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Part 4  
 
 

THERMODYNAMIC ANALISYS OF PHENOMENA AT SCIENTIFIC                  
DISCIPLINES INTERFACES 

 
 

 
 
 
 
 
 
 
To solve problems arising at the boundary interfaces between funda-

mental disciplines, a theory is quite necessary allowing a unified descrip-
tion for physical, chemical, biological and the like properties and forms of 
the material world. Hereafter a thermodynamic theory of such a type will 
be brought forward as applicable to transfer processes regardlesss of the 
field of knowledge they belong to. This theory will not only expose the 
unity of regularities in progressing transfer processes pertaining to vari-
ous scientific disciplines. It will provide an absolutely other interpretation 
for origin of multiple thermomechanical, thermodiffusional, thermoelec-
trical, thermomagnetic, electromechanical, thermogalvanomagnetic, etc 
effects appearing at simultaneous progress of dissimilar processes. It will 
be shown that these effects are caused not by synergism (mutual intensifi-
cation) of irreversible processes as commonly accepted, but, on the con-
trary, by their counterdirectivity and the associated partial reversibility. 
Thereby one more step will be made on the way toward the unified theory 
of energy conversion in any forms, which is the primary content of ener-
godynamics.  

This theory will have also a pronounced applied character owing to 
the wide application of the mentioned effects in modern manufacturing 
processes. 
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Chapter 15. 
 

FUNDAMENTAL UNITY OF ENERGY TRANSFER PROCESSES 
 

A great number of disciplines study energy transfer processes in 
solid, liquid and gaseous media, plasma and electromagnetic fields: 
physical and chemical kinetics, the theory of irreversible processes and 
continuum mechanics, statistical physics and acoustics, optics and hydro-
dynamics, electrodynamics and magnitohydrodynamics, high-energy 
physics, etc. Each of these disciplines has its own methodological fea-
tures, notional system and specific body of mathematics. In this context it 
is a matter of great significance to reveal the fundamental unity in de-
scription of these processes and to ascertain the basic regularlities of their 
kinetics. These are the problems that predetermine the contents of this 
chapter.  

 

15.1. Wave-Forms-of-Energy Transfer Processes 

    In modern physics matter is subdivided into substance and field. 
Substance means a set of discrete formations having a rest mass (atoms, 
molecules, etc), whereas force field (gravitational, electromagnetic) 
means a continuum having zero rest mass. However, from the positons of 
the quantum theory this difference practically disappears: field loses its 
continual character with introducing quantums – photons and gravitons, 
while the matter particles – protons, neutrons, electrons, mesons – lose 
their discrete properties and become quantums of the corresponding fields 
(nucleon, mesonic, etc) featuring rest mass. The most widespread theory 
of elementary particles called “Standard Model” assumes specific parti-
cles – interaction carriers – spreading in void space with a constant (limit) 
velocity and existing for each kind of interaction. These particles do not 
have rest mass and move with a constant velocity omitting the accelera-
tion and deceleration stage. Therefore the concepts and laws of mechanics 
are inapplicable to them. No wonder thus that such a theory is able to sat-
isfactorily explain neither the origin of particles – interaction carriers – 
and their variety, nor the ‘wave-particle’ dualism, nor the fact of proton 
simultaneously passing through two holes and its self-diffraction. More-
over, the explanation in the Standard Model that the interaction is an irra-
diation and absorption by matter particles of some other particles means 
the latter have been a part of the composition, which makes the process of 
searching for “elementary” (fundamental) particles never-ending, as a 
matter of fact. In short, such corpuscular theories raise more problems 
than solve. 
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These shortcomings are not intrinsic to the wave theories assuming 
some medium of wave propagation – either solid, liquid, gaseous bodies, 
or electromagnetic field that is construed now as a specific kind of matter, 
or ether that, on the contrary, is not so far considered as matter1.  

Meanwhile, ether should have been long considered as an indispen-
sable component of any material system. N. Tesla’s experiments are one 
of the weighty argument in favor of such a standpoint . In his attempts to 
reproduce in 1889 the Hertz’s experiments (1987) he discovered a radia-
tion of absolutly specific kind. The radiation that he called “radiant” ap-
peared in the secondary winding turns of his transformer that tranformed 
high-voltage discharge rates. It came from the copper wire surface and 
spread as a gaslike shining cloud that, however, could not be photo-
graphed. That radiation had a terrific permeability – even metal screens 
impermeable for electromagnetic waves were not a barrier for it. At a 
pulse duration above 100 µsec those waves exerted a painful “shock” in-
fluence on the human organism with no protection against. Those waves 
generated a spatially distributed voltage that was thousands times as high 
as the initial voltage on spark discharger and amounted to many millions 
of volts. That radiation generated a charge equivalent to a very high cur-
rent on the metal object that were on its way. That radiation easily pene-
trated through degasified devices and caused a bright glow of burned-out 
bulbs. In a row of in-series lamps copper bus-bridged the “radiant” energy 
flux chose the max-resitance path, whereas usual electric current passed 
through the bus. Based on those and other distinguishing features, N. 
Tesla came to a conclusion that the radiations he discovered were “waves 
in ether like radio waves and light”. 

While the Maxwell theory lead to an idea that the electromagnetic 
waves were a series of electrical disturbances (quite low electric currents) 
that became consequently exited in ether, the N. Tesla’s experiments re-
sulted in something other since ether is electrically neutral. That meant 
that ether as itself did not have electromagnetic properties – such oscilla-
tions appear in the Hertz vibrator (antenna) and then transform into ether 
vibrations. These are the vibrations ether transfers to the resonator – a de-
tector wherein they are transformed into electromagnetic oscillations 
again. Hence it followed that ether was an a mediator transporting the en-

                                                 
1 Despite the fact that A. Einstein himself, who “ousted” the ether from theoreti-
cal physics when created the special reletivity theory in 1905, had to ackoowldge 
as soon as in 1924: "In theoretical physics we cannot do without the ether as a 
continuum provided with physical properties” // A. Einstein “About ether”, 1924, 
Transactions, M., Nauka, 1966, v. 2, p. 160. 
 
 



 266 

ergy of electromagnetic oscillations ocurred in a substance within any 
frequency spectrum, i.e. vibrations of another nature. 

As a staunch supporter of such a non-electromagnetic nature of the 
radiant waves, N. Tesla in 1889 visited H. Hertz and made an attempt to 
pursuade him in the fallaciousness to interpret the oscillations the latter 
had discovered in space as electromagnetic ones. However, this fact has 
usually been hushed up in the history of science and in teaching literature. 

Me anwhile, many enough factors have been accumulated to date evi-
dencing the existence of a non-electromagnetic radiation. At least a dozen 
names given to this radiation by various investigators are known today. 
Recollect just some facts. Yet in 1906 the professor N. P. Myshkin re-
ported an absolutely inexplicable behavior of a thin mica disc suspended 
on a finer thread inside a copper vessel heat insulated and screened with a 
light-tight paper. The disc twisted the thread in response to the can-
dle light, displacement of people and inanimate objects relative to 
the disc and sometimes with no obvious reason at all. 

In forties-fifties of the last century the doctor Reich, a Freud’s col-
legue, elaborated a number of physical devices to detect and log an un-
known nature he called the “orgonom”. 

In 1948 the astrophysicist N. Kozyrev discovered a specific kind of 
radiation exisiting and penetrating through the telescope objective lens 
shuttered with a metal blind. Those experiments were then repeated by 
other investigators who confirmed the superphotonic propagation velocity 
of those radiations. A component of a non-electromagnetic nature have 
recently been discovered in the radiation from the small-capacity optical 
quantum generator (V.V. Kvartalnov, N.F. Perevozchikov, 1999). 

There are two more facts evidencing the different nature of oscilla-
tions in the Hertz vibrator and in ether. As Maxwell repeatedly stressed, 
his theory was based on the concept of interconversion between energies 
of electric and magnetic fields. The same follows from the thermody-
namic derivation of Maxwell’s equations (8.2.15) – (8.2.16) in Chapter 8 
from the law of their sum conservation. However, from the Maxwell’s 
equations derived it follows that in electromagnetic waves radiated the 
magnetic wave antinode corresponds to the electric wave antinode (in-
phase waves), which leads to an obvious violation of the law of electro-
magnetic energy conservation in free space. This contradiction can be 
removed by acknowledging the fact that the electric and magnetic com-
ponents of electromagnetic wave have different power and by including 
into the energy balance a third component – ether wave. The validity of 
such an assumption is confirmed by the fact that no a least perceptible 
magnetic component available in space has been experimentally proved 
so far. 
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We have considered the above in order to show the possibility of en-
ergy transfer in space by ether waves not resorting to model representa-
tions of their physical nature (hydro-acoustic, electromagnetic, gravita-
tional, etc) and considering them to be independent of the nature of oscil-
lations in their source. This opens a direct way to the unified theory of 
field since the travelling waves the in any medium may be interpreted as 
periodical disturbances of this medium spreading therein with a certain 
velocity depending on only the medium properties. In this respect espe-
cially attractive are the wave theories based on the model of solitons – 
solitary waves featuring corpuscular properties (see Chapter 9). Such 
theories eliminate the wave-particle dualism problem and allow a unified 
description of transfer processes in substance and field using such con-
ventional parameters of material media as density, coefficient of elastic-
ity, velocity of disturbance propagation, etc. These parameters allow find-
ing kinetic and potential energies of travelling wave of any nature (hydro-
acoustic, electromagnetic, ether) by representing their sum Ев in the uni-
fied form of (9.1.6). Then a possibility appears to introduce the notion of 
force causing the energy transfer in these media, to explain the transfer 
velocity variation with changing from meduim to medium, to find the 
conditions of disturbing equilibrium between field and substance and to 
quantitatively describe the energy exchange between them. 

