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Abstract

We consider the extension of the Schwarzschild metric to a counterpart that
can describe an extended spherically symmetric stellar body with acceptable
density distribution, and with a thermal profile. With a length parameter,
apart from the Schwarzschild radius, the proposed metric can fit the values of
density, pressure, and temperature, at the stellar surface, and give a complete
profile down to the core. Such a metric extension seems to describe a central
core with an “energy-producing, explosive core”, as well as an inflationary
“coronal windy layer”, two regions where the mean pressure seems to acquire
negative magnitudes. Our illustrative computations and graphical illustrations
refer to the sun as a reference example. We discuss the Schwarzschild limit of
such metrical model. We also discuss the interior gravitational potential and
its repulsive central core.

1 Introduction

The spherical potential of Newtonian gravitation is usually associated, in Einstein’s
general relativistic theory, with the spherical metric of the line element:[1]

ds2 =
(

1− s

r

)
c2dt2 −

(
1− s

r

)−1
dr2 − r2(dθ2 + sin2 θdφ2) (1)

Here s = 2GM/c2 is the gravitational, or Schwarzschild, radius of a compact spherical
source of mass M . This metric is merely a solution of Einstein equations, in spherical
coordinates (r, θ, φ), and in the absence of energy-momentum sources. The above form
was presented by Schwarzschild in terms of a radial variable R = (r3 + s3)1/3, empha-
sizing the fact that the metric is really well-defined only in the region exterior to the
gravitational radius r > s of the source; our r = s corresponds to Schwarzschild’s r = 0.
We are told[2] that the above form was presented by Hilbert, and that the distance s
should be properly termed the Hilbert radius.

Einstein’s equations in terms of the Ricci tensor Rµ
ν , the Ricci scalar R, and the

energy-momentum tensor Tµ
ν are given by:

Rµ
ν − 1

2
δµ
νR = −8πG

c4
Tµ

ν (2)

The energy density of a gravitational source is given by the time component T0
0 of the

energy-momentum tensor, while other components of the latter give pressure, momen-
tum, and stress quantities associated with the material source.
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It is of great interest to examine the sort of spherical metrics that extend the vacuum
solution for all values of radial distance, without having singularities in the metric,
which would describe some material distribution with a finite total mass, and which
would give the Newtonian potential at large radial distance. For that purpose, we first
consider a spherical line element in the form:

ds2 = A(r)c2dt2 − A−1(r)dr2 − r2(dθ2 + sin2 θdφ2) (3)

We shall examine whether there are acceptable non-singular forms of A(r) that would
lead to physically acceptable components of the energy-momentum-stress tensor. To
compute the components of the latter we first obtain the non-vanishing components of
the Ricci tensor: 

R00 = − 1
2r
A(2A′ + rA′′)

R11 = 1
2r

2A′+rA′′

A

R22 = −1 + A+ rA′

R33 = R22 sin2 θ = (−1 + A+ rA′) sin2 θ

(4)

Here, the prime denotes differentiation with respect to the radial coordinate r. For the
Ricci scalar, we have

R = gµνRµν = − 1

r2
(−2 + 2A+ 4rA′ + r2A′′) (5)

The energy density ρ(r)c2 is given by the T0
0 component, and we get the mass density

ρ = − c2

8πG

1

r2
(−1 + A+ rA′) (6)

We have three pressure parts P1, P2 and P3. These are given respectively by T1
1, T2

2

and T3
3. We obtain

P1 =
c4

8πG

1

r2
(−1 + A+ rA′) (7)

P3 = P2 =
c4

16πG
(2A′ + rA′′) (8)

We define the pressure by the average value P = (P1 + P2 + P3)/3, and obtain

P =
c4

24πG

1

r2
(−1 + A+ 3rA′ + r2A′′) (9)

The dimensionless ratio ω = P/ρc2, we call the thermal parameter, is given by

ω = −1

3

(−1 + A+ 3rA′ + r2A′′)

(−1 + A+ rA′)
(10)

The value of ω is well-known for certain systems. For example, we have ω = 1/3 for
electromagnetic radiation. For a massive spherical object, like a star, we cannot say
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much about the meaning of this ratio in the deep core. However, near the surface of the
star where the density and pressure are low, we can apply the ideal gas equation and
write ω = kT/mc2. Here k is the Boltzmann constant, T is the absolute temperature,
m is the average mass of the atoms constituting the gas (we can assume it is mainly
hydrogen), and c is the speed of light.

