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Abstract

In this paper scalar-tensor gravity is derived fribve Schwarzschild solution
of General Relativity. The solution is also extethde a maximal and

complete manifold. A well-defined relationship beem the scalar product
of metric and the scalar field is revealed. A tiedical quantum test particle
is constructed on the basis of Compton wavelengthGeneral Relativity. It

is also demonstrated how the rest mass of sucliclpadepends on the
background geometry of the space, which explaiesctirrelation between
the scalar field and the curvature.

Introduction

This paper describes a step-by-step transformé&iom general relativity to a certain kind of
geometric quantum gravity. The basic concept was 1989 but it was first introduced only in
2000 [1]). At that time only the basic idea waslioed without extensive computations or detailed
explanation of the whole approach. This approadgisificantly different from the usual one.

This paper is a qualitative analysis based on kvelivn textbook computations. The main purpose
was rather to introduce and explain how this kihdumntum gravity related to general relativityaith

to provide a general mathematical solution of gneblem. Most of the results were obtained by using
pure textbook computations. For the case of sintplanly the static, spherically symmetric case is
covered here. Additional limitation is that albibits approach might raise several new quantitative
guestions, most of them are not answered here.

The content of this paper is organized into threénrohapters.

In the first chapter (“Geometry and topology ofdddnoles”) we analyze Schwarzschild metric, as the
simplest solution of General Relativity. First wiealiss the topology and the geometrical extensions
of the solution, then we describe two steps transfoy the solution into a form, which we consider
being appropriate for creating quantum gravity.

In the second chapter (“Relationship between (tgéometry and gravity”) we reveal that there is a
well defined relationship between the static cuk@bf space — in this case the Ricci scalar -tlaed
scalar gravitational potential.

In the third chapter (“Quantum test particle”) dmal step we introduce a special object — a
theoretical quantum particle — which is construaradhe basis of General Relativity. We demonstrate
how the mass of such particle depends on the airevaf the space —explaining at least qualitatively
the correspondence between the gravitation poteamtthbackground curvature.

Finally we try to sum up and draw a conclusionhaf paper as well as to make some
recommendations, wherever it seems to be reasonable
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Geometry and topology of black holes

There are several solutions of General Relativtywever the first and most frequently used one is
the static and spherically symmetric — so calleaw&ezschild solution. To keep things simple and to
be able to focus on the main purpose of this papewill also start over this special solution.

Standard coordinates

Schwarzschild solution of General Relativity usesdard coordinate system. In this special case
these coordinates are often called Schwarzschdddamates as well. The form of the metric is shown
in equation (1) [3].

(1) ds® = A(r)dt? + B(r)dr? +r?*(d8” + sin” &lg?)

We can state that this is a usual approach desgr#igiace-time. The main property of this coordinate
system is that the circumference of each centsgifgmetric sphere can be expressed the same as in
case of flat space. (See equation (2)) In genkeadlistances are preserved on the surface of the
centrally symmetric spheres.

(2) | =2rn

At the same time radial distances can be exprdss@dthe coordinates only by using the appropriate
metric coefficient. Consequently Schwarzschild domate system — as a projection — does not
preserve the shape of objects. (Which means thatse of a spherical objetXagia<AXe=AX,) We

will come back to this statement later, when we jgara coordinate systems, but first we will inspect
the geometry of the Schwarzschild solution.

Geometry of the Schwarzschild black hole

The geometry of the Schwarzschild black hole isalig(4] explained by a section of the black hale a
t=const.=I1/2 plane. The Gaussian curvature of this section is

(3) Roass = =55

where ‘' is the Schwarzschild radius and ‘r* is the radiabrdinate. The equivalent surface of
revolution — which has the same curvature — cagxpeessed as

4) z=1/rg(r—rg)

2/12



A pure geometric approach to derive quantum gravity from general relativity 2009-04-07

1. Geometry of the Schwarzschild black hole — equilent surface of revolution

It can be seen both from equation (4) and figutigal there is a split at the event horizon. Thig &p
caused by a coordinate singularity. There was aveayatural intention to get rid of this singubharit
and continue the model beyond this point. The ahtesolution of this question is so called
“Einstein-Rosen Bridge” [5], which is constructegiterging two Schwarzschild black holes at the
event horizon. (See figure 2. below) Let me remtr&f this is a space-like extension, as we used
t=const. surfaces.

