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Abstract 

      The dielectric and magnetic constant of material media are the  parameters, which are used 

during writing Maksvell equations. However, there is still one not less important material 

parameter, namely a kinetic inductance of charges, which has not less important role, than the 

parameters indicated. Unfortunately, importance and fundamentality of this parameter in the works 

on electrodynamics, until now, is not noted, and kinetic inductance is present in all equations of 

electrodynamics implicitly. This work is dedicated to the examination of the role of the kinetic 

inductance of charges in the electrodynamics of material media and to the restoration of its rights as 

the fundamental parameter, on the importance that not less meant than dielectric and magnetic 

constant.  

 

1.  Introduction 

      In the existing scientific literature occurs only the irregular references about the 

kinetic the inductance of charges [1-3]. However, recently appeared the works, which 

were directed toward the practical use of this phenomenon [4-5]. In connection with 

this that substantiated the posing of the question about place and role of kinetic 

inductance in the electrodynamics of material media appears.  
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      The most in detail physical essence of this parameter and its place in the 

description of electrodynamic processes in the conductors is examined in work [4]. In 

this work is introduced the concept of the surface kinetic and field inductance of 
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where  KL  and HL  - surface kinetic and field inductance, E
�

 - the tension of electric 

field, j ∗�  - the complexly conjugate value of current density, TH
�

 - tension of 

magnetic field, (0)TH
�

 - the value of the tension of magnetic field on the surface,  

ω  - frequency of the applied field. These relationships are valid for the case of the 

arbitrary connection between the current and the field both in the normal metals and 

in the superconductors. They reveal the physical essence of surface kinetic and field 

inductance in this specific case. However, the role of this parameter in the 

electrodynamics of material media requires further refinements. 

 

2. CONDUCTING MEDIA, IN WHICH BE ABSENT ACTIVE ARTERI  

 

      By plasma media we will understand such, in which the charges can move 

without the losses. To such media in the first approximation, can be related the 

superconductors, free electrons or ions in the vacuum (subsequently conductors). In 

the media indicated the equation of motion of electron takes the form: 
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dv
m eE

dt
=
�

�

 of ,                                          (1.2) 

where m  - mass, e  - the electron charge, E
�

- the tension of electric field, v
�

 - speed of 

the motion of charge. In the work [9] it is shown that this equation can be used also for 

describing the electron motion in the hot plasma. Therefore it can be disseminated also 

to this case. 

 Using an expression for the current density 

,j nev=
� �

                                                    (2.2)  

from (1/2) we obtain the current density of the conductivity 
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in relationships (2.2) and (2.3) the value n  represents the specific density of charges. 

After introducing the designation 

2k

m
L

ne
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we find 

1
L

k

j E dt
L

= ∫
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.                                              (2.5) 

in this case the value kL  presents the specific kinetic inductance of charge carriers 

[2,10-13]. Its existence connected with the fact that charge, having a mass, possesses 

inertia properties. 

     Pour on relationship (2.5) it will be written down for the case of harmonics: 
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For the mathematical description of electrodynamic processes the trigonometric 

functions will be here and throughout, instead of the complex quantities, used so that 

would be well visible the phase relationships between the vectors, which represent 

electric fields and current densities. 

      From relationship (2.5) and (2.6) is evident that Lj
�

 presents inductive current, 

since its phase is late with respect to the tension of electric field to the angle 
2
π

.  

      If charges are located in the vacuum, then during the presence of summed current 

it is necessary to consider bias current  

0 0 0cos
E

j E t
tε

∂ε ε ω∂= =
�
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. 

Is evident that this current bears capacitive nature, since its phase anticipates the phase 

of the tension of electrical to the angle 
2
π

. Thus, summary current density will 

compose [5-7] 
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.                                  (2.7) 
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 If electrons are located in the material medium, then should be considered the 

presence of the positively charged ions. However, with the examination of the 

properties of such media in the rapidly changing fields, in connection with the fact that 

the mass of ions is considerably more than the mass of electrons, their presence 

usually is not considered. in relationship (6.7) the value, which stands in the brackets, 

presents summary susceptance of this medium and it consists it, in turn, of the the 

capacitive and by the inductive  the conductivity  

0

1
C L

kL
σ σ σ ωε ωΣ = + = − . 

Relationship (2.9) can be rewritten, also, in other form 
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where 0
0

1

kL
ω ε=   - plasma frequency. 

 And large temptation here appears to name the value 

2
0

0 02 2

1
*( ) 1

kL

ωε ω ε ε
ω ω

 
= − = − 

 
 . 

by the depending on the frequency dielectric constant of dielectric. But this is 

incorrect, since this mathematical symbol is the composite parameter, into which 

simultaneously enters the dielectric constant of vacuum and the specific kinetic 

inductance of charges.  is accurate another point of view. Relationship (2.7) can be 

rewritten and differently: 
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and to introduce another mathematical symbol  
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In this case also appears temptation to name this bending coefficient on the frequency 

kinetic inductance. But this value it is not possible to call inductance also, since this 

also the composite parameter, which includes those not depending on the frequency 

kinetic inductance and the dielectric constant of vacuum. 

 Thus 

0*( ) cosj E tωε ω ωΣ =
��

, 

or, something the very  

0
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L
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 . 