In the following paragraphs, we shall consider some form for A(r) which would extend
the Schwarzschild metric and give acceptable expressions for the energy density. How-
ever, we shall see that the corresponding expression for ω cannot be acceptable as a
physical description of a physical object like a star, since the ideal gas picture for large
radial distances would not emerge. Hence we shall return, in the following section, with
different formal extensions of the Schwarzschild metric that would be more acceptable.

Let us first consider a function of the form

A(r) = 1− 2G

c2
M(r)

r
(11)

This replaces the constant mass parameter in the Schwarzschild metric by a spherical
mass distribution M(r). From the expression for the mass density ρ(r) we obtain

ρ =
1

4πr2
M ′(r) (12)

Hence M(r) describes the total mass contained within the radial distance r. The value
of M(r) at the surface of a star would give the total mass. In terms of M(r), the
thermal parameter is given by

ω =
P

ρc2
= −1

3

(
1 +

rM ′′

M ′

)
(13)

We shall consider the following forms for M(r), which goes to zero as r → 0, and give
the total mass M when r →∞, and involve a length scale a:

M(r) = M
rn

an + rn
(14)

where n is a positive integer. The corresponding expression for mass density is

ρ =
nanr−3+n

8πG(an + rn)2
(15)

Notice that this expression is non-singular as r → 0, only for n ≥ 3, and would be
positive for all r. However the thermal parameter ω = P/ρc2 is given by

ω =
n

3

(−an + rn)

(an + rn)
(16)

This shows that the pressure is negative for r < a and positive for r > a. This can be
interpreted as representing a spherical object with an ‘energy-producing or explosive’
core, and normal compressed outer layers, as for a normal star. However, as r → ∞
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the value of ω does not go to zero as the temperature of the outer layers of a gaseous
star would do, but ω → n/3. This cannot describe the thermodynamic profile of a star.

We conclude that the metric which extends the Schwarzschild form by replacing the
quantity (1− s/r) by a convenient function A(r), which reduces to (1− s/r) for large
distances, cannot describe the thermal profile of a star, even if it leads to an acceptable
energy density. In the following section, we shall consider a different approach which
introduces two functions A(r) and B(r) associated with the time and radial parts of
the metric respectively. These two functions will be related by requiring that we must
have an acceptable thermal profile for the outer gaseous layers of a star.

2 Spherical Metric with Thermal Profile

We now consider a metric whose line element takes the form

ds2 = A(r)c2dt2 −B−1(r)dr2 − r2(dθ2 + sin2 θdφ2)

Here A(r) and B(r) are two functions each of which should reduce to the Schwarzschild
form (1 − s/r), with s = 2GM/c2, for large radial distance r � s. Correspondingly,
we compute the components of the Ricci tensor Rµ

ν , the Ricci scalar R = gµνRµν , then
derive the non-vanishing components of the energy-momentum-stress tensor Tµ

ν using
Einstein’s equations. The latter include the energy density ρ, and the three pressure
parts P1, P2, P3 whose average is the pressure P . For the mass density, we obtain

ρ = − c4

8πG

1

r2
(−1 +B + rB′) (17)

where the prime denotes differentiation with respect to the radial distance r. For three
components of pressure, we obtain

P1 =
c4

8πG

1

r2
A(−1 +B) + rA′B

A
(18)

P3 = P2 =
c4

32πG

1

r

(−rB(A′)2 + 2A2B′ + A(rA′B′ + 2B(A′ + rA′′)))

A2
(19)

For the mean pressure, we have

P =
c4

48πG

1

r2
(−r2B(A′)2 + 2A2(−1 +B + rB′) + rA(rA′B′ + 2B(2A′ + rA′′)))

A2
(20)

The thermal parameter ω = P/ρc2 is given by

ω = −1

6

(−r2B(A′)2 + 2A2(−1 +B + rB′) + rA(rA′B′ + 2B(2A′ + rA′′)))

A2(−1 +B + rB′)
(21)

In the following section, we shall consider an example which correspond to a model, and
where the functions A(r) and B(r) are specified in ways that can produce acceptable
energy density and thermal profile for stellar-like spherical body. We shall find that our
viable example would require a single additional parameter. With reference to the sun,
for example, we can relate the additional parameter to the solar surface temperature.
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3 Stellar Model with Simple Mass Distribution (SMD)

Let us consider a model with a metric specified by the following functions:
A(r) = 1− s

r

(
r3

a3+r3

)
B(r) = 1− s

r

(
r3

b3+r3

) (22)

It is clear that both functions would reduce to the Schwarzschild form for r � a and
r � b respectively. Substituting in the expressions for energy density and pressure
components, we find the following expressions for large values of r,

P1

ρc2
= 1

3

(
1− 4a3

b3

)
+ 1

3

(
1− a3

b3

)
s
r

+ . . .