2. The Einstein-Rosen Bridge

| sotropic coordinates

Schwarzschild solution can be transformed to iitre so called or conform-Euclidean —
coordinates. In this case the form of the metric is

(5) ds® = A(p)dt® + B'(p)(dp® + p°dE” + p* sin® &lg?)
wherep is the isotropic radial coordinate.

In isotropic coordinate the distances are not ejuebordinate distances in any direction; howeker
shape of the object is preserved. (In case of argath objectAx .qi.=AXe=AX,) Change of
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coordinates from standard to isotropic form of negi) is well known from textbooks [3][4]. Here
we provided the diagram as well (Figure 3), whielph us interpret the result of the transformation.

6  r= p(1+;—gp)2

r/rg

/T
0.5 1 15 prTe

3. Standard radial coordinate depending on the isobpic radial coordinate

From the diagram it is obvious, that the standadius can be defined as a function of the isotropic
one, while the inverse of this function gives anoloigs results. Question arises: which coordinate
system should we consider being the fundamentét Bvell known solutions and coordinate systems
are using or built on standard coordinates (Schevalzls Eddington-Finkelstein, Kruskal-Szekeres,
Penrose, Kerr [5]) but due to some major advantagegrefer using the isotropic one.

The main advantage of the isotropic approach istlieaevent horizon the boundary of the solution is
naturally extended beyond the coordinate singylafidditionally this extended manifold is found to
be maximal, as the geodesics either can be extdndhd infinity or terminates at the origin.
Moreover the manifold is geodesically completeth@scoordinate origin behaves like infinity: the
affine parameter along those geodesics, whicheanginating there, can also be extended to infinite
values. (The concept of Einstein-Rosen Bridgess abnfirmed by this approach.) [5]

It is also obvious from the figure that the domairstandard coordinate system is restricted to the
rg < r < eregion. Any speculation regarding to the regiarsiile” the event horizom (< r ) is
out of its domain therefore such result is phy$joaleaningless. (Using isotropic coordinate system
one can avoid this mistake and will find that Kilii vector never gets space-like.)

Properties of isotropic metric

There are some additional interesting propertigb@isotropic form of Schwarzschild solution, whic
can be read out from the metric. The metric itsaff be found in textbooks:

2

4
r
7 ds? = ‘:p dt? +(1+4—;j (do? + p?d6? + p° sin’ &lg?)
1+-%
4p

First we will have a look aqo. (See Figure 4) Ab=r 4/ 4 there is a minimum djqo, Which equals to
zero. At the origin the value @b, is one: the same value as it has at the infinity.
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4. gy of the isotropic metric of Schwarzschild black-ha

Then, if we have a look ajgwe can see that its value becomes infinity abtiggn. (See Figure 5)
Moreover if we integrate the path along a geodesidound that the path is infinite as well — as we
mentioned previously.
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5. a1 of the isotropic metric of Schwarzschild black-had

Therefore we can state that baifa andg,; indicates that the coordinate origin behavesihkaity,
which also confirms that this coordinate systeneadan extended Schwarzschild solution: both sides
of the Einstein-Rosen Bridge. According to this@agh we can interpret isotropic form of the
solution so that there is another universe insiBelavarzschild black hole. This picture might regnin
us of the multiversum theory of Lee Smolin [9][10].

Relationship between (static) geometry and gravity

Non-linearity and synchronization

General relativity is a non linear theory. Usuahis is the first and main reason mentioned if somae
tries to explain, why general relativity has noassful quantum theory. What does non-linearity
mean? What is the cause of it? Is it possibleitoieate this problem? To answer these questioss fir
we examine the mathematical representations we use.

In general we represent physical quantities withnpers, or vectors. Usually the union of two
guantities is represented by the sum of the vadasigned to the mentioned two quantities. Such
representation is called linear representatiorthelfrepresentation is non-linear, then for thatautd
first we have to transform the quantities to adingcale, then the result has to be transformeki thac
the original, non-linear representation. For crept quantum theory we prefer (and need) linear
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representation of quantities; therefore our fitgpds to eliminate this nonlinearity of general
relativity. [12]

As we stated in earlier articles [2][6] the maiolglem is the nonlinearity of the mass and energy
scale, which causes an ambiguity in the lengthesgsiwell. The root cause of the problem has been
addressed by physicists in the early 60s, like ®{d%, who wrote, that “(The statement that) a
hydrogen atom on Sirius has the same diameteresroiarth ... is either a definition or else is
meaningless.” The same holds for the rest masartitfes, which is in the context of General
Relativity independent of the location “by defioiti’.

