., in the
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case of parallel-moving charges). Now we can gtaeelectrocurrent, rather than
electromagnetic, waves travel in space. Their etedteld and displacement
current vectors are in the same plane and displaget?.

In terms of Eq. (3.29), electrodynamics and optias be reconstructed
completely to become simpler, more intelligible atious.
The main ideas of this approach were describedhenauthor’'s publications [5-
10,13] However, the results reported have neven sed, most likely because
they remain unknown. The objective of this studytherefore to attract more
attention to them.

Any theory is dead unless important practical nssake obtained of its
basis. The use of the previously unknown transvplaema resonance is one of

the most important practical results following fronms study.
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