P3

ρc2
= P2

ρc2
= −2

3

(
1− 4a3

b3

)
− 1

2

(
1− a3

b3

)
s
r

+ . . .

(23)

Here the dots represent higher-order terms in the power series for (s/r). In order to
have an acceptable thermal profile for large r, we must set b3 = 4a3, so that the initial
terms in the above series would not appear. Therefore our metric fucntions must take
the form 

A(r) = 1− s
r

(
r3

a3+r3

)
B(r) = 1− s

r

(
r3

4a3+r3

) (24)

With this, we have specified our stellar metric with just one new length parameter a,
besides the Schwarzschild radius s = 2GM/c2. Having specified the metric, we proceed
to determine the parameter a with reference to the sun as an example.

The thermal parameter ω = P/ρc2 can now be expressed using the above, and we
obtain

ω =

(
−72a12 + 80a9r2s+ 6a6r4(18r2 − 7rs− 4s2)+

3a3r7(12r2 − 15rs+ 2s2) + r10s(−4r + 3s)

)
24(a3 + r3)2(a3 + r2(r − s))2

(25)

But this can be equated to ω = kT/mc2 near the stellar surface. Putting r = 6.96×108

m to be the solar radius, M = 1.98892× 1030 kg the solar mass, c = 2.99792458× 108

m/sec the speed of light, G = 6.67259× 10−11 the Newtonian constant, m = 1.67264×
10−27 kg the mass of a hydrogen atom, T = 5800 K the solar surface temperature, and
k = 1.38066× 10−23 the Boltzmann constant, we find the solution

a = 5.41836× 106 m (26)

The stellar density as a function of radial distance is now given by

ρ =
3a2c2s

2πG(4a3 + r3)2
=

3a3M

π(4a3 + r3)2
(27)
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Using the value of a obtained above, and with values pertaining to the sun, we obtain for
the solar density at the solar surface the value 2.65788× 10−6 gm/cc. According to the
above formula, the value of the density at the center of the sun would be 7.46217× 105

gm/cc. On the other hand, the pressure as a function of radial distance takes the
following expression:

P = −

(
a3c4s(72a12 − 80a9r2s− 6a6r4(18r2 − 7rs− 4s2)
−3a3r7(12r2 − 15rs+ 2s2) + r10(4r − 3s)s)

)
16πG(a3 + r3)2(4a3 + r3)2(a3 + r2(r − s))2

(28)

This gives the value of pressure at the solar surface to be 1.27247 atm. However the
value of pressure at the solar center would be −2.012 × 1021 atm. This means that
the pressure at the core is tremendous and negative — this reflects the explosive and
repulsive nature of the core.

It is clear from the results obtained above, taking the sun as our example, and using
the value a = 5.41836 × 106 m for the length parameter that our simple metrical
model is not very far from reality. The values obtained for the surface temperature, the
surface density, and the surface pressure, are all reasonable and do not contradict well-
known solar measurements. We now proceed to describe graphically the solar profile
for density, and pressure as functions of radial distance.

We obtain the following numerical expression for the solar density as a function of radial
distance r. The radial distance must be in meters, and the density is in gram/cc.

D =
3.02128935567301182× 1047

(6.36302478675285865× 1020 + r3)2

These are plots of the density in the central, intermediate, and superficial, regions of
the sun:
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This is a numerical expression for the solar pressure as a function of radial distance.
The radial distance must be in meters, and the pressure must be in atmospheres:

P =


−1.33654× 1065(−6.96262× 108 + r)(−4.88321× 106 + r)×
(5.41762× 106 + r)(7.57441× 106 + r)(6.96263× 108 + r)×

(5.73778× 1013 − 7.57522× 106r + r2)(2.93626× 1013 − 5.41984× 106r + r2)×
(2.38473× 1013 + 4.88353× 106r + r2)


(1.59076× 1020 + r3)2(6.36302× 1020 + r3)2(1.59076× 1020 − 2953.25r2 + r3)2

(29)

This is a plot of the solar pressure as a function or radial distance near the core, in
the intermediate, and in superficial regions:

The above plot shows that the pressure near the core is great and negative. This is a
reflection, as we noted before, of the fact that the central region is an explosive energy-
producing active region. The pressure changes sign and becomes positive at some point
beyond the core, to be followed by monotically decreasing pressure, and finally showing
a remarkable effect. Pressure changes sign again and gets to a negative minimum before
going to zero.