In case of a static space-time such nonlinearitybeaeliminated by synchronization. [2][6] As auls
of the synchronization we decompose the 4D space-tito the product of a 3D space by the real
line, which might be referred in this special staase (if a preferred frame is bound to the
Schwarzschild black-hole) as universal time oeast a special-relativistic time.. With this separa
the mathematical complexity is reduced as welketoee we can easily examine further properties of
the solution. The real consequence is that enexgype expressed as

(8) &, = —CA5/ X,

MyC /oo

Ey =—F—,

9) 2
Y
Cc

which is also well known from textbooks [3]

Assuming free fall this amount — the sum energgmains unchanged during the movement of object
or particle. If we have a closer look to this etqpraive will conclude that this is not pure tensor
gravity any more, but scalar-tensor gravity, wheerest mass of particle is location dependent.[6]
More precisely

(10) M =my0e

Naturally the equation of motion differs from theual, as there is a new member [8][6] caused by the
scalar field.

1 .
(11) (d/ds)(mui)—Erngjk,iu‘uk -m, =0
This new, third member represents a real forcechvis actually the Newtonian gravitational

attraction.

After applying the aforementioned conform transfation the size of the particle is also not constant
it is inverse proportional to the rest mass [11]thee event horizon, whemg, as well asn is zero the
size of particle becomes infinite. (See the Comptanelength later.) We have to remark that infinite
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particle size indicates at least two things. Orthas particle disperses at such place; the seisahat

in such circumstances the dispersed particle willbe point-like, therefore the gravitational field
cannot be considered locally homogenous — violgtiegnain assumption behind Einsteinian
Equivalence Principle (EEP). It also means thaBimstein Vacuum Field Equation, and so General
Relativity is not applicable there.

d/do

8 8 &8 8

o/r
0.5 1 15 2 ¢

6. Locally measured relative size of particle

Curvature of 3D space

After we synchronized the space-time in this pref@frame with the applied conform-transformation,
we have a 3D curved space and an universal timectifvature of this 3D space can be expressed by
the Ricci scalar, which is

3r

12 R=-2"°_“—"
(12) 201+ 4r)?
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7. Ricci scalar of the 3D Schwarzschild space

The diagram of curvature (Ricci scalar) confirms assumption: that the space at the coordinate
origin behaves the same as at the infinity: saalavature is zero at that point too. The curvatury
has a single maximum and it is located at the elventon.

Additionally the diagram of the curvature of 3D spand g, before the synchronization seems to
correlate; therefore we tried to find the exactrelation, which is found to be:
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2
3 =1-4|—=(-
(13) Joo =1 \/3( R)

Even if this expression is a heuristic one and tnighuire at least some refinement in the current
form, we concluded and proved that gravitationaéptal is related to (and can be expressed from)
the geometry of space. This correspondence explaEncels the judgment of Brans and Dicke, who
stated that scalar product of the metric is inappabe to be a gravitational scalar field [8].

Let us remark, that this correspondence is naftrat all, because in this extended domain
(0 < p < «)neithergoo NOrRi cci are bijective functions, consequently their ineeissnot a
function.

The last thing that we will analyze in this papenvhy and how the curvature affects the rest-roass
particles.

Quantum test particle

In this chapter we will introduce a theoretical guan test particle [1], which is not only theoratic
but also instable construction. Still it is suiefdr demonstrating how the curvature of space can
affect the rest-mass of a patrticle.

Theidea of quantum particle

There are two characteristic sizes or lengthsaaatbe assigned to an elementary object. Theofirest
is the Schwarzschild radius, which is

_2Gm

S C2

(14) r

The second one is the Compton wavelength. If onddvdke to create standing wave from a radiation
of Compton-wavelength as closed loop, the raditgisfformation (hereafteguantum radius -r o)

also depends on the number of full waves: a quamiwmber (hereafterk”). The expression for the
mentioned quantum radius is

k hk
(15) rIQ = ZTACompton = 2—

How can these two things be merged?

We can imagine a black hole. It is well known, tthegre is a certain sphere3t2 r s [3][4] which is
suitable for creation of electromagnetic standirayes. We will call igeometric radius { o). Of
course such wave has its own energy that increhseest mass of the actual black hole, but usually
this increase is so small, that it can be negledtedv let us imagine an extreme situation, when the
black hole is so small that this increase is sigaift, in even more extreme situation the whole res
mass (energy) arises from this spherical standisnpwWe call this latter formation a “theoretical
guantum particle” [1].