But this altogether only the symbolic mathematical record of one and the same 

relationship (2.7). Both equations are completely equivalent, and separately 

mathematically completely is characterized the medium examined. But view neither 

*( )ε ω nor *( )L ω  by dielectric constant or inductance are from a physical point. 

The physical sense of their names consists of the following: 

*( ) Xσε ω ω=  ,                                             (2.8) 
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i.e. *( )ε ω  presents summary susceptance of medium, divided into the frequency, 

and 

1
*( )k

X

L ω ωσ=  , 

it represents the reciprocal value of the work of frequency and susceptance of medium. 

 As it is necessary to enter, if at our disposal are values *( )ε ω  and *( )L ω , and we 

should calculate total specific energy. Natural to substitute these values in the 

formulas, which determine energy of electrical pour on 

2
0 0

1
2EW Eε=  

and kinetic energy of charge carriers 

2
0

1
2j kW L j=  

is cannot simply because these parameters are neither dielectric constant nor 

inductance. It is not difficult to show that in this case the total specific energy can be 

obtained from the relationship  
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from where we obtain 
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We will obtain the same result, after using the formula 
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The given relationships show that the specific energy consists of potential energy of 

electrical pour on and to kinetic energy of charge carriers. However, looking at 

relationships (2.9) and (2.11), at first glance it can seem that energy is the function 

only of electrical pour on. 

 With the examination of any media by our final task appears the presence of wave 

equation. In this case this problem is already practically solved. Maxwell equations for 

this case take the form: 
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                           (2.12)  

where  0ε  and 0µ  - dielectric and magnetic constant of vacuum. System of equations 

(2.10) completely describes all properties of the conductors, in which be absent the 

ohmic losses. From it we obtain 

2
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0 0 2 0
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.                      (2.13) 

For the case pour on, time-independent, equation (2.11) passes into London equation  

0 0
k

rot rot H H
L
µ+ =

� �

 , 

where  2

0

k
L

Lλ µ= - London depth of penetration. 
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  Thus, it is possible to conclude that the equations of London being a special case of 

equation (2.11), and do not consider bias currents on Wednesday.  

      Pour on wave equation in this case it appears as follows for the electrical: 

2
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For constant electrical pour on it is possible to write down 

0 0
k

rot rot E E
L
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. 

consequently, DC fields penetrate the superconductor in the same manner as for 

magnetic, diminishing exponentially. However, the density of current at each point of 

superconductor in this case grows according to the linear law  

1
.C

k

j E dt
L

= ∫
��

 

 The carried out examination showed that the dielectric constant of this medium was 

equal to the dielectric constant of vacuum and this permeability on frequency does not 

depend. The accumulation of potential energy is obliged to this parameter. 

Furthermore, this medium is characterized still and the kinetic inductance of charge 

carriers and this parameter determines the kinetic energy, accumulated on Wednesday.  

 Thus, are obtained all necessary given, which characterize the process of the 

propagation of electromagnetic waves in conducting media examined. However, in 

contrast to the conventional procedure [5-7] with this examination nowhere was 

introduced polarization vector, but as the basis of examination assumed equation of 

motion and in this case in the second Maxwell equation are extracted all components 
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of current densities explicitly. In this case in the second Maxwell equation are 

extracted all components of current densities explicitly. 

      Based on the example of work [5] let us examine a question about how similar 

problems, when the concept of polarization vector is introduced are solved for their 

solution. Paragraph 59 of this work, where this question is examined, it begins with 

the words: “We pass now to the study of the most important question about the rapidly 

changing electric fields, whose frequencies are unconfined by the condition of 

smallness in comparison with the frequencies, characteristic for establishing the 

electrical and magnetic polarization of substance” (end of the quotation). These words 

mean that that region of the frequencies, where, in connection with the presence of the 

inertia properties of charge carriers, the polarization of substance will not reach its 

static values, is examined. With the further consideration of a question is done the 

conclusion that “in any variable field, including with the presence of dispersion, the 

polarization vector 
0

P D Eε= −
� � �

 (here and throughout all formulas cited they are 

written in the system OF SI) preserves its physical sense of the electric moment of the 

unit volume of substance” (end of the quotation). Let us give the still one quotation: 

“It proves to be possible to establish (unimportantly - metals or dielectrics) maximum 

form of the function ( )ε ω with the high frequencies valid for any bodies. 

Specifically, the field frequency must be great in comparison with “the frequencies” of 

the motion of all (or, at least, majority) electrons in the atoms of this substance. With 

the observance of this condition it is possible with the calculation of the polarization of 
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substance to consider electrons as free, disregarding their interaction with each other 

and with the atomic nuclei” (end of the quotation).  

 Further, as this is done and in this work, is written the equation of motion of free 

electron in the ac field 

dvm eE
dt

=
�
�

, 

from where its displacement is located 

2

eEr
mω

= −
�

�
 

then is indicated that the polarization of P
�

 is a dipole moment of unit volume and the 

obtained displacement is put into the polarization  

2

2

ne EP ner
mω

= = −
�

� �
. 