To show that the energy transfer by any type of waves obeys the 
same transfer kinetic equations as for the substance forms of energy, use 
the general expression for their energy densities (9.1.6). The total varia-
tion of the energy Ев(r, t) with time is known to include, besides the local 
derivative (∂Ев/∂t), also the component (vв∇)Ев caused by the energy 
transfer in space. According to energodynamics this component may be 
represented as the product of the energy carrier flux Jв and the thermody-
namic force Хв causing it. According to (9.1.8) 

 
drEв/dt ≡ (vв⋅∇)Ев  = Aвνvв∇(Aвν) = – Jв⋅Хв ,                   (15.1.1) 

 
where ψв = Aвν – wave potential that could reasonably be called ampli-
tude-frequency; ρJв = ρψвvв – soliton flux density (Chapter 9); vв – veloc-
ity of solitons; Хв = – ∇(Aвν) = – ∇ψв . 

This expression is identical to (8.5.4) for electrical and magnetic 
fields E⋅jес and H⋅jмс, where the motive forces Хе and Хм are construed as 
electric and magnetic intensities E and H, respectively. 

As earlier noted, the displacement fluxes differ from the material en-
ergy carriers considered in the theory of irreversible processes because 
they do not cross the system borders together with the energy flux, i.e. are 
internal ones. In other respects they show up as similar to the material 
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fluxes, i.e. are the energy carrier redistribution process causing the system 
energy ordering. 

Thus the fluxes of field and matter energy forms feature the unified 
interpretation in energodynamics. This unity is not just formal (descrip-
tive), but bears a deep physical nature. In particular, the wave field can 
also exert force influence like the gravitational and electrostatic fields. To 
expose the nature of the wave force influence, let us take into account that 
any wave is a bilateral deviation of some varying value from its equilib-
rium, i.e. generates the spatial heterogeneity of the medium wherein it is 
propagating. To find the distribution moment Zw describing this hetero-
geneity, let us select from an arbitrary wave sequence a part with the mo-
notonous increase or decrease of the varying values (in our case the den-
sity ρw of the parameter Θw (Fig. 15.1)). 

The crosshatched regions in this figure describe the Θw value 
“deficiency” forming as a result of the Θw transfer in oscillating process 
from one space region to another. As a result the centers of the values Θw' 
and Θw" equal to the crosshatched regions are displaced from the positions 

rо' and rо" they would occupy at a uni-
form distribution of ρw for a quarter of 
period to positions r' and r". The dis-
tribution moment Zw in this case will be 
descrided by the expression (1.5.6) 
wherein the elements dΘi are replaced 
by Θw

*: 
 

Zw = r' Θw'  + r"Θw".     (15.1.2) 
 

It is significant that the summands 
(15.1.2) are not compensated, but sum-

marized since the signs of Θw' and  Θw", 
as well as of the displacements (r'–r'о) 
and (r"– r"о) are opposite. This allows 
representing (15.1.2) in the same form as 

the dipole moment: 
Zw = Θw

*∆r ,                                       (15.1.3) 
 
where ∆r = r" – r' – analog of the electric or magnetic dipole arm. This 
allows finding the motive force for the wave form of energy exchange in 
the same way as for the polarization processes, i.e. as the derivative of the 
wave energy Uw with respect to the distribution moment Хw  = – 
(∂Uw/∂Zw). Thus should oscillations arise in some medium, it appears to 
be locally polarized. The scale of the spatial heterogeneity thus generated 
can be several orders lower than for the long-range gravitational and elec-
tromagnetic forces, therefore the resultant Хw for macrosystems as a 

Fig. 15.1. To formation of    
         distribution moment  
         in single wave 

ρw
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whole may appear to be zero. However, for microsystems (i.e. at atomic 
and subatomic levels) such a heterogeneity can play a decisive role in the 
energy exchange between field and matter. 

It is significat to note one feature of the wave force influence associ-
ated with the steepness of wave edge. For this let us express the wave 
amplitude Ав  in terms of the wave length λ by introducing the wave form 
factor kв through the relation: 
 

 kв = Ав/4λ  .                                         (15.1.4) 
     

        The possibility of such a relation Ав = Ав(λ) becomes especially evi-
dent when representing the half-wave profile in Fig. 15.1 as an equivalent 
pulse of the triangle form with a height of 2Ав and a base of λ/2. For such 
a wave the form factor kв is equal to the quadruplicated cosine of angle of 
triangle side inclination (dashed line), i.e. describes the “steepness” of 
wave edge. Because of ν = vв/λ, the wave energy Ев can be expressed as  
 

Еv =8ρ vв2 kв2,                                           (15.1.5) 
 
i.e. as the function of wave form and phase velocity. 

Thus the steeper the wave edge, the greater the wave influence on 
matter. This is not the least of the factors to explain the specific character 
of waves forming in spark dischargers. 
        It is significant that all the consequences from the energodynamic 
consideration of the field energy forms are not based on whatever model 
representations of ether and physical vacuum, structure and properties of 
“field-forming” material objects, as well as origin of “particles” carring 
energy in space. This imparts the required generality to the conclusion 
about unity for the field forms of energy and their transfer processes. The 
appropriateness of considering the wave form of energy in the same rank 
with the force fields is confirmed by experimental data evidencing the ex-
istence of “solitary” waves (solitons) having the properties of particles. 
This provides a natural explanation for the wave-particle dualism and re-
moves a major part of difficulties stated here for theoretical physics. The 
heuristic value of studying the field forms of energy will also be con-
firmed hereafter by multiple example of “over-unity” devices which op-
eraion can be easily explained by disturbed equilibrium between field and 
matter and by energy exchange arising between them. 
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15.2. Energy Transfer at Force Field Deformation.                                
Potential Retardation  

 
Comprehending that fields are generated by not the charges, masses 

or currents, but by their heterogeneous distribution in space enables a new 
view for the long-history problem of the “retarded potential”. It is quite 
evident that as any of the “field-forming” bodies or charges are moving 
the fields “deform”, i.e. not only the field strength in the same points of 
space varies, but also the field configuration as defined by field heteroge-
neity. Since the propagation velocity for such field disturbances is finite, 
the field influence on test bodies or charges occurs with some retardation. 

C. F. Gauss was the first who contemplated the consequences of that 
phenomenon later called the “potential lag”. In 1835 he discovered the 
law of magnetic interaction dynamics, which considered the relative ve-
locity v of the interacting charges. He reckoned that if the rate of propaga-
tion of the interaction potential was finite, then it reached the moving 
body with some lag. This lag increases with increasing the velocity vr ≡ 
dr/dt of the bodies moving away from each other along the line connect-
ing them. When the velocity vr reaches the interaction propagation rate c 
for a particular medium, the force Fe one charge Θe' acts on the other Θe, 
becomes equal to zero, which is the fact that must be considered in the 
law of the charge interaction: 
 

 
2 2

e e r
e 2 2 2

o

3v v(1 ), (15.2.1)
4 2

′Θ Θ= − +
πε

F
r c c

 

 
According to this equation the potential lag coefficient with bodies 

uniformly moving away is equal to 3vr
2 /2c2, where c – interaction propa-

gation rate for a particular medium, which depends on the interaction 
mechanism. Since this mechanism is unknown, empirical laws are 
needed, which would enable checking the regularities found heuristically. 
E.g., Ampere’s law for interaction of two current-carrying conductors 
could become such empirical law. So the first step was essentially made 
from electrostatics to electrodynamics.  

However, Gauss died and failed to publish his discovery. He could 
but send a letter to Weber, where he described his consideration on that 
point. Weber, who obviously did not approve the Gauss’s reasoning, pub-
lished in 1846 instead of the Gauss’s formula his own law of electrody-
namics in the form: 
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2

e e r
e 2 2 2

o

v r(1 ), (15.2.2)
4 2

′Θ Θ= − +
πε

F a
r c c

 

 
where Θе, Θе' – interacting point charges, C; r – distance in-between 
them; vr

2/2c2 – lag coefficient; аr/c2 – coefficient of the radiation caused 
by the charge acceleration а = |a| = d2r/dt2.  

Weber represented this relationship as some formalism without re-
vealing the cause-effect chains it contains. In particular, he interpreted the 
value “c” as a coefficient of conversion from the electrostatic to electro-
dynamic system of units. The true sense of expression (15.2.2) as an ac-
tion lag law remained not quite clear even after Weber together with 
Kohlrausch had experimentally shown the equality of the coefficient “c” 
to the velocity of light for electromagnetic phenomena. Therefore, Helm-
holtz and Maxwell, two outstanding physicists of that time, interpreted 
the Weber’s formalism as a reflection of the long-range action law in-
criminating it as a violation of the energy conservation law and harshly 
criticized it. However, after Weber had published the Gauss’s letter in his 
collection of scientific papers in 1867, Maxwell having acquainted with 
Weber’s reasoning changed his opinion and dedicated the whole chapter 
to the lag phenomenon in his “Treatise on Electricity”. He showed there 
that both laws – Gauss’s and Weber’s – were derived from Ampere’s law 
and within the short-range action concept did not contradict the energy 
conservation law. Maxwell, the first who perceived that light was elec-
tromagnetic oscillations, correctly interpreted Weber’s law having indi-
cated its connection with the “potential lag” phenomenon.  