The geometry of such formation is easy to imaginsvo dimensions (see the figure below), but we
need to extend it to 3 dimensions; so the standnge must be spherical. We have to admit that the
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whole formation is not realistic, because evehédfénergy distribution is spherical, it is instalaley
deviation causes the wave either to fall into tbke for disperse. Yet we will use this theoretical
construction, because it is suitable for studyiogligatively how such kind of geometrical
constructions behave in curved space.

8. Theoretical quantum-particle in 2D

There is quantum a solution for the particle sireemthe geometric and the quantum radiuses are
equal ¢ 4=r o). Of course there are different solutions for eqeantum number, which is shown on
the following diagram.

m
0.5 1 15 2

9. Particle size i=G=c=1) for different quantum numbers (k=1, 2, 5)

The exact solution for each quantum number alsmeteits rest mass. The mass of such theoretical
guantum particle can be expressed as

hc
16 m, =K. ——
(18) K 871G

From this equation it seems that — in clase andGare real constants — rest mass is a definite and
constant value for each quantum number.

The effect of background curvature

In the previous subchapter a geometric quantunicahas been introduced. Here we examine how
the size and the rest mass of such particle aeetaff by the curvature of the background space. For
the case of simplicity when we refer to its valve,use uniform background curvature in all
directions and use the relative inverse radius®fcbrresponding 3-sphe € rs/ R).

First we examine how the geometric radius of atfpla’ with constant mass depends on the
background curvature. This dependency can be seequation 17 and figure 10.
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10. Relative change of the geometric radius depemdj on the background curvature

From the diagram we can read out not only thasie of the particle increases with the background
curvature, but it seems that the size gets infaite certain, critical curvature level.

Going one step further we can recall that parscte is a quantum radius, which is related to the
Compton wavelength, therefore if the size increases the rest mass and the corresponding
Schwarzschild radius have to decrease — somewhgiartsating the original change. (See Figure 11.)
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11. Relative change of the particle size — dependjon the background curvature

On figure 11 we can see that the overall changedase) of the particle size is smaller than it was
seen in case of constant particle mass; howevgrdtiele size still gets infinite at a critical
background curvature.

As we mentioned the mass of our theoretical quanarticle also changes with the background
curvature. We expressed this variable rest massegiiation (18) (substituting=1, h=1, c=1, k=1)

7 (—97r4Q+‘\/§'\/—27r9+277r8q2

(18) m= S — +
2613 (<974 g3 V2794 27 8 2) " 262/ n2

) 1/3

This dependency is illustrated on the followinggulam.
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12. “Gravitational” red-shift — caused by the backgound curvature

We concluded that the rest mass of such particdesdses with increased curvature. Let us also
remind that this relative decrease of mass caretextibd as “gravitational” red-shift.

This correspondence means that in our model thetire of background space can represent the
scalar field which is actually the basis of ourlacgéensor gravity. The results have also confirmed
that this geometric construction is a good candifiat being a test particle and illustrating the
behavior of such quantum gravitational theory.

Conclusion

In this paper we described three steps starting flee Schwarzschild solution of general relativity
a certain kind of geometric quantum gravity. Fwst transformed the solution to synchronized
conform-Euclidean coordinates then we revealeddneslation of the static geometry and the
gravitational potential, finally we described a getrical quantum test-particle, which explains this
correlation. In general we used computations austormations which are well known from
textbooks.

We concluded that the quantum gravity introducettii; paper is able to derive gravitation attractio
from the geometrical deformation of space withawt Borce-carrying particle (e.g. graviton), or
mysterious field. The paper might also induce alumental review of general relativity. There are
topologic and cosmological conclusions as well aose in this paper we confirmed the multiverse
theory and gave a new basis of explaining the ¢ionlwf universes.

There are many additional things to do to refing theory. We mention only some of them, like
refinement of the correspondence between gravitatimass and metric, which is essential; and
enhancing the particle model and the correlatiawéen the scalar-products of metric, and the
gravitational-potential — which is also a big cbatje. We have to mention the non-symmetric and non
static case as well as the multi-object problem.

I would like to thank a couple of physicists whdg®sel me with advice and guidance to labor and
polish this theory. Thanks for their openness aattéepce reading and reviewing my ideas and theory,
when it was not even semi-finished.
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