In this case point charge is examined, and this operation indicates the introduction of 

electrical dipole moment for two point charges with the opposite signs, located at a 

distance r
�

 

e
p er= −� �

, 

where the vector  r
�

is directed from the negative charge toward the positive charge. 

This step causes bewilderment, since the point electron is examined, and in order to 

speak about the electrical dipole moment, it is necessary to have in this medium for 

each electron another charge of opposite sign, referred from it to the distance  r
�

. In 

this case is examined the gas of free electrons, in which there are no charges of 
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opposite signs. Further follows the standard procedure, when introduced thus illegal 

polarization vector is introduced into the dielectric constant  
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and since plasma frequency is determined by the relationship 
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the vector of the induction immediately is written  
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With this approach it turns out that constant of proportionality 

2

20
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between the electric field and the electrical induction, illegally named dielectric 

constant, depends on frequency. 

      Precisely this approach led to the fact that all began to consider that the value, 

which stands in this relationship before the vector of electric field, is the dielectric 

constant depending on the frequency, and electrical induction also depends on 

frequency. And this it is discussed in all, without the exception, fundamental works on 

the electrodynamics of material media [5-9].  

      But, as it was shown above this parameter it is not dielectric constant, but presents 

summary susceptance of medium, divided into the frequency. Thus, traditional 
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approach to the solution of this problem from a physical point of view is erroneous, 

although formally this approach is completely legal from a mathematical point of 

view. So in the electrodynamics the concept of the dielectric constant of conductors 

depending on the frequency was illegally inculcated, and was born the point of view 

about the fact that the dielectric constant of plasma depends on frequency. The 

dielectric constant of vacuum in fact is the dielectric constant of plasma. And with this 

parameter connected pour on accumulation in the plasma of potential energy of 

electrical. Furthermore, plasma characterizes this physical parameter as the specific 

kinetic inductance of electrons, with which is connected the accumulation of kinetic 

inductance in this medium.  

      Further into §61 of work [5] is examined a question about the energy of electrical 

and magnetic field in the media, which possess by the so-called dispersion. In this case 

is done the conclusion that relationship for the energy of such pour on 

( )2 2
0 0

1
2

W E Hε µ= +                                     (2.14) 

 that making precise thermodynamic sense in the usual media, with the presence of 

dispersion this interpretation is already impossible. These words mean that the 

knowledge of real electrical and magnetic pour on Wednesday with the dispersion 

insufficiently for determining the difference in the internal energy per unit of volume 

of substance in the presence pour on in their absence. After such statements is given 

the formula, which gives correct result for enumerating the specific energy of 

electrical and magnetic pour on when the dispersion ofis present,  
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( ) ( )2 2
0 0

( ) ( )1 1
2 2

d d
W E H

d d

ωε ω ωµ ω
ω ω

= +  ,                (2.15) 

but if we compare the first part of the expression in the right side of relationship (2.15) 

with relationship (2.9), then it is evident that they coincide. This means that in 

relationship (2.15) this term presents the total energy, which includes not only 

potential energy of electrical pour on, but also kinetic energy of the moving charges.  

 Therefore conclusion about the impossibility of the interpretation of formula (2.14), 

as the internal energy of electrical and magnetic pour on in the media with the 

dispersion it is correct. However, this circumstance consists not in the fact that this 

interpretation in such media is generally impossible. It consists in the fact that for the 

definition of the value of specific energy as the thermodynamic parameter in this case 

is necessary to correctly calculate this energy, taking into account not only electric 

field, which accumulates potential energy, but also current of the conduction electrons, 

which accumulate the kinetic energy of charges (6.8). The conclusion, which now can 

be made, consists in the fact that, introducing into the custom some mathematical 

symbols, without understanding of their true physical sense, and, all the more, the 

awarding to these symbols of physical designations unusual to them, it is possible in 

the final analysis to lead to the significant errors, that also occurred in the work [5].  

      In radio engineering exists the simple method of the idea of radio-technical 

elements with the aid of the equivalent diagrams. This method is very visual and gives 

the possibility to present in the form such diagrams elements both with that 

concentrated and with the distributed parameters. The use of this method will allow us 

still better to understand, and in connection with this why were committed such 
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significant physical errors during the introduction of this concept as the depending on 

the frequency dielectric constant of plasma. 

      In order to show that the single volume of conductor or plasma according to its 

electrodynamic characteristics is equivalent to parallel resonant circuit with the 

lumped parameters, let us examine parallel resonant circuit. For this let us examine the 

parallel resonant circuit, which consists of the capacity C  and inductance L . The 

connection between the voltage  U , applied to the outline, and the summed current 

IΣ , which flows through this chain, takes the form  

1
C L

dU
I I I C U dt

dt LΣ = + = + ∫   , 

where C

dU
I C

dt
=  - current, which flows through the capacity, and 

1
LI U dt

L
= ∫  - 

current, which flows through the inductance.  for the case of the harmonic stress of we 

obtain 

0

1
cosI C U t

L
ω ωωΣ
 = − 
 

.                                   (2.16) 

in relationship (2.7) the value, which stands in the brackets, presents summary 

susceptance of this medium and it consists it, in turn, of the capacitive and by the 

inductive the conductivity  

1
C L C

L
σ σ σ ω ωΣ = + = − . 