In 1898 P. Gerber as a result of the similar reasoning regarding the 
gravitational potential lag obtained a new law similar to the law of We-
ber’s electrodynamics: 
 

 
2

2 2 2m
v ar(1 3 6 ) (15.2.3)

′⋅
= − +F

M M r
r c c

 

 
where М, М' – masses of the interacting bodies. This expression corre-
sponds to the gravitational potential in the form: 
 

 g (15.2.4)2(1 v / )r
ϕ =

−

′

r c

M
 

 
According to Gerber the potential lag per unit time is proportional to 

the multiplier rvr/c. A somewhat different result will be obtained if pro-
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ceeding from the Lorenz-invariance of Maxwell’s laws (R. Feynman, 
1977): 

                          e

lag
e . (15.2.5)

4 ( / )ο

Θ
ϕ =

πε − ⋅

′
v rr c

 

  
Here all the values in brackets 

(distance r to test charge, velocity v of 
field-forming charge, vector direction 
r) are calculated at the “lagging” in-
stant of time t'. This potential is named 
the Lienar-Vihert potential. This, as 
well as (15.2.4), assumes the vector r 
direction toward the test charge to be 
the positive direction. According to 
(15.2.5) the field potential increases 
when two point charges are moving 
toward each other (v⋅r > 0) and de-
creases when those are moving away 
from each other (v⋅r < 0). However, 
this decrease does not lead to the po-

tential becoming zero at v/с = 1, which contradicts the Gauss’s stand-
point. Furthermore, when the charges are moving toward each other with 
a velocity of c, this potential becomes equal to infinity.      

Due to the unacceptability of both results it is reasonable to clarify 
the notion of potential retardation. Like the relief, the field and its poten-
tial themselves move to nowhere and can only change with time. There-
fore the stationary fields never and to nowhere “retard”. Only the varia-
tions of potential caused by the relative movement of any of the field-
forming bodies, charges and currents or by their variation with time, i.e. 
the field deformations, can “retard”. Strictly speaking, this refers to the 
test charges, too, since the ratio of the force Fe to their value Θe is defined 
for them by the same field potential1. 

Because both of the results are unacceptable, it is advisable to clarify 
what the potential lag means. Like a relief, the potential as itself moves 
nowhere and, therefore, never lags. Only the potential variations caused 
by the relative displacement of each of the field-forming bodies or 
charges may “lag”, i.e. the field disturbances.  

Let a field-forming body with a charge of Θе' move along an arbi-
trary path 2'–2 (Fig. 15.2). Let us assume that at some instant t' when the 
                                                 
1 Here the conditionality of the notion of “test” charge or body as values not 
causing field deformation shows up. 

.
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distance in-between the body and the test charge Θе' is equal to r' these 
start moving away from each other along the line connecting them with a 
velocity of vr = v⋅r/r. In this case the true value of the lag Δt can be calcu-
lated as the sum of the elementary lag times dt = dr/(сi – vr) found by the 
absolute velocity (сi – vr) of spreading the front of this disturbance out in 
space: 
 

 
i r i r

, (15.2.6)
c v c v

Δ = =∫ − −
dr rt  

where i rc , v – mean velocities of spreading the interaction in a particu-
lar medium and moving the charges or bodies away from each other, re-
spectively. 

According to this expression the potential lag is absent, if the bodies 
are mutually immobile (r = r') or there is no field variations (disturbance 
and its displacement are absent and dr = 0). Furthermore, Furthermore, it 
becomes infinity when r iv c= , which meets the Gauss’s ideas as well. 
This principally distinguishes expression (15.2.5) from the preceding 
ones, where the lag was taken equal to Δt = t – t' = r'/с, i.e. was always 
different from zero, did not depend on the relative velocities of the bodies 
or charges and, against Gauss, did not become infinite when the velocity 
vr of the bodies moving away became equal to the velocity сi of spreading 
the interaction of a particular kind.  

Let us assume that at some instant t' when the distance in-between 
the body and the test charge Θе' is equal to r' these start moving away 
from each other along the line connecting them with a velocity of vr = 
v⋅r/r. In this case the true value of the lag Δt can be calculated as the sum 
of the elementary lag times dt = dr/(сi – vr) found by the absolute velocity 
(сi – vr) of spreading the front of this disturbance out in space: 

 
         r' – r = rv Δt.                         (15.2.7) 

 
It is the interval Δt that will become the lag time of variations of the 

potential φ(r,t) considered as a function of current state, i.e. the field co-
ordinate r and the current instant t. The value of this “lagging” potential, 
as can be easily seen, is defined by its magnitude φ(r',t') at some preced-
ing instance t' when the distance in-between the bodies was r'. Consider-
ing (15.2.5) and (15.2.6) jointly gives: 

 

r i

(15.2.8)
1 v / c

′ =
−

rr  
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Due to this connection between the current and “lagging” positions of 

the interacting bodies or charges the value of the “lagging” potential 
φ(r,t)lag at the instant t is defined by its “preceding” magnitude φ(r',t') 
multiplied by the fudge factor  ( r i1 v / c− ): 

 
φ(r,t)зап  = φ(r',t')( r i1 v / c− ).                      (15.2.9)     

 
This potential differs from the Lienard-Wiechert potential because at 

vr = сi it becomes zero, but not infinite. In this case the force F = – (∂φ/∂r) 
acting on the test charge from the field will become zero in both cases – 
with the field-forming body moving away from the charge and with the 
test charge moving while the field-forming charge varies only with time. 
This completely conforms with Gauss. It is natural that with the field re-
duction the field-caused acceleration of the test charge will be also reduc-
ing. In the special relativity theory (SRT) this phenomenon is interpreted 
as the growth of test body mass М relative to the rest mass Мо. However, 
in view of the ideas expounded such a growth of mass up to infinity is 
only apparent, while the point of the phenomenon lies in the reduction of 
the force and acceleration of the charge this force causes. 

Another difference from the Lienard-Wiechert potential is that the 
expression (15.2.9) operates the mean velocities of the body–wave front 
relative motion, whereas in (15.2.2) and (15.2.3) for definition of the 
force F as a derivative of the potential φ the acceleration of charges or 
bodies is considered. It is quite evident that when the resultant motive 
force F becomes zero an acceleration of charges or bodies is impossible 
so that in expressions (15.2.2) and (15.2.3) at F = 0 the acceleration-
containing term should have disappeared regardless the values of other 
terms. In other words, the possible non-uniformity of the relative motion 
of charges or bodies, as well as of the velocity of interaction spreading in 
a heterogeneous medium should not tell on the value of the lagging term 
which according to (15.2.6) depends on only their mean values.  

Not less important should be the fact that expression (15.2.8) con-
tains not the velocity of light c in vacuum, which is constant, but the ve-
locity сi of interaction spreading in a particular medium. This depends on 
the properties of the material medium where the ith kind interaction is 
spreading, on the relaxation process “mechanism”, on the field nature, 
etc. This is especially evident from the positions of energodynamics, ac-
cording to which the force fields are generated by not bodies, charges or 
currents as themselves, but their non-uniform distribution in space. In 
such a case any variation of the field results from the redistribution of the 
bodies, charges and currents in the space filled with a field-forming sub-
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stance. The rate of this process generally differs from the rate of electro-
magnetic interaction spreading in the void. E.g. for the magnetic field 
formed by two mutually moving permanent magnets it may be limited to 
the rate of reorientation of magnetic domains in them and be many orders 
lower than the velocity of light in vacuum. In this case the potential lag 
effect will show at not only the so-called “relativistic” velocities compa-
rable with the velocity of light in vacuum, but even at moderate velocities 
of the magnets moving relative to each other.  
This fact casts a new light on the “self-sustained rotation” effect, which 
defies a theoretical explanation and was first discovered by J. Serl (Swit-
zerland) in the fifties of the last century. This effect consists in perpetual 
rolling of magnetic rolls on the cylindrical surface of a multilayer or seg-
mented permanent magnet after imposing a minor momentum on one of 
these rolls. That effect was later observed in the experiments of V. Rosh-
chin and S. Godin, who constructed in 1992 a generator they called the 
“magnetodynamic converter” – similar to the Serl’s one, with a 350 kg 
self-rotating rotor, and also in the experiments with the self-rotating 
Hamster wheel. It is important that the “self-sustained rotation” phe-
nomenon stably shows in also the electrostatic current generators “Tes-
tatica” which are a modernized electroforous Wimshurst generator. This 
phenomenon appears at certain conditions in also the magnetic motors, 
which rotor and stator are a set of permanent magnets similar to the mag-
netic track of the Minato wheel (see Chapter 22). In the last case the 
torque appeared is especially evident and explained by the change of the 
velocity sign in (21.2.8) with the permanent magnets moving toward and 
subsequently away from each other, which causes inequality of the attrac-
tive and repulsive forces. A new understanding of this phenomenon and 
the justified possibility of its appearance at yet moderate rates of the rela-
tive motion may contribute to its even wider practical application.  
 

 
15.3. Maxwell’s Equations Generalization Allowing for                          

Displacement Fluxes of Bound Charges 
 
The displacement currents are generally assumed to enter in the 

right-hand side of Maxwell’s equations (8.2.18) and (8.2.19) on abso-
lutely equal terms with the transfer current. However, “no one has been 
solving these equations in terms of displacement currents up to date be-
cause these solutions have appeared to be just impossible” (R. Feynman 
and others, 1977). In our opinion, the reason is that the consideration of 
the displacement currents in the Maxwell’s equations is just apparent. In 
fact, the concept of flow having come from mechanics is closely con-
nected with the idea of liquid streaming and its momentum available. In 
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particular, in the TIP the electric current density is defined by the product 
of the electric charge density ρе and the charge transfer velocity vе. How-
ever, in the theory of electromagnetism the displacement currents are ex-
pressed in terms of the partial derivative (∂E/∂t) of the field intensity vec-
tor E, which “can not be construed as the rate of something” (R. Feynman 
and others, 1977). This shows especially evident in the thermodynamic 
derivation of the Maxwell’s equations in the previous paragraph.  
 Let us expand the derivative dD/dt in (8.2.4) considering all the 
charges available in the system (both the free ρе and the polarization ρе' + 
ρе'' ones). Taking into account the identity of the induction vector D to the 
distribution moment Zеv and comparing the expression ∇⋅Zеv = ρе + ρе' + 
ρе'' with the expression D ≡ εоεrЕ + Р gives that ρе = εоεr ∇⋅Е. Thus the 
Gauss’s law  
 

 ∇⋅Е = ρе/εоεr                                 (15.3.1) 
 

may be derived without applying to the extremely abstract idea of the 
“field flow”.  

