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We show that when spin eigenfunctions are not fully orthonormal, Bell’s inequality does allow
local hidden variables. In the limit where spin eigenfunctions are Dirac orthonormal, we recover a
significant extremal case. The new calculation gives a possible accounting for αMCM − αQED.

As it has been understood, Bell’s inequality rules out
the new variable proposed in the MCM. No analytic form
has been found for the eigenfunctions of the spin opera-
tor but it is assumed they are orthonormal. In this short
paper we examine the case when spin eigenfunctions are
not orthonormal [1]. Derivation of Bell’s inequality of-
ten starts with a statement of the average value of the
product of the spins when the detectors are aligned along
spatial unit vectors ~a and ~b and θ is the angle between
them [2].

P (~a,~b) = −~a ·~b = − cos(θ) (1)

This is derived by taking the expectation value of the
product of two spins in a singlet state. Moving directly
to the end of that calcluation we find the following.

P (~a,~b) =
sin(θ)√

2
〈0 0|1 − 1〉 − (2)

− cos(θ)〈0 0|0 0〉+
sin(θ)√

2
〈0 0|1 1〉

When spin states are othogonal, equation (2) reduces
to equation (1). When they are not orthogonal, the sin(θ)
terms do not go to zero. Let the magnetic quantum num-
ber distinguish δ± [1].

P (~a,~b) = δ− − ~a ·~b+ δ+ (3)

Bell’s inequality is derived from the difference between
P (~a,~b) and P (~a,~c). Using the normal prescription [2]

that−~a ·~b = A(~a)A(~b) and moving to the hidden variable
formalism, we may write the following.

P (~a,~b) −P (~a,~c) = (4)

=

∫
[1−A(~b, λ)A(~c, λ)]A(~a, λ)A(~b, λ)ρ(λ) dλ

+

∫
(δab− − δac− )ρ(λ) dλ+

∫
(δab+ − δac+ )ρ(λ) dλ

The system in question decays to two particles so it is
not possible to directly test the theory’s prediction for
three different detector alignments {~a,~b,~c}. The exper-
imenter would have to perform a test in one apparatus
configuration {~a,~b}, then reconfigure the table for {~a,~c}

and take more data at some later time. In the process of
reconfiguring, the observer moves to a different level of
ℵ so δab 6= δac [1]. The delta resultant from the earlier
measurement is infinitely smaller than the later one and
can safely be ignored. When the deltas are integrated as
the Dirac delta, we find the extremal case in which local
hidden variables are always allowed.

|P (~a,~b)− P (~a,~c)| ≤ 3 + P (~b,~c) (5)

There is an asymmetry in equation (4) that will ruin
equation (5) when the surviving deltas are negative.
Hence, we require that −δ± = δ∓. Since the deltas are
the source of space and time [1], and {−+++} spacetime
is indistinguishable from {+ − −−} spacetime, it seems
this requirement can be accomodated.

Now consider the case when δ± are integrated accord-
ing to the prescription in reference [1].

|P (~a,~b)− P (~a,~c)| ≤ 2π + (Φπ)3 + 1 + P (~b,~c) (6)

The definition α = 2π+(Φπ)3 +1+P (~b,~c) both allows
and tightly constrains a varying fine structure constant.
This also presents a possible accounting for the small
discrepancy between the predicted value αMCM and the
empirically determined one αQED. Taking αMCM as 2π+
(Φπ)3 + 1 we arrive at the following.

αMCM − αQED = P (~b,~c) ≈ 1.59 (7)

Obviously 1.59 cannot arise in the product of two unit
vectors so we may assume a form ~b · ~c = ê1 · Φê2 giv-
ing θ ≈ 11.5◦. While that angle doesn’t ring any Bell’s,
this formulation is in good agreement with the idea that
the fine structure constant is a feature of the geometry
between adjacent moments where reality in the later mo-
ment is scaled by Φ [1, 3].
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