In this case relationship (2.5) can be rewritten as follows: 
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where 2
0

1
LC

ω =  - the resonance frequency of parallel circuit. 

 And large temptation here appears to name the value 

2
0
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L

ωω
ω ω

 
= − = − 
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,                             (2.17) 

which is the composite parameter, the capacity depending on the frequency. 

Conducting this symbol it is permissible from a mathematical point of view. However, 

inadmissible is awarding to it the proposed name, since this parameter of no relation to 

the true capacity has and includes in itself simultaneously and capacity and the 

inductance of outline, which do not depend on frequency.  

      Is accurate another point of view. Relationship (2.7) can be rewritten and 

differently: 

2

2
0

0

1

cosI U t
L

ω
ω

ωωΣ

 
− 

 = − , 

and to consider that the chain in question not at all has capacities, and consists only of 

the inductance depending on the frequency 

22

2
0

* ( )
1

1

L L
L

LC
ω

ωω
ω

= =
− 

− 
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 .                             (2.18) 
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But just as *( )C ω , the value *( )L ω  cannot be called inductance, since this is the 

also composite parameter, which includes simultaneously capacity and inductance, 

which do not depend on frequency. 

      Using expressions (2.17) and (2.18), let us write down: 

             0* ( ) cosI C U tω ω ωΣ =                                       (2.19)  

or 

0

1
cos

*( )
I U t

L
ωω ωΣ = − .                                   (2.20) 

Relationship (6.15) and (6.16) are equivalent, and separately mathematically 

completely is characterized the chain examined. But view neither *( )C ω nor *( )L ω  

by capacity and inductance are from a physical point, although they have the same 

dimensionality. The physical sense of their names consists of the following: 

*( ) XC
σω ω=  , 

i.e. *( )C ω  presents summary susceptance of medium, divided into the frequency, 

and 

1
*( )

X

L ω ωσ=  , 

it is the reciprocal value of the work of summary susceptance and frequency. 

      Accumulated in the capacity and the inductance energy, is determined from the 

relationships 

2
0

1
2CW CU= ,                                          (2.21)  
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2
0

1
2LW LI= .                                           (2.22) 

but how one should enter, if at our disposal are *( )C ω  and *( )L ω ? Certainly, to 

put these relationships in formulas (2.17) and (2.18) cannot for that reason, that these 

values can be both the positive and negative, and the energy, accumulated in the 

capacity and the inductance, is always positive. But if we for these purposes use 

ourselves the parameters indicated, then it is not difficult to show that the summary 

energy, accumulated in the outline, is determined by the expressions: 

2
0

1
2

Xd
W U

d
σ
ωΣ = ,                                    (2.23) 

or 

[ ] 2
0

* ( )1
2

d C
W U

d
ω ω

ωΣ = ,                          (2.24)  

or 

2
0

1
*( )1

2

d
L

W U
d

ω ω
ωΣ

 
 
 = .                         (2.25) 

If we paint equations (2.19) or (2.20) and (2.21), then we will obtain identical result, 

namely: 

2 2
0 0

1 1
,

2 2
W CU LIΣ = +  

where 0U  - amplitude of stress on the capacity, and 0I - amplitude of the current, 

which flows through the inductance. 
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       If we compare the relationships, obtained for the parallel resonant circuit and for 

the conductors, then it is possible to see that they are identical, if we make 
0 0

E U→ , 

0 0
j I→ , 

0
Cε → and 

k
L L→ . Thus, the single volume of conductor, with the 

uniform distribution of electrical pour on and current densities in it is equivalent to 

parallel resonant circuit with the lumped parameters indicated.  

 

 

 

3. Transverse plasma resonance  

 

      Now let us show how the poor understanding of physics of processes in 

conducting media it led to the fact that proved to be unnoticed the interesting physical 

phenomenon transverse plasma resonance in the nonmagnetized plasma, which can 

have important technical appendices [5, 7, 12].  

      Is known that the plasma resonance is longitudinal. But longitudinal resonance 

cannot emit transverse electromagnetic waves. However, with the explosions of 

nuclear charges, as a result of which is formed very hot plasma, occurs 

electromagnetic radiation in the very wide frequency band, up to the long-wave radio-

frequency band. Today are not known those of the physical mechanisms, which could 

explain the appearance of this emission. There were no other resonances of any kind, 

except plasma, earlier known on existence in the nonmagnetic plasma. But it occurs 

that in the confined plasma the transverse resonance can exist, and the frequency of 
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this resonance coincides with the frequency of plasma resonance, i.e. these resonance 

are degenerate. Specifically, this resonance can be the reason for the emission of 

electromagnetic waves with the explosions of nuclear charges. 

      For explaining the conditions for the excitation of this resonance let us examine 

the long line, which consists of two ideally conducting planes, as shown in Fig. 1. 

     Linear (falling per unit of length) capacity and inductance of this line without 

taking into account edge effects they are determined by the relationships [10,11]: 

Therefore with an increase in the length of line its total capacitance of and summary 

inductance of increase proportional to its length.  

 

 

 

Fig. 1.  The two-wire circuit, which consists of two ideally conducting planes. 