Let us further take into account that according to (8.2.4) the total 
time derivative of the electric induction D vector in dielectrics includes, 
besides the local component (∂D/∂t) and the component εоεr(vе⋅∇)Е = jе, 
caused by the conduction current jе, one more component ∇⋅Р = (vе'⋅∇)P 
+ (vе''⋅∇)P = jе'  +  jе'', caused by the transfer of dipole charges in accor-
dance with (8.4.4). Considering this component called for short the po-
larization one gives: 
 

 dD/dt = (∂D/∂t) + jе + jе' + jе'',                       (15.3.2) 
 

Likewise, according to (8.2.4) let us expand the derivative dB/dt tak-
ing into account that ∇⋅H = 0 and that according to (8.4.3) and (8.4.5) 
∇⋅B = (vм'⋅∇)M + (vм''⋅∇)M = jм'  + jм''. Due to the existing polarization 
component of the magnetic displacement flux jм'  + jм'' along with ∇⋅B = 0 
it follows that  
 

                 
dB/dt = (∂B /∂t) +  jм'  +  jм''                     (15.3.3) 

 
In essence, the right-hand side of (15.3.3) considering the polarization 

component of displacement flux is also the total “magnetic flux” jмt that 
differs from jеt by only the absence of the conduction current analog. In 
the general case, when a non-uniformly polarized dielectric is moving in 
space with a velocity of v, the magnetic displacement flux jм' and jм'' may 
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also be represented as the sum jм' = ρм'(vм' – v) + ρм'v and jм'' = ρм''(vм' – 
v) + ρм''v thus highlighting there the “convective” component jмc = (ρм' + 
ρм'')v caused by the movement of the magnetic as a whole. In this case the 
components ρм'(vм' – v) and ρм''(vм' – v) will appear as the displacement 
fluxes of the poles relative to their common center, while the values jм' 
and jм'' will take the meaning of the sum of the convective flux and the 
displacement one, which may be called by analogy the total magnetic dis-
placement flux jмt.  
 Given (15.3.2) and (15.3.3), Maxwell’s equations (8.5.18) and 
(8.5.19) for moving bodies may be rewritten as: 
 

              rot E = jмп – (∂B/∂t),        (15.3.4) 
 

                        rot H = jеп + (∂D/∂t),                    (15.3.5)   
 

These expressions differ from the corresponding Maxwell’s equa-
tions by taking into account the polarization component of the electric 
and magnetic displacement fluxes. This further contribute to the similarity 
of electric and magnetic phenomena, especially with Maxwell’s equations 
written as (8.5.15) and (8.5.16), and makes this “duality” even more com-
plete.  
 Explicit consideration of the polarization displacement fluxes in 
the equations of electromagnetic field eliminates a number of difficulties 
electrodynamics suffers, in particular, those of them which are attributed 
to known exceptions from the flux regulations (R. Feynman and others, 
1977). According to (8.5.11) and (8.5.12) the electromotive and magne-
tomotive forces appear not only due to variations of the electric D and 
magnetic B induction vectors, but also due to the energy carrier flows 
(electric and magnetic charges) irrespective of what causes these flows – 
either the redistribution of the charges in the system or the motion of the 
system itself. This explains why EMF appears where the “flux” ∂B/∂t 
does not vary and never appears where this flux varies (see the examples 
with the flux through the rotating disc and with the tilting plates as given 
by R. Feynman, 1977). This excludes the necessity he noted in using the 
various laws of force for the case of the closed circuit moving and the 
field varying.  

The fact that the displacement fluxes in their physical meaning are 
taken into account in the field equations easily explains why the electric 
polarization appears in moving magnetic in the absence of the external 
field H. The derivative (∂D/∂t) being different from zero is caused in this 
case by the available convective component jеc of displacement current, 
which is connected with the movement of the electrified body. From these 
positions the magnetic field generation with a polarized dielectric moving 
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(Rowland–Eichenwald and Röntgen–Eichenwald effects), as well as the 
polarization of a dielectric plate when moving in the magnetic field (Wil-
son–Barnet effect) are also explained as the consequence of jеc without 
appeal to the relativistic transformations. In particular, it becomes clear 
that even in uniformly polarized bodies in the presence of the “convec-
tive” component ji

c = (ρi' + ρi'')v the different-directed displacement 
fluxes jе', jе'' and jм', jм'' become different in their values. This fact may di-
rectly pertain to the “self-movement” of ferromagnetics after a starting 
impact (Serl effect) observed by many investigators.  

Let us make sure now that the equations obtained are internally con-
sistent. Taking the divergence of both sides of (15.3.5) and considering 
that the rotor divergence is equal to zero gives: 
 

∇⋅jе + ∇⋅(jе'+ jе'') +  (∂2D/∂r∂t) = 0.         (15.3.6) 
 

The derivation sequence for coordinates and time may be swapped in 
the last summand: 
 

∇⋅jе + div (jе'+ jе'') + (∂2D/∂t∂r) = 0.            (15.3.7) 
 
 Since ∇⋅D = ρе + ρеп, the last term in (15.3.7) is the sum of the de-
rivatives (∂ρе/∂t) and (∂ρеt/∂t), so that this relationship becomes: 
 

[(∂ρе/∂t) + div jе] + [(∂ρеп/∂t) + div jес] = 0,      (15.3.8) 
 

Both sums in square brackets are the balance equation in the general 
form (∂ρi /∂t) + div ji = 0 and become zero (the first sum – according to 
the charge conservation law, while the second one – owing to the fact that 
the appearance of the dipole charge is caused by exclusively the spatial 
separation of the dipole poles and, therefore, by the fluxes of their dis-
placement appearing). Thus equation (21.3.5) is satisfied. 

To make sure that equation (15.3.4) is internally consistent, let us 
take the divergence of its both sides and repeat the operations of (15.3.6)–
(15.3.8): 
 

∇⋅(jм'+jм'') + (∂2B/∂r∂t) = ∇⋅(jм'+jм'') + ∂ρеп/∂t = 0.      (15.3.9) 
 

As can be seen, this expression as well corresponds to the balance 
equation without sources. However, now it is caused by not the “mag-
netic” charge conservation, but by the fact that the appearance of the 
magnetic dipoles is also inseparably linked with the spatial separation of 
the unlike poles, i.e. with the divergence of fluxes of their displacement. 
Thus the total derivatives of electric D and magnetic H induction vectors 
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being available in the electromagnetic field equations as imposed by the 
thermodynamic relations for dielectrics and magnetics are internally con-
sistent. This makes us be more respectful to the experiments on creating 
energy converters of the electromagnetic fields surrounding us, which re-
sults do not keep within present electrodynamics.  
 

 
15.4. Possibility of Single-Wire Energy Transmission 

 
The Maxwell’s equations describe the energy conversion processes 

in closed electric and magnetic circuits. Therefore only closed two-wire 
circuits are considered for the energy transmission in electrical engineer-
ing, whereas the single-wire energy transmission is deemed impossible. 
Meantime, yet in 1892-93 N. Tesla demonstrated a single-wire energy 
transmission in London and Philadelphia. In that case the Earth itself was 
the conductor. No information remained on the technical part of that ex-
periment. However, in 1978 S.V. Avramenko, a researcher of one of the 
research institutes in Moscow, demonstrated the possibility to transmit al-
ternating current via a single wire without earthing (1991).  

His device is based on the “Avramenko’s plug” (GB Patent 
PCT/GB93/00960, 1993), which is two in-series semiconductor diodes 
(Fig.15.3).  

 

 
 
 
 
 

If the plug is connected to a lead under practically any alternating 
voltage (10 V thru 10.000 V), then after a while there will be serial sparks 
observed in the discharger P. By this way an active power of 1.3 kW can 
be successfully transmitted via a single tungsten wire with a diameter of 
20 μm. Even a resistor rated 2-5 MΩ included in the transmission line 
does not substantially changes the circuit operation. The transmission ef-
ficiency measured in one of the tests by wattmeters on a generator fre-
quency of 8 kHz and confirmed with calculations by the formulas I2U2 or 
I22R2 was 0.72. Now the author transmits the energy within a distance of 
160 m (N. Zaev, 1994).  

Fig.15.3. Single-Wire Energy Transmission Schematic  
by Avramenko S.V.  
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The possibility of the single-wire energy transmission as based on the 
Avramenko’s invention has been confirmed by the experiments of S. 
Hartmann and N. Kosinov. In the Hartmann’s generator a car ignition coil 
is used, while the electronic generator itself operates on a frequency of 10 
kHz. A xenon flash lamp is used as load, while a copper wire – as antenna 
(N. Zaev and others, 1991).  

In the N. Kosinov’s arrangement the traditional bridge circuit is used 
(Fig.15.4) instead of the “Avramenko’s plug”. The power supply Б5-47 
serves as energy source, while the incandescent lamp with a power of 25 
W – as load.  