At this point, let us examine the source of negative pressure in its parts P1, the radial
part, or P2, the angular part. The respective expressions of P1 and P2 are given by:

P1 = 3c4

8πG
a3s(−3a3+r2s)

(a+r)(a2−ar+r2)(4a3+r3−r2s)

P2 = − 3c4

32πG

a3s

 48a12 − 54a9r3 − 144a6r6 − 42a3r9 − 48a9r2s+
90a6r5s+ 63a3r8s+ 6r11s+ 16a6r4s2 − 16a3r7s2 − 5r10s2


(a+r)2(a2−ar+r2)2(4a3+r3)2(a3+r3−r2s)2

(30)
From the above expressions we obtain that the central values (r = 0) of both P1 and
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P2 are equal and both given by negative expression

Pc = − 9c4

32πG

s

a3
(31)

which for s = 2GM/c2 becomes:

Pc = − 9

16π

Mc2

a3
(32)

However, P1 becomes 0 for r =
√

3a
√
a/s and becomes positive afterwards reaching a

maximum value, before decreasing monotically towards 0. The following is a plot of
P1, showing it maximum value and monotonic decrease, with reference to the sun:

With regard to P2, it also changes sign at some radial distance, however much later
that P1, reaches a maximum positive value, then goes back to zero, changes sign again
to become negative, before increasing monotically to zero. The following is a plot of P2,
showing its ultimate decrease from positive to negative values and its minimum value,
with reference to the sun:

Hence, we can see clearly that the negative values of the mean pressure P , in the upper
solar layers, come from the angular parts P2 = P3. The following shows comparative
plots of P1, P2, and P in the relevant upper radial range:
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The following is a numerical expression for the temperature of the sun as a function of
the radial distance (although the meaning of this parameter is not necessarily temper-
ature in the deeper regions of the sun where is phase may not be that of an ideal gas).
The radial distance is in meters, and the temperature in degrees Kelvin:

T =

 −5.35927× 1015(−6.96262× 108 + r)(−4.88321× 106 + r)(5.41762× 106 + r)×
(7.57441× 106 + r)(6.96263× 108 + r)(5.73778× 1013 − 7.57522× 106r + r2)×
(2.93626× 1013 − 5.41984× 106r + r2)(2.38473× 1013 + 4.88353× 106r + r2)


(1.59076× 1020 + r3)2(1.59076× 1020 − 2953.25r2 + r3)2

(33)

This is a plot of the solar temperature as a function or radial distance in the superficial
regions:

The above plot shows the change of sign of temperature to negative values somewhere
outside the solar surface. As we have mentioned before, negative temperatures mean
negative pressures, and this would indicate some sort of explosive, or inflationary, ten-
dency. Now noting the fact that the minimum value reached is of the order of millions of
degrees, could this phenomenon provide a description or an explanation of the coronal
temperatures and the associated solar winds? It would be interesting if there is such a
fundamental connection. We must be cautious at this point.

4 The Schwarzschild Limit

The functionsA(r) andB(r) comprising our metrical model do become the Schwarzschild
factor (1− s/r) in the limit a→ 0. Let us see how physical quantities would behave in
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such a limit. The density as well as the pressure would vanish for all radial values, but
their thermal ratio becomes

ω =
P

ρc2
→ s(−4r + 3s)

24(r − s)2

This limit is nonsingular for r 6= s. However, before getting to the value a = 0, the pres-
sure and the thermal ratio would pass through a singular point. The latter corresponds
to the zero in radial coordinate of the factor (a3 + r2(r− s)) in the denominator. Actu-
ally, as the following graphical analysis shows, there are low values of the parameter a
for which the metric and the pressure could have singular points in radial coordinate.

Whereas the density is nonsingular throughout the radial domain whatever is the value
of a > 0, let us examine the plot of the density for a few values of a. The following
is a plot of the density for three values of a = (1, 2, 3), in suitable units, and with
corresponding colors (red, green, blue).

The above plot shows that as the parameter a becomes smaller and smaller, the density
becomes more and more concentrated at the center. Hence, we might view the pa-
rameter a tending towards smaller values as associated with stellar evolution towards
collapse.