 

If we into the extended line place the plasma, charge carriers in which can move 

without the losses, and in the transverse direction pass through the plasma the current 

I , then charges, moving with the definite speed, will accumulate kinetic energy. Let 
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us note that here are not examined technical questions, as and it is possible confined 

plasma between the planes of line how. This there can be, for example, magnetic traps 

or directed flows of plasma. Can be considered the case of other media of such type as 

semiconductors. In this case only fundamental questions, which are concerned 

transverse plasma resonance in the nonmagnetic plasma, are examined. 

   Since the transverse current density in this line is determined by the relationship 

,
I

j nev
bz

= =  

that summary kinetic energy of all moving charges will be written down 

2 2
2 2

1 1
2 2k

m m a
W abzj I

bzne neΣ = = .                  (1.3) 

 Relationship (1.3) connects the kinetic energy, accumulated in the line, with the 

square of current therefore the coefficient, which stands in the right side of this 

relationship before the square of current, is the summary kinetic inductance of line. 

2k

m a
L

bzneΣ = ⋅ .                                          (2.3) 

 Thus, the value 

2k

m
L

ne
=                                                 (3.3)  

presents the specific kinetic inductance of charges. We already previously introduced 

this value in another manner (see relationship (2.4)). Relationship (3.3) is obtained for 

the case of the direct current, when current distribution is uniform.  

       Subsequently for the larger clarity of the obtained results, together with their 

mathematical idea, we will use the method of equivalent diagrams. The section, the 
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lines examined, long of dz  can be represented in the form the equivalent diagram, 

shown in Fig. 2 (a). 
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Fig. 2. а - the equivalent the schematic of the section of two-wire circuit; b - the 

equivalent the schematic of the section of the two-wire circuit, filled with plasma 

without the losses; в - the equivalent the schematic of the section of the two-wire 

circuit, filled with the plasma, in which there are ohmic losses. 

 

 From the relationship (3.2) is evident that in contrast to CΣ  and LΣ   the value  kL Σ  

with an increase in z  does not increase, but it decreases. This is understandable from a 

physical point of view, connected this with the fact that with an increase in z  a 

quantity of parallel-connected inductive elements grows. Line itself in this case will be 

equivalent to parallel circuit with the lumped parameters: 0bz
C

a
ε=  and ,kL a

L
bz

=  in 

series with which is connected the inductance 
0

adz
b

µ .  

      But if we calculate the resonance frequency of this outline, then it will seem that 

this frequency generally not on what sizes depends, actually: 

2
2

0 0

1 1

k

ne
CL L mρω ε ε= = =   . 

Is obtained the very interesting result, which speaks, that the resonance frequency 

macroscopic of the resonator examined does not depend on its sizes. Impression can 

be created, that this is plasma resonance, since the obtained value of resonance 

frequency exactly corresponds to the value of this resonance. But it is known that the 

plasma resonance characterizes longitudinal waves in the long line they, while occur 

transverse waves. In the case examined the value of the phase speed in the direction of 
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z  is equal to infinity and the wave vector 0k =
�

.  this result corresponds to the 

solution of system of equations (2.12) for the line with the assigned configuration. 

Wave number in this case is determined by the relationship  

22
2

2 2
1zk

c
ρωω

ω
 

= −  
 

,                                             (3.4)  

 and the group and phase speeds  

2
2 2

2
1gv c ρω

ω
 

= −  
 

,                                              (3.5)  

2
2

2

21
F

c
v

ρω
ω

=
 

− 
 

,                                               (3.6)  

where 

1/ 2

0 0

1
c µ ε

 =  
 

- speed of light in the vacuum. 

      For the present instance the phase speed of electromagnetic wave is equal to 

infinity, which corresponds to transverse resonance at the plasma frequency. 

Consequently, at each moment of time pour on distribution and currents in this line 

uniform and it does not depend on the coordinate, but current in the planes of line in 

the direction of is absent. This, from one side, it means that the inductance LΣ  will not 

have effects on electrodynamic processes in this line, but instead of the conducting 

planes can be used any planes or devices, which limit plasma on top and from below. 

Let us note that only fundamental side of a question is discussed based on this 

example, since, for example, gas-discharge plasma to limit for the data of purposes by 
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planes is impossible, since. the charges will settle on these planes. Possibly, this must 

be plasma in the solid, or gas-discharge plasma in the magnetic trap or the plasma of 

nuclear explosion. 

      From the relationships (3.4 -3.6) it is not difficult to see that at the point of 

pω ω=  we deal concerning the transverse resonance with the infinite quality. The 

fact that in contrast to the plasma, this resonance is transverse, will be one can see well 

for the case, when the quality of this resonance does not be equal to infinity. In this 

case 0zk ≠ , and in the line will be extended the transverse wave, the direction of 

propagation of which will be perpendicular to the direction of the motion of charges. 

The examination of this task was begun from the examination of the plasma, limited 

from two sides by the planes of long line. But in the process of this examination it is 

possible to draw the conclusion that the frequency of this resonance generally on the 

dimensions of line does not depend. It should be noted that the fact of existence of this 

resonance previously was not realized and in the literature it was not described.  