Some investigators of this phenomenon deduce it from the “physical 
vacuum energy recovery”, “line 
superconductivity” and even “gen-
eration of information by power 
supply”. Not more successfully it 
can be explained by the polariza-
tion current existing since these 
currents are local and absent in 
metals. Quite other prospect opens 
from the positions of energodynamics 
having proved the existence of the 
displacement current convective 
component with a density of jе = ρеvе (21.3.3). As shown above, this cur-
rent exists together with the one caused by the polarization charges mov-
ing and is conditioned by redistribution of the free electric charge over the 
system volume (in this case – the single-wire line). For metals P = 0 and 
according to (15.3.3)  

 
 dD/dt = (∂D/∂t) +  jес.                              (15.4.1 ) 

 
In addition to the displacement current in its traditional interpretation 

(∂D/∂t), this expression includes the displacement current “convective” 
component jес. The only difference of this current from the usual conduc-
tion current is that it does not cross the system boundaries, i.e. is “inter-
nal”. The energy transfer via the single-wire line looks like the following: 
during that half-period of voltage oscillation at the power supply (genera-
tor) output when the input potential to the single-wire line decreases, the 
free charge local density ρе in this line decreases correspondingly. This 
means there is a redistribution of the charge occurring in the line with its 
displacement toward the end of the line shown on Fig.15.4. The gate 
opened in this direction lets this displacement current through, which 
leads to increasing the potential on the end of the line. In the returning 
pulse, on the contrary, the charge outflows and the potential decreases on 

     Fig.15.4. Circuit Schematic by  
                N. Kosinov. 
1 – Generator, 3 – “Antenna” 
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the end of the line. Being gradually accumulated, this charge and its po-
tential cause spark gap breakdown, incandescent lamp glow, power re-
lease in the load, etc, quite in the same way as in the two-wire line opera-
tion. However, the current in the single-wire line is in this case several 
orders lower, which can be illustrated by the following example. Let us 
assume that in a usual two-wire line the resistive load receives the power 
N = 1 kW with a current in the line and the load of 1 A. For this it is nec-
essary to create in the load and the line a voltage of 1,000 V. To build up 
the potential on the output end of the single-wire line by the same value 
1,000 V due to displacement currents, it is enough to create in it an excess 
charge of 10–6 C (as compared with the opposite end of the line). This is 
what explains the results of the experiments, according to which, to 
transmit a power in excess of 1 kW, a lead with a diameter of 20 μm ap-
pears to be enough, whereas an additional resistance of 2 MΩ included in 
the line does not noticeably influence. Thus energodynamics lifts a ban 
for the single-wire energy transmission.  

 
 

15.5.  Longitudinal Electromagnetic Waves Existing  
 

The existence of waves called by different authors the electromag-
netic waves in conducting media, multipolarized electromagnetic waves, 
longitudinal electric waves, longitudinal magnetic waves, etc, have been 
lately arousing ever growing interest, winning the recognition and ex-
perimental validation. These are waves, where the medium oscillates in 
the direction of their propagation. Ampere was the first suggested the ex-
istence of such waves based on his in-depth analysis of one of the para-
doxes in electrodynamics associated with the violation of the third law of 
mechanics. However, against the common recognition and triumph of the 
Maxwell’s equations, such paradoxes were not subjected to a theoretical 
analysis detailed enough. Maxwell himself, who predicted the existence 
of electromagnetic waves, is known to have denied in theoretical discus-
sion the existence of a unidirectional vector field induced by the “density” 
pulsation of the electrostatic fields similar to the pressure pulsations in the 
acoustic waves. Such pulsations would mean there is a variable concen-
tration of the electrostatic field force lines spreading along the electro-
static field lines. Therefore the Maxwell’s equations did not contain solu-
tions corresponding to those waves and all subsequent efforts of experi-
menters were mostly directed to reveal the transverse waves, i.e. the 
waves where the electric and magnetic fields are directed perpendicular to 
the direction of their propagation. H. Herzt was the first who reported in 
1887 such waves had been experimentally discovered. However, as N. 
Tesla demonstrated two years later, the effects Hertz had observed might 
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be caused by the longitudinal waves as well which consisted of a se-
quence of the unidirectional shock waves caused by the interruption of 
the electrostatic field and capable to act on the charges in the direction of 
their propagation. One way or another, some types of the longitudinal 
waves have been known long enough. Such are, e.g. the Langmuir waves 
induced by the collective oscillations of bulk charge in the plasma. The 
longitudinal electromagnetic waves investigators have been discovered in 
wave conductors, resonators, piezoelectrics, semiconductors, liquid crys-
tals, single-wire energy transmission lines, etc, are another type. There is 
also a special class of transmitting-receiving antennas (the so-called EH-
antennas that emit evidently the longitudinal waves and provide commu-
nication through water and rock masses (L. Strebkov, S. Avramenko and 
others, 2004).  

Voluminous literature is presently dedicated to investigation of the 
longitudinal electromagnetic waves (LEMW). LEMW generators, trans-
versal-into-longitudinal wave converters, detectors, mixers and power 
meters have been created (S. Abdulkerimov, Y. Ermolaev, B. Rodionov, 
2003). As the generators in various devices are the radial-flux plasma, gas 
discharge tube, quarter-wave resonator, etc. Such waves are registered by 
the Schottky-barrier diode, photomaterials protected with foil-covered 
light-tight screen, liquid-crystal indicators, phase-contrast microscopy of 
high-clean water, etc. Four types of electric and magnetic longitudinal 
waves have been lately studied with a special ardor, viz. a) longitudinal 
electric wave (in the E direction); b) longitudinal magnetic wave (in the 
H direction); c) torsion wave (along H with the vortex component E); d) 
Tesla wave (along E with the vortex component H).  

The experiments have revealed a number of unusual properties of the 
longitudinal electromagnetic waves (LEMW). They demonstrate high 
penetrability and are detected through water and rock masses, metal and 
reinforced concrete (D. Strebkov, S. Avramenko and others, 2004). 
LEMW propagate in small-diameter tubes bent at any angle or twisted in 
spirals, slits and thin water layers, along the boundaries of free charges-
containing media, etc. LEMW flows may be split in parts and collected in 
corresponding devices. In this case the losses on resonance frequencies 
are orders lower in LEMW than in usual electromagnetic waves (S. Ab-
dulkerimov, Y. Ermolaev, B. Rodionov, 2003).  

According to the available theoretical speculations the LEMW propa-
gate in dielectrics with a velocity of vh considerably exceeding the veloc-
ity of light (vh /c = 1.87·104), high wave resistance (2.2 MΩ) and are di-
rectly related to the informational transfer to a particular point long before 
the transverse electromagnetic wave comes. This is the fourth kind of 
these waves N. Tesla is also assumed to have used in his experiments on 
the energy transfer through the ground. The Tesla’s longitudinal wave is 



 283 

an analog of the longitudinal acoustic wave and propagates with minor 
losses in solid, liquid and gaseous conducting media. The heat losses are 
practically absent in this case. It is this kind of the longitudinal wave that 
evidently appears in the Avramenko’s circuit causing the energy transfer 
via the single-wire line (see the previous paragraph).  

At these conditions to reconcile the fact of existing longitudinal elec-
tromagnetic waves with the Maxwell’s equations becomes of special im-
portance. As mentioned above (Chapter 8), if two sets of unlike bulk 
charges can penetrate into each other, then with their centers registered 
the potential of the system becomes equal to zero. When a dielectric or 
magnetic appears to be in the external electric E or magnetic H field, the 
redistribution of bulk charges occurs resulting in the formation of two 
subsystems, each having its own “dipole” (electric ψе', ψе'' or magnetic 
ψм', ψм'') potential 1. As a result, the internal electric Е' or magnetic Н' 
field appears, which being added to the external field gives a resultant 
“induced” field defying the stressed state of the dielectric or magnetic. 
From the positions of energodynamics this state is characterized by the 
extensive parameters Zе and Zм related with the intensive variables Е' and 
Н' by the equations of state and defying the polarization or magnetization 
of the system as a whole (V.V. Sychev, 1977). In electrodynamics using 
traditionally only the intensive variables, instead of Zе and Zм their values 
in dielectric or magnetic unit volume are applied called the vectors of 
electric D and magnetic B induction, respectively. These are connected 
with the intensities of external field E or H and the vectors of polarization 
P and magnetization M corresponding to the fields Е' and Н' by the equa-
tions of state (8.2.4).  

As follows from the above, the specificity of polarized media is that 
they have two subsystems with opposite properties (in our case – with the 
unlike charges or poles ρе', ρе'' and ρм', ρм''). It is important that these 
charges appear as not a result of the heterogeneous polarization, but inso-
far as the polarization itself exists, i.e. when the arms of electric or mag-
netic dipoles are different from zero. In the general case of moving dielec-
trics or magnetics these two subsystems behave independently and move 
in space with the different velocities vе', vе'' and vм', vм''. The associated 
processes of redistribution of the polarization charges have their own co-
ordinates, viz. the displacement vectors ΔRi', ΔRi'' (or their local analogs 
Δri', Δri'').  

                                                 
1  The notion of magnetic potential reflecting the similarity (duality) of electric 
and magnetic fields and their equations has presently become quite widespread 
(L. Landau, E. Livshitz, 2004; K. Polivanov, 1982). 
 



 284 

According to the theorem of degrees of freedom this means that the 
vectors of polarization P and magnetization M of the polarized media as a 
whole are functions of both Δri', and Δri'', i.e. P = P(rе', rе'', t) and M = 
M(rм', rм'',t). In such a case, as shown in Chapter 8, the derivatives ∂P/∂rе' 
and ∂P/∂rе'', as well as ∂M/∂rм' and ∂M/∂rм'' in (8.4.2) and (8.4.3) are dif-
ferent from zero, while the total time variation of these vectors includes 
the polarization displacement fluxes jе', jе'' and jм', jм''. These fluxes being 
considered in Maxwell’s equations (21.3.4) and (21.3.5) provide easy ex-
planation on their basis that the longitudinal waves appear because the di-
pole charges Θi' and Θi'' can oscillate along the line connecting them, 
which results in appearing longitudinal waves coinciding in direction with 
the corresponding field vectors (see Chapter 8). These waves may be 
electric or magnetic depending on the types of the dipoles. It is important 
that such waves are emitted in also the case when the sum of unlike di-
pole charges becomes zero, i.e. even in uniformly polarized media. Natu-
rally, they appear in only restricted space, which is experimentally con-
firmed.  