In considerations of the Schwarzschild metric, we know that the radial coordinate speed
of light squared is given by c2(1−s/r)2. This is the value obtained from the null geodesic
equation. This shows that the photon speed would vanish at the Schwarzschild surface
r = s. Now for our SMD model, the radial coordinate speed of light squared is given
by

v2 = c2
{

1− s

r

(
r3

a3 + r3

)}{
1− s

r

(
r3

4a3 + r3

)}
It should be clear that for large enough values of a compared to the Schwarzschild
distance s, the above expression is always positive. However for low values of a, we can
have a central region for which v2 ≤ 0. Let us illustrate this with a plot for several
values of a. The following is a plot of v2 for the values a = (0.3, 0.9, 1.5, 3), in suitable
units, with corresponding colors (red, green, blue, black).
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The above plot shows that for the low value a = 0.3 (red color) there is a region for
which v2 < 0. This is a forbidden region and its existence makes the associated value
of the parameter a unacceptable. Actually, the minimum acceptable value of a should
be such that the minimum value of v2 be non-negative.

Let us examine now plots of the thermal parameter ω for the same values a = (0.3, 0.9, 1.5, 3),
in suitable units, with corresponding colors (red, green, blue, black).

These are plot of the thermal parameter ω in the central region and in a higher radial
ranges:

The above plots show that the value a = 0.3 (the red curve) exhibits singularities in the
thermal parameter plot, while the higher values a = (0.9, 1.5, 3) produce normal curves
in the central region, with positive maximum temperature values. They also show that
the temperature (or pressure) changes sign at some point in the external layers in a
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star (the coronal and windy region). It should be noted that this change of sign occurs
earlier for lower values of the parameter a.

It is clear from the above analysis that the singular Schwarzschild limit can be avoided
by keeping the value of the parameter a above a minimal value. If the parameter a
is regarded as a downward evolution parameter for a collapsing star, with associated
decrease of size, then combining this scenario with the realization that the phenomenon
of stellar winds being demonstrated in our SMD model, with associated loss of stellar
mass, the end result of the collapse may not reach the socalled black hole stage, but
rather a fully evaporated star.

5 Discussion

The work presented in this report demonstrates that it it possible to have a metrical
description of a spherically symmetric stellar body with a thermal profile. The surface
values for density, pressure, and temperature, can all be fitted with a single length
parameter. This description involves two intimately related component functions in
the line element, a temporal function A(r) and the radial function B(r). We have
presented such functions, associated with a simple mass distribution (SMD) models.
However, there is nothing special about the functions introduced except that they are
simple and viable. Other forms of functions are quite possible, that we shall treat in
other articles, but when fitted to a particular star like the sun, these functions would
involve different values for the extension parameter a, as well as different values for the
thermodynamic parameter in the central region of the star.

That we can describe the thermal profile of a star by metrical models is an impor-
tant development which deserves to be pursued further. The metrical model presented
could be extended much further by including hydrodynamic profiles like radial and
rotational flows of matter. They can also be extended by including electromagnetic
properties with appropriate charge and current distributions. The ultimate aim is to
be able to describe such a complicated object like the sun with all its surface features
like magnetic spots, coronal temperatures, and solar winds, and constructing complete
thermodynamic, hydrodynamic, and electromagnetic profiles, down to the active core.
Also, the underlying metrical models could also be useful in dealing with celestial ob-
jects like large fluid planets as well as stellar clusters, active galactic nuclei, and perhaps
complete galaxies.

It would be interesting to compare the model of extended spherical body, presented in
this paper, with Schwarzschild’s model of an incompressible (liquid) sphere[3], [4] and its
continuous counterpart[5].

The gravitational potential of the underlying metric, in our present model, is given by
the spherical fucntion

V (r) = − GMr2

a3 + r3
(34)

and the following is a schematic plot, with a convenient scale corresponding to a = 10s
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(red color for the Newtonian potential, blue color for our potential):

In this regard, it would be interesting to investigate the motion of a particle in the
gravitational potential of the underlying metric. Notice that whereas the potential for
large distances (r � a) is the Newtonian V (r) = −GM/r, the very interior part of
the potential exhibits a repulsive core. Does that mean that the relativistic interior
potential of any extended spherical system has a repulsive core? Of course, and we shall
return to the general question of the interior gravitational solution, and the relativistic
particle motion inside an extended spherical distribution of mass in another article.[6]
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