       Let us pause at the energy processes, which occur in the line in the case of the 

absence of losses examined. Pour on the characteristic impedance of plasma, which 

gives the relation of the transverse components of electrical and magnetic, let us 

determine from the relationship 

1/ 22

0
0 2

1y

x z

E
Z Z

H k
ρωµ ω

ω

−
 

= = = −  
 

, 
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where 0
0

0

Z
µ
ε=  - characteristic resistance of vacuum.  The obtained value of is 

characteristic for the transverse electrical waves in the waveguides. It is evident that 

when pω ω→ , then Z → ∞ , and 0xH → . When ω  > pω  in the plasma there is 

electrical and magnetic component of field. The specific energy of these pour on it 

will be written down: 

2 2
, 0 0 0 0

1 1
2 2E H y xW E Hε µ= + . 

Thus, the energy, concluded in the magnetic field, in 
2

2
1 ρω

ω
 

−  
 

 of times is less than 

the energy, concluded in the electric field. Let us note that this examination, which is 

traditional in the electrodynamics, is not complete, since. in this case is not taken into 

account one additional form of energy, namely kinetic energy of charge carriers. 

Occurs that pour on besides the waves of electrical and magnetic, that carry electrical 

and magnetic energy, in the plasma there exists even and the third - kinetic wave, 

which carries kinetic energy of current carriers. The specific energy of this wave is 

written: 

2
2 2 2
0 0 0 02 2

1 1 1 1
2 2 2k k

k

W L j E E
L

ρω
ε

ω ω
= = ⋅ = . 

Consequently, the total specific energy of wave is written as 

2 2 2
, , 0 0 0 0 0

1 1 1
2 2 2E H j y x kW E H L jε µ= + +  . 
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Thus, for finding the total energy, by the prisoner per unit of volume of plasma, 

calculation only pour on E  and H  it is insufficient. 

 At the point pω ω=  is carried out the relationship   

0H

E k

W

W W

=
=

, 

i.e. magnetic field in the plasma is absent, and plasma presents macroscopic 

electromechanical resonator with the infinite quality, pω  resounding at the frequency. 

 Since with the frequencies ω  > pω  the wave, which is extended in the plasma, it 

bears on itself three forms of the energy: electrical, magnetic and kinetic, then this 

wave can be named electromagnetokinetich wave. Kinetic wave represents the wave 

of the current density 
1

k

j E dt
L

= ∫
��

. This wave is moved with respect to the 

electrical wave the angle 
2
π

. 

       If losses are located, moreover completely it does not have value, by what 

physical processes such losses are caused, then the quality of plasma resonator will be 

finite quantity. For this case Maxwell equation they will take the form:  

0

0

,

1
.ef

k

H
rot E

t

E
rot H E E dt

t L

∂µ ∂
∂σ ε ∂

= −

= + + ∫

�
�

�
� � �
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The presence of losses is considered by the term ef Eσ
�

, and, using near the 

conductivity of the index ef , it is thus emphasized that us does not interest very 

mechanism of losses, but only very fact of their existence interests. The value 

efσ determines the quality of plasma resonator. For measuring efσ  should be selected 

the section of line by the length 0z , whose value is considerably lower than the 

wavelength in the plasma. This section will be equivalent to outline with the lumped 

parameters: 

0
0 ,

bz
C

a
ε=                                                (8.3)  

0

,k

a
L L

bz
=                                                (9.3)  

0
. ,ef

bz
G

aρσ=                                          (10.3)  

where G  - conductivity, connected in parallel C  and L . 

Conductivity and quality in this outline enter into the relationship: 

1 C
G

Q Lρ
= , from where, taking into account (3.8 - 3.10), we obtain 

01
ef

kQ Lρ

εσ = .                                       (11.3) 

Thus, measuring its own quality plasma of the resonator examined, it is possible to 

determine efσ . Using (3.11) and (3.7) we will obtain 
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k k

H
rot E

t

E
rot H E E dt

Q L t Lρ
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= −

= + + ∫

�
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� � �

                     (3.12)  

          

The equivalent  schematic of this line, filled with dissipative plasma, is represented in 

Fig.  2 в. 

  Let us examine the solution of system of equations (3.12) at the point pω ω= , 

in this case, since 

0

1
0

k

E
E dt

t L
∂ε ∂ + =∫
�

�

, 

we obtain 

0

0

,

1
.

P k

H
rot E

t

rot H E
Q L

∂µ ∂

ε

= −

=

�
�

� �
 

These relationships determine wave processes at the point of resonance. 

 

 4. Dielectrics  

 

 In the existing literature there are no indications that the kinetic inductance of charge 

carriers plays some role in the electrodynamic processes in the dielectrics. However, 
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this not thus. This parameter in the electrodynamics of dielectrics plays not less 

important role, than in the electrodynamics of conductors. 

      Let us examine the simplest case, when oscillating processes in atoms or 

molecules of dielectric obey the law of mechanical oscillator [10].  

2 ,m

e
r E

m m
β ω − = 

 

��
                                      (4.1)  

where mr
�

 - deviation of charges from the position of equilibrium, β  - coefficient of 

elasticity, which characterizes the elastic electrical binding forces of charges in the 

atoms and the molecules. Introducing the resonance frequency of the bound charges  

0 m
βω = , 

we obtain from (4.1) 

2 2
.