Note, this conclusion would be impossible if not to consider that di-
electrics and magnetics have subsystems with unlike polarization charges. 
In fact, the electric and magnetic dipoles being deprived of their extent 
and the polarization or magnetization vectors being considered as func-
tions of the field point radius-vector r and the time t, i.e. P = P(r, t) and 
M = M(r, t) gives  
 

 dP/dt = (∂P/∂t) + (vе⋅∇)P = (∂P/∂t),        (15.5.1) 
 
since ∂P/∂r = ρеt = 0 in the uniformly polarized media. In this case the 
displacement fluxes of the polarization charges in Maxwell’s equations 
(15.3.5) disappear along with the possibility to explain on their basis all 
phenomena defying any theoretical explanation.  

Thus the longitudinal electromagnetic waves existing in dielectrics 
follow from the Maxwell’s equations (8.2.15), (8.2.16) providing the par-
tial derivatives of electric and magnetic flux density vectors are replaced 
therein by their exact differentials. Then it is easy to show that 

  
∇⋅А ≠ 0                                              (15.5.2) 

 
where А – vector potential connected with the magnetic flux density 
through the relation А = rotB. 

To make sure this relation is true, consider the sense of the vector po-
tential А = (vе/с2)φ (Feynman, 1964). Then  

 
∇⋅А  = с-2φ∇⋅vе + с-2vе∇φ,                              (15.5.3) 
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i.e. ∇⋅А in the homogeneous field of the electric potential ∇φ = 0 is de-
fined by the divergence of the bound charges velocity vector ∇⋅vе. Since 
the polarization process means exactly the displacement of the charges ρе΄ 
and ρе˝ in the opposite directions with the velocity vе΄ = – vе˝, the reason 
for the divergence ∇⋅А of the vector А is obvious. 

Thus the electromagnetic oscillations in dielectrics generate longitu-
dinal waves in the same natural way as transverse ones. The appearance 
of forces acting along a current-carrying conductor is connected with this 
phenomenon. This phenomenon was discovered obviously for the first 
time in the Aaronov-Bom’s experiment (1956). The experiments Japanese 
physicists conducted in 1982 confirmed that the field of the vector poten-
tial А was actually a single-valued physical parameter, i.e. defined by not 
only rotA, but divА as well. The presence of longitudinal forces acting on 
the electrons moving along the toroid axis and on a copper conductor was 
later discovered in the A. Solunin's experiments and confirmed in the S. 
Grano's experiments with a copper conductor that moved along the direc-
tion of the current in it (G. Nikolaev, 1997). The appearance of a longitu-
dinal force was lately (2007) discovered also in A.K. Tomilin’s experi-
ments. 

It is worth noting that yet in 1974 the Austrian professor S. Marinov, 
to completely define magnetic field, suggested the scalar function H = μo 

-

1 ∇⋅А should be introduced. Later the same conclusion was made by a 
number of other investigators (H. Khvorostenko, 1992; Y. Kuznetsov, 
1995; G. Nikolaev, 1997, E. Nefedov et al, 1998), who suggested the 
Maxwell’s electrodynamic equations should be supplemented by the gra-
dients of the scalar electric and magnetic fields Ео and Но: 

 
                             rot E + ∇Ео = – (∂B/∂t),                 (15.5.4) 

 
 rot H - ∇Но = jе + (∂D/∂t) .                      (15.5.5) 

 
There are about a dozen of patents for “self-moving” devices operat-

ing supposedly on this principle. Thus energodynamics eliminates the 
contradiction between classic electrodynamics and a number of experi-
mental results inexplicable from the Maxwell's equations. 
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Chapter 16 

 
NEW METHOD OF SUPERPOSITION EFFECTS INVESTIGATION                      

FOR IRREVERSIBLE PROCESSES 
 

This chapter is dedicated to the development of a new method to in-
vestigate kinetics of transfer processes, which is based on the definition of 
an only (resultant) force for each independent process, which disappear-
ance ceases the process. This method allows dramatically simplifying the 
thermodynamic description of irreversible processes and reducing the 
number of coefficients required for such a description. It casts new light 
on the origin of the so-called stationary superposition effects for dissimi-
lar processes and allows finding them from the conditions of partial (in-
complete) equilibrium as a result of mutual compensation of the compo-
nents comprising this resultant force. Thereby a possibility opens to prog-
nosticate the value of these effects from the known analytical expressions 
for these forces without applying to reciprocal relations and without phe-
nomenological coefficients preliminarily defined. 

The efficiency of the method proposed and the validity of the conse-
quences obtained within energodynamics will be confirmed by a great 
number of experimental data. 

 
 

16.1.  Definition of Superposition Effects as Partial Equilibrium      
Conditions  

 
When having extended the L. Onsager’s formal theory of velocity to 

the vector transfer processes, H. Cazimir (1945) and I. Prigogine (1947) 
kept to the same concept according to which any of the independent flows 
Ji was linear with all the thermodynamic forces Xj acting in the system, 
i.e. they used the same Onsager’s law (5.1.6) but with the scalar flows Ji 
and forces Xj substituted there for the vector values Ji and Xj. Thus ob-
tained kinetic equations (5.4.1) added to known Fourier’s, Ohm’s, Fick’s, 
Darcy’s, Newton’s, etc. laws the “non-diagonal” terms LijXj which char-
acterized the contribution of the “alien” force Xj to the ith flow Ji (j ≠ i). 
E.g., to describe the thermo-diffusion phenomenon (the kth substance flow 
arising under a temperature gradient) the right side of the Fick’s law of 
diffusion is added with a linear term proportional to the temperature gra-
dient. This is equivalent to representation of the flow Ji as a sum of sev-
eral summands Jij = Lij Xj :  

 Ji = Σj Jij = Σj Lij Xj .                                    (16.1.1) 



 287 

Such a description corresponds to a notion that the non-matching 
flows running simultaneously in the same space areas are as if “superim-
posed” each one onto other (S.R. De Groot, P. Mazur, 1964) mutually 
“entraining” and intensifying each other (A. Veinik, 1973; N. Bulatov, A. 
Lundin, 1984). More than half a century this notion has been indisputable 
and reproducible in all study guides on thermodynamics of irreversible 
processes but with a proviso that, according to Curie symmetry law, only 
processes of the same (or even) tensor order and kind can interact (be su-
perimposed) (S.R. De Groot, P. Mazur, 1964). This law first substantiated 
by P. Curier (1947) stated that due to the possible spatial symmetry in 
anisotropic systems the number of coefficients in linear equations would 
decrease in such a way that not all Cartesian flow components would de-
pend on the force components. However, it appeared important for iso-
tropic systems, too. As De Groot and Mazur showed (1964), in anisot-
ropic systems the Cartesian components of thermodynamic forces of dif-
ferent tensor order and kind would be transformed at rotation and inver-
sion in such a way that only the links between the same tensor-order 
flows and forces would remain invariable. Thus for isotropic systems the 
Curie law may read as follows, “In isotropic systems the phenomena de-
scribed by thermodynamic forces and flows of different tensor order and 
kind do not influence each other (I. Gyarmati, 1974). In other words, any 
vector flow Ji may depend on only forces of the vector character.  

The investigators were not at all confused with the fact that the On-
sager’s postulate disagreed with the centuries-old foundations of mechan-
ics according to which each independent process (movement, accelera-
tion, setting of mechanical equilibrium, etc.) could be associated with the 
only (resultant) force which disappearance would cease the process. The 
anisotropic heat conduction and electric conduction equations, which, as 
Onsager admitted, had prefigured his “phenomenological” laws, also evi-
denced the motive force uniqueness. The components of the only motive 
force – temperature gradient and electric intensity, respectively – were in 
those equations under the sum sign, too. Ultimately, it was not at all a se-
cret that the said “superposition effects” reached their extremum at the so-
called stationary conditions when some (the so-called “non-fixed”) flows 
simply disappeared and therefore could not in principle be superimposed 
onto the remainder flows. E.g., in electrolytic solutions, where the phe-
nomena of electric conduction and diffusion take place, the voltage 
(Quincke effect) is maximal with the current disappeared. (Haase, 1967). 
The same situation is about Soret effect – generation of the kth substance 
concentration gradient within the initially homogeneous system with a 
temperature gradient generated, the said concentration gradient reaching 
peak value with the diffusive flows disappeared. Hence the reason of such 
superposition effects arisen should have been searched for anywhere but 
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not in the interaction (superposition) of the irreversible phenomena them-
selves. In fact, the generation of gradients or differentials of whatever po-
tentials meant the system withdrew from that kind of equilibrium, i.e. 
anti-dissipative processes appeared in the system. Meantime any relaxa-
tion phenomena are always directed toward setting equilibrium. In other 
words, the components Jij of the generalized rate Ji of any relaxation 
process in (5.1.3) have always the same sign. Therefore some of these 
flows Ji becoming zero in stationary state could be caused by only mutual 
compensation of the components Jij of this flow. However, all terms in 
equations (16.1.1) have intrinsically the same sign as they describe the re-
laxation processes. Hence the appearance of the “superposition effects” 
could have been explained by only the generation of anti-dissipative 
processes in the system. However, the investigation of such processes was 
evidently beyond the Onsager’s theory. Therefore such an assumption 
could not arise in its depths.  