( )m
o

e E
r

m ω ω
= −

−

�

�
                                         (4.2)  

Is evident that in relationship (4.2) as the parameter is present the natural vibration 

frequency, into which enters the mass of charge. This speaks, that the inertia properties 

of the being varied charges will influence oscillating processes in the atoms and the 

molecules. 

      Since the general current density on Wednesday consists of the bias current and 

conduction current 

0
ErotH j nev
t

ε
∑

∂= = +
∂

�
� � �

, 
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finding the speed of charge carriers in the dielectric as the derivative of their 

displacement through the coordinate 

2 2( )
m

o

r e E
v

t tm ω ω
∂ ∂= = −∂ ∂−

�

�
, 

 from relationship (4.2) we find 

0 2 2
0

1

( )kd

E ErotH j
t tL

ε
ω ω∑

∂ ∂= = −
∂ ∂−

� �
� �

. (4.3) 

But the value  

2kd
mL

ne
=  

presents the kinetic inductance of the charges, entering the constitution of atom or 

molecules of dielectrics, when to consider charges free. Therefore relationship (4.3) it 

is possible to rewrite 

2 20
0 0

1
1

( )kd

ErotH j
L t

ε
ε ω ω∑

 ∂= = − − ∂ 

�
� �

.                     (4.4) 

But, since the value 

2

0

1
pd

kdL
ω

ε
=  

it represents the plasma frequency of charges in atoms and molecules of dielectric, if 

we consider these charges free, then relationship (4.4) takes the form: 

2

2 20
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1
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pd ErotH j
t

ω
ε

ω ω∑

 ∂= = − 
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                         (4.5)  



 32

To appears temptation to name the value 

2

2 20
0

( ) 1
( )

pdω
ε ω ε

ω ω
∗

 
= − 

 −
 

                                (4.6) 

by the depending on the frequency dielectric constant of dielectric. But this, as in the 

case conductors, cannot be made, since this is the composite parameter, which 

includes now those not already three depending on the frequency of the parameter: the 

dielectric constant of vacuum, the natural frequency of atoms or molecules and plasma 

frequency for the charge carriers, entering their composition. 

 Let us examine two limiting cases: 

If  0ω ω≪ , then from (4.5) we obtain 

0

0

2

21 pd ErotH j
t

ω
ε

ω∑

 ∂= = + 
  ∂
 

�
� �

.                                 (4.7) 

In this case the coefficient, confronting the derivative, does not depend on frequency, 

and it presents the static dielectric constant of dielectric. As we see, it depends on the 

natural frequency of oscillation of atoms or molecules and on plasma frequency. This 

result is intelligible. Frequency in this case proves to be such small that the inertia 

properties of charges it is possible not to consider, and bracketed expression in the 

right side of relationship (4.7) presents the static dielectric constant of dielectric. 

Hence immediately we have a prescription for creating the dielectrics with the high 

dielectric constant. In order to reach this, should be in the assigned volume of space 

packed a maximum quantity of molecules with maximally soft connections between 

the charges inside molecule itself. 
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The case, when 0ω ω≫ , is exponential. then 

0

2

21 pd ErotH j
t

ω
ε

ω∑

 ∂= = − 
  ∂
 

�
� �

, 

and dielectric is converted in conductor (plasma) since. The obtained relationship 

coincides with the case of plasma. 

      One cannot fail to note the circumstance that in this case again nowhere was used 

this concept as polarization vector, but examination is carried out by the way of 

finding the real currents in the dielectrics on the basis of the equation of motion of 

charges in these media. In this case as the parameters are used the electrical 

characteristics of the media, which do not depend on frequency. 

      From relationship (4.5) is evident that in the case of fulfilling the equality of 

0
ω ω= , the amplitude of fluctuations is equal to infinity. This indicates the presence 

of resonance at this point. The infinite amplitude of fluctuations occurs because of the 

fact that they were not considered losses in the resonance system, in this case its 

quality was equal to infinity. In a certain approximation it is possible to consider that 

lower than the point indicated we deal concerning the dielectric, whose dielectric 

constant is equal to its static value. Higher than this point we deal already actually 

concerning the metal, whose density of current carriers is equal to the density of atoms 

or molecules in the dielectric. 

      Now it is possible to examine the question of why dielectric prism decomposes 

polychromatic light into monochromatic components or why rainbow is formed. So 

that this phenomenon would occur, it is necessary to have the frequency dispersion of 
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the phase speed of electromagnetic waves in the medium in question. If we to 

relationship (4.5) add the first Maxwell equation, then we will obtain: 

0
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HrotE
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  .                              (4.7)  

That we will obtain the wave equation 
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µ ε
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If one considers that  

0 0 2

1

c
µ ε =  

where c  - speed of light, then no longer will remain doubts about the fact that with the 

propagation of electromagnetic waves in the dielectrics the frequency dispersion of 

phase speed will be observed. But this dispersion will be connected not with the fact 

that this material parameter as dielectric constant, it depends on frequency. In the 

formation of this dispersion it will participate immediately three, which do not depend 

on the frequency, physical quantities: the self-resonant frequency of atoms themselves 

or molecules, the plasma frequency of charges, if we consider it their free, and the 

dielectric constant of vacuum. 