To reveal the fallacy of the Onsager’s postulate, let us note that the 
coefficients Lii and Lji in the components Jii = Lii Xi and Jji = Lji Xi of flows 
(16.1.1) are expressed in terms of the matching components Jii and Jji of 
the flow Ji : 
 

 Lii = dJii/dXi ; Lji = dJji /dXi .                            (16.1.2) 
 

According to (16.1.2) there is a simple relation between the diagonal 
Lii and non-diagonal (“cross”) coefficients Lij of the transfer equations in 
matrix form: 
 

 Lji = Lii (dJji /dJii) .                             (16.1.3) 
 

However, at Xj = const dJji = dJj and dJii = dJi , therefore (16.1.3) may 
be changed to: 

 
 Lji = Lii (∂Jj /∂Ji)Xj .                              (16.1.4) 

 
From this it follows that providing the flows Ji and Jj are not inter-

connected, the coefficients Lji, at Xj = const, become zero along with the 
derivative (∂Jj/∂Ji)Xj. This means that for the independent flows Ji and Jj 
the reciprocity relationships are satisfied trivially (Lij = Lji= 0) just as ex-
pected. In other words, in the absence of the motive force Xi as matching 
the flow Ji no other force whatever can induce this flow providing it is 
truly independent. Since the independence of the flows Ji and Jj is laid 
into the foundation of the Onsager’s theory by the flow Ji definition as it-
self, kinetic equations (4.1.6) are really valid for interconnected flows. 
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So in the absence of additional constraints imposed the Onsager’s 
postulates should be superseded by a statement reading that the general-
ized rate of whatever irreversible process (flow Ji) depends on only the 
components of the sole(resultant) motive force Fi. This statement corre-
sponds to the kinetic transfer equations of the (2.6.11) kind: 
 

Ji = Ki(Fi – Fiо) = Li(Xi – Xiо), (i = 1, 2, ..., ni)             (16.1.5) 

where the coefficients ijK = Кi(Ψj, Fi ), unlike (4.4.1), are arbitrary func-
tions of thermostatic parameters (temperature, pressure, concentrations of 
the kth substances, etc.), as well as of any forces Fi. The principle differ-
ence of equations (14.1.5), besides their non-linearity and the “threshold” 
values of the forces Fiо which can be taken into consideration, is that they 
contain the only kinetic coefficient K ij  – the fact that considerably facili-
tates the investigation of transfer process kinetics.  

It is worth noticing for the sake of justice that the possibility to trans-
form kinetic equations (4.4.1) into diagonal form (14.1.5) containing the 
only motive force does not contradict TIP according to which the only 
thing necessary and sufficient for that is the linearity of laws (4.4.1) and 
the symmetry of phenomenological coefficient matrix therein (S. De 
Groot, P. Mazur, 1964). However, this procedure provided in TIP by the 
linear transformation of flows and forces does not advantage at all since it 
does not reduce the number of the independent phenomenological coeffi-
cients Lij in the initial equations and does not remove the constraints in-
trinsic for linear TIP. Unlike TIP, thermodynamics allows to directly find 
the generalized form of the Fourier’s, Ohm’s, Darcy’s, Fick’s and New-
ton’s equations by substituting the forces therein for the more general (re-
sultant) motive force Fi or Xi.  

The existing of such forces assumes they have the components Fij = 
ΘjXij as it takes place in the anisotropic heat conduction and electric con-
duction equations. Therefore laws (16.1.5) may be written in the form: 
 

 Ji = Кi (Fj) Σi Fij , (i, j = 1, 2, ..., n).                         (16.1.6) 

This form of transfer laws reflex the force superposition principle: 
the rate of a process in the space of n variables is defined by the 
sum of projections of all forces acting in the system onto the direc-
tion of the process. It is a matter of no small importance that the com-
ponents Fij of the resultant force Fj in equation (16.1.6) have the same 
dimensionality and unitary physical meaning of force in its traditional 
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(Newtonian) conception. This allows their summing in any assortment as 
applied to phenomena of various nature and, thus, finding a resultant 
force for various poly-variant systems. Naturally, such “diagonal” laws 
may be transformed to their initial (matrix) form (5.4.1) by placing the 
coefficients Кi(Fj) inside the sum sign and substituting the product Θi 
Кi(Fj) for the coefficient Lij. The “phenomenological” coefficients Lij thus 
obtained will naturally be any more neither pure kinetic nor pure thermo-
dynamic values, which is particularly emphasized in TIP (S. De Groot, P. 
Mazur, 1964). However, at such an “inverse” transformation the possibil-
ity will be lost to investigate separately the impact of thermodynamic and 
kinetic factors upon the transfer process, which itself is no small impor-
tance. We will see hereafter that the “diagonal” form of transfer laws 
(16.1.6) allows cutting the number of the pure kinetic coefficients in the 
transfer equations and makes superfluous the assumption of their con-
stancy. However, the main advantage of such an approach lies in the pos-
sibility to express the superposition effects exclusively in terms of ther-
modynamic variables and to give them a simpler interpretation as a result 
of the cross compensation between the non-matching components of the 
resultant force. Furthermore, with the resultant motive force of a transfer 
process found, the impact of kinetic and thermodynamic factors upon the 
process may be separately investigated in a number of cases.  
 

 
 

16.2. Theoretical Prognostication of Superposition Effects                        
 

The existing theory of irreversible processes (TIP) is known to find 
the superposition effects for dissipative processes by using the Onsager 
reciprocal relations and only for the so-called stationary states of vari-
ous order. The notion of stationary state order is known to have been in-
troduced into practice after I. Prigogine proved (1960) a theorem reading, 
“minimal generation of entropy corresponds to a state where the flows Jj 
associated with the non-fixed forces Xj disappear”. If in a system de-
scribed by n independent forces Xi (i =1,2,…, n) k of them are maintained 
constant (with the help of whatever external effects), such a state is 
termed the stationary state of the kth order. According to this definition, 
when the forces Xj numbered k+1, k+2, etc. are not fixed, the flows Jj 
matching them disappear, and the system passes spontaneously to a sta-
tionary state of less order (with less entropy generation) subsequently un-
til it reaches the zeroth-order stationary state, viz. equilibrium (with the 
zeroth entropy generation). Thereupon all superposition effects arising in 
the system with disappearance of whatever ith flow Ji started to be termed 
stationary effects. Their formal difference from equilibrium conditions is 
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that there are the phenomenological coefficients Lij presenting in their 
analytical expressions, whereas the classic equilibrium conditions are ex-
pressed exclusively in terms of thermodynamic variables.  

It is easy to understand why the coefficients Lij appear at the station-
ary state conditions if to find them from Onsager’s phenomenological 
laws (5.1.6). For the simplest case with two flows Ji and Ji these equa-
tions are: 
 

 Ji = Lij Xi + Ljj Xj,                                                              (16.2.1) 

 Ji = Lji Xi + Ljj Xj .                                      (16.2.2) 

From (16.2.2.) it follows, in particular, that for the state with Ji = 0 
the stationary effect is expressed by the relationship: 

 
 (∇Ψj /∇Ψi)ст = – Lij / Ljj .                                 (16.2.3) 

As follows from (16.2.3), the multiple superposition effects for differ-
ent-kind processes are expressed in TIP via empirical coefficients de-
pending on kinetic factors which value, unlike the thermodynamic pa-
rameters, are not known beforehand. Therefore TIP is unable to predict 
value of these effects. However, even more important is the fact that for 
isolated systems, bio-systems, oscillatory processes, media chemically re-
acting with reactions simultaneously running, etc., non-stationary states 
are inherent. The existing stationary TIP is inapplicable to such systems. 
This forces to search for other methods of investigating the superposition 
effects therein arising. Such are the methods based on the partial equilib-
rium conditions, which may be as well found for systems non-stationary 
in whole. These methods are based on the phenomenological laws repre-
sented in “diagonal” form (18.1.5). It follows from these equations that 
the ith kind process ceases (Ji = 0) when the components Fij of the resul-
tant force Fi mutually compensate each other: 

 Fi = ΣjFij = 0;  Xi = Σj Xij  = 0.                              (16.2.4) 

In the particular case of j = 1,2  Fi = ΘjXj + ΘjXj = 0, then we obtain: 

 Fi = Θi Xi + ΘjXj = 0,                                       (16.2.5) 

which gives 
 

 (∇Ψj /∇Ψi)ст = – Θi /Θj .                                     (15.2.6) 
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As will be shown hereafter, such a structure is attributed to unexcep-
tionally all superposition effects described within thermodynamics. These 
relationships do not contain anymore the kinetic coefficients and, there-
fore, refer to the partial equilibrium conditions as if equilibrium in the 
field of centrifugal forces or the gravity field. The possibility of investi-
gating non-stationary processes substantially extends the TIP applicabil-
ity.  