      Now let us show, where it is possible to be mistaken, if with the solution of the 

examined problem of using a concept of polarization vector. Let us introduce 
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polarization vector in the dielectric similarly, as this was done for the conductors, after 

taking the mixing of bound charge from relationship (4.2)  

2

2 2
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1
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ne
P E

m ω ω
= − ⋅

−
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The dependence of polarization vector on the frequency, is connected with the 

presence of mass in charges and their inertness does not make possible for this vector 

accurately to follow the electric field, reaching that value, which it has in the 

permanent fields. Since the electrical induction is determined by the relationship: 
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.                                (4.8)  

That introduced thus electrical induction depends on frequency. But the real 

significance of this parameter earlier is already examined.  

     If introduced thus electrical induction was introduced into the second equation of 

Maxwell, then it signs the form: 
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                       (4.9)  

where j
∑

 - the summed current, which flows through the model. In expression (4.9) 

the first member of right side presents bias current in the vacuum, and the second - 

current, connected with the presence of bound charges in atoms or molecules of 
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dielectric. In this expression again appeared the specific kinetic inductance of the 

charges, which participate in the oscillating process 

2kd
mL

ne
=  . 

this kinetic inductance determines the inductance of bound charges. Taking into 

account this relationship (4.9) it is possible to rewrite 
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Thus, is obtained relationship coinciding with relationship (4.3). Consequently, the 

eventual result of examination by both methods coincides, and from a mathematical 

point of view of any claims to the method, with which the polarization vector is 

introduced, no. But from a physical point of view, and especially in the part of the 

awarding to the parameter, introduced in accordance with relationship (4.8) of the 

designation of electrical induction, are large claims, which we discussed. Is certain, 

this not electrical induction, but the certain composite parameter. But, without having 

been dismantled at the essence of a question, all, until now, consider that the dielectric 

constant of dielectrics depends on frequency. And about this written in all literary 

sources, beginning from the Great Soviet Encyclopedia and concluding by any 

electrotechnical reference book. In the essence, physically substantiated is the 

introduction to electrical induction in the dielectrics only in the static electric fields. 

 for the purpose of the decrease of the size of the article we will not here carry out 

computations for establishing the equivalent electrical schematic of dielectric. These 

questions are examined in works [5-7].  let us show that the equivalent the schematic 
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of dielectric presents the sequential resonant circuit, whose inductance is the kinetic 

inductance of , and capacity is equal to the static dielectric constant of dielectric minus 

the capacity of the equal dielectric constant of vacuum. In this case outline itself 

proves to be that shunted by the capacity, equal to the specific dielectric constant of 

vacuum.  

 

5. Conclusion 

      This examination showed that this parameter as the kinetic inductance of charges 

characterizes any electromagnetic processes in the material media, be it conductors or 

dielectrics. It has the same fundamental value as the dielectric and magnetic constant 

of medium. Why this parameter has not yet been allotted its proper place? This is due 

to the fact that physics is often used to thinking mainly mathematical concepts, not 

much delving into the essence of the physical processes themselves. However very 

creator Maksvell equations considered that these parameters on frequency do not 

depend, but they are fundamental constants. As the idea of the dispersion of dielectric 

and magnetic constant was born, and what way it was past, sufficiently colorfully 

characterizes quotation from the monograph of well well-known specialists in the field 

of physics plasma [4]: “J. itself. Maxwell with the formulation of the equations of the 

electrodynamics of material media considered that the dielectric and magnetic 

constants are the constants (for this reason they long time they were considered as the 

constants). It is considerably later, already at the beginning of this century with the 

explanation of the optical dispersion phenomena (in particular the phenomenon of 
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rainbow)  J. Heaviside and R.Vul showed that the dielectric and magnetic constants 

are the functions of frequency. But very recently, in the middle of the 50's, physics 

they came to the conclusion that these values depend not only on frequency, but also 

on the wave vector. On the essence, this was the radical breaking of the existing ideas. 

It was how a serious, is characterized the case, which occurred at the seminar L. D. 

Landau into 1954. During the report A. I. Akhiezer on this theme of Landau suddenly 

exclaimed, after smashing the speaker: ” This is delirium, since the refractive index 

cannot be the function of refractive index”. Note that this said L. D. Landau - one of 

the outstanding physicists of our time” (end of the quotation).  

      Is now clear that rights Maksvell, and, as it was shown above, the dielectric 

constant of material media on frequency does not depend. However, in a number of 

fundamental works on electrodynamics [5-9] are committed conceptual, systematic 

and physical errors, as a result of which in physics they penetrated and solidly in it 

were fastened such metaphysical concepts as the frequency dispersion of the dielectric 

constant of material media and, in particular, plasma. The propagation of this concept 

to the dielectrics led to the fact that all began to consider that also the dielectric 

constant of dielectrics also depends on frequency. These physical errors penetrated in 

all spheres of physics and technology. 

      The same concept, as kinetic inductance, until now, is located in the shadow and 

thus far there is no understanding the fact that this parameter in the electrodynamics of 

material media not is less important than dielectric and magnetic constant, and without 

it is impossible competent, physically substantiated, the description of material media.  
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