 
 
 

16.3.  Definition of Hard-to-Measure Thermodynamic Parameters 
Based on Superposition Effects 

 
Characteristic features of the method proposed may be conveniently 

considered for a rather general class of phenomena involving diffusive 
mixing of the kth substance in a closed heterogeneous system with invari-
able volume. In this continuous system under consideration, along with 
the external heat exchange process, the internal processes of thermal con-
duction, electric conduction and diffusion may also run. Let us specifi-
cally consider the diffusion of the kth independent component within such 
a system. The diagonal form of kinetic equation for such a process hereaf-
ter termed for short as thermodynamic form looks like: 

 Jk = Кk Σi Fki = LkXk.                                  (16.3.1) 

In accordance with (5.5.6) the integral motive force of this process is 
understood as a difference of diffusive potential of the kth component Xk = 
– Δζk. To expand the expression for Xk, we will use the relation between 
the diffusive and chemical potentials ζk = μk + Tsko  (6.3.6). From here:  
 

 dζk = dμk + Tdsko .                             (16.3.2) 
 

Considering (16.3.2) with the expression of exact differential of the 
chemical potential p,T,сℓ : 

 dμk = Σk(∂μk/∂cℓ )dcℓ – skdT + υkdp,                        (16.3.3) 

gives that at p,T = const the concentration relationship of the diffusive po-
tential coincides with the similar relationship of the chemical potential, 
dζ k = dμk, since skо = skо(p,T): 
 

 [dζk]p,T = [dμk ]p,T = Σk μkℓ dcℓ ,                                              (16.3.4) 
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where μkℓ – abridged symbol for the derivative ∂μk/∂cℓ . Due to this in the 
general case: 
 

 dζk=  dζk= Σk μkℓ dcℓ – (sk – sko)dT + υk dp . (18.3.5) 
 

From here the extended expression of resultant diffusion motive force 
ensues: 

 Fk = – [Σk μkℓ∇cℓ + (sk – sko)∇T – υk∇p] .                 (16.3.6) 

Here Fkℓ = Σkμkℓ∇cℓ – component of the resultant force Fk responsible for 
usual (concentration) diffusion; FkТ = (sko – sk)∇T – component responsi-
ble for thermal diffusion (substance transfer due to temperature gradient); 
Fkр = υk∇p – component responsible for pressure diffusion (substance 
transfer due to pressure diffusion).  

Thus the kinetic equation of diffusion in extended form is: 

 Jk = Кk [Σk μkℓ∇cℓ + (sko – sk)∇T + υk∇p] .                  (16.3.7) 

Let us consider for example the Soret effect – a concentration gradi-
ent ∇ck arising in a binary mixture being in mechanical equilibrium (∇p = 
0), where a temperature gradient ∇T has been created. This phenomenon 
means the absence of balance between the components FkТ and Fkр of the 
resultant force Fk, which causes a flow of the independent kth component. 
When partial equilibrium occurs (Jk = 0), the expression for stationary 
Soret effect directly follows from (16.3.7): 

(∇ck /∇T)ст = – qk
∗/Tμkk ,                                         (18.3.8) 

where qk
∗ = T(sk – skо) – the so-called heat of kth component transfer; μkk = 

(∂μk/∂ck). The expression reciprocal to the above one: 

 (∇T/∇ck)st = – Tμkk/qk
∗                                          (18.3.9) 

characterizes the stationary Dufour effect (temperature difference arising 
as a result of component diffusion).  

Similarly from (16.3.6) the so-called thermo-mechanical effects in 
continuums may be predicted as showing in a gas or liquid flow arising 
under the temperature difference. One of them is Knudsen effect arising 
in vessels with initially equal ideal gas pressure after communicating 
them with a capillary tube. The gas overflow ceasing, stationary tempera-
ture and pressure differences set in in the vessels (in the capillary – tem-
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perature and pressure gradients). Relation between them (stationary 
Khudsen effect) may be determined directly from (16.3.6). In this case 
∇ck = 0, and due to mutual compensation of the last two terms it follows 
that 
 

 (∇p/∇T)st = – qk
∗/Tυ.                                        (16.3.10) 

 
This effect is explained from thermodynamics by a distinction be-

tween the entropy sk in the pores or capillaries of the membrane and its 
value beyond them (in the vessels) sko. This is most evident from Knudsen 
effect (1910) when the pressure difference Δp disappears with increasing 
the diameter of the capillary or the width of the gap connecting the ves-
sels with gas of different temperature (Haase, 1967). In this case the in-
variably negative value of the transfer heat qk

∗ in Knudsen effect evi-
dences that the entropy sk of the gas transferred thru the capillary system 
is less than the entropy sko of the same gas in its “free” state. This is natu-
ral since the gas transferred thru the capillaries lacks a part of the degrees 
of freedom in mechanical motion of molecules (i.e. it is more ordered).  

In the same way the sedimentation effect may be predicted widely 
used at the uranium enrichment in centrifuges. The component separation 
is caused therein by a pressure gradient ∇p arising in binary solutions as 
generated by centrifugal forces. In the state of sedimentation equilibrium 
in the centrifugal field the first and the third terms of expression (16.3.6) 
are mutually compensated at ∇T = 0, which directly gives the stationary 
effect expressed as: 

 (∇ck/∇p)st = – υk /μkk .                               (16.3.11) 

It is significant that this result has been obtained within the linear the-
ory of irreversible processes also from the equilibrium conditions, 
whereas Soret, Dufour, Knudssen, etc. effects – from the stationary state 
conditions. This tells to the TIP inconsistency that evidences also from 
the fact that the said effects maintain their character also after the inde-
pendence of both flows (heat and substance) has been provided.  

Thus the method proposed allows predicting the value of the superpo-
sition effects in the states of partial equilibrium from the thermodynamic 
parameters Θj and Θj known (V. Etkin, 1999) or finding the hard-to-
measure thermodynamic parameters of the sk, μkℓ, etc. type as based on 
measuring the stationary superposition effects of the (18.2.6) type.  
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16.4. Simplification of Phenomenological Transfer Laws by Finding 
Their “Diagonal Form” 

 
As shown in Chapter 4, the application of TIP to investigate the ef-

fects of superposition (interaction) of irreversible processes having vari-
ous nature starts off with setting up the balance equation for mass, mo-
mentum, charge, angular momentum and energy in order to subsequently 
identify therein the terms defining the entropy rise rate in a system under 
investigation and to find from them the cofactors that may be interpreted 
as the generalized rates of irreversible processes (the flows Jj) and their 
motive forces Xi. To set up such equations, thorough knowledge of the 
entire complex of scientific disciplines is required, which equations con-
tain (unlike thermodynamics) time as a physical parameter and which 
processes effect the entropy generation. Then based on these balance 
equations a similar entropy equation of the (5.3.1) and (5.3.2) type is for-
mulated followed by identifying therein terms associated with the entropy 
“generation” and dividing them into flows and forces. Such a division 
into cofactors may be implemented by different ways, which supposes 
certain arbitrariness in choosing flows and thermodynamic forces, their 
dimensionality and the meaning associated. Next step is to set up On-
sager’s kinetic equations (phenomenological laws) (5.1.6) for particular 
processes under investigation. These equations are then considered jointly 
with Onsager’s symmetry conditions (5.1.7) or (5.1.8) which interrelate 
the flows Ji and Jj. And only after that expressions of the so-called “sta-
tionary superposition effects” are determined as corresponding to disap-
pearance of one of the flows Ji or Ji with the non-equilibrium state of the 
system maintained.  

Thus the determination of the TIP-based superposition effects is a 
quite complicated multi-stage problem involving profound knowledge of 
many special disciplines. However, this but adds to the proposed method 
that allows finding the shortest way to solution to the problem. This be-
comes possible due to the fact thermodynamic equations of the (2.5.9) 
type already contain time, flows and thermodynamic forces and, there-
fore, do not need a clumsy form of balance equations for mass, charge, 
momentum, energy and entropy. Besides, thermodynamics eliminates 
whatever arbitrariness in choosing motive forces and generalized rates of 
any (both scalar and vector) processes – their meaning and dimensionality 
are unambiguously defined by the character of the coordinate Θi as a 
quantitative measure of the particular energy form carrier. In this case, 
according to (2.5.8), the thermodynamic forces are expressed exclusively 
in terms of the negative gradients of the generalized potential associated 
with the Θi, while the flows Ji or ji are the product of these values and 
their transfer velocity under the action of the forces Xi.  
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Furthermore, thermodynamics considerably simplifies the phenome-
nological laws reducing them to the so-called “diagonal form” (18.1.5) 
which contains minimal number of the kinetic coefficients ijK . These 
laws are based on the statement proved in the previous paragraph and 
reading that for each independent process the only (resultant) force exists 
which disappearance ceases the process of this kind.  

Let us consider for example the equations of multi-component iso-
baric-isothermal diffusion, for which L.Onsager proposed (1945) the phe-
nomenological laws of the kind: 
 

 ji = –Σj Lij ∇μj , (i, j = 1, 2, …, K–1).              (16.4.1) 
 

This equation assumes that the flow jk of any of the K–1 independent 
(emphasis added) components of a system, nevertheless, depends on all 
thermodynamic forces acting in the system, which are, in the case of iso-
baric-isothermal diffusion, identified with the negative gradients of 
chemical potential of each of such jth components μj. The additional (non-
diagonal) terms i ≠ j of the first sum of this expression were introduced by 
L. Onsager to allow for the interrelation between flows, which he used to 
explain the “ascending diffusion”, viz. transfer of a substance in the direc-
tion of its concentration increasing.  

Since the chemical potential of any of the jth substances is a function 
of temperature T, pressure p and concentration ck of the independent kth 
components, its differential dμj at р,Т = const features exclusively its de-
pendence on concentration, which may be expressed as: 
 

dμj = Σk (∂μj/∂ck)dсk = Σk μjk dсk ,                                  (16.4.2) 

where μjk – abridged symbol for the derivative ∂μj/∂ck. Therefore equation 
(16.4.1) has actually the form: 

 ji = –Σj Lij Σk μjk ∇сk , (i, j, k = 1, 2, …, K–1)                    (16.4.3) 

i.e. contains a double sum of terms, which sharply complicates determin-
ing the already hard-to-determine cross phenomenological coefficients. 
The formal simplification of these equations as 

ji = – Σj D΄ik ∇сk , (i, j, k = 1, 2, …, K–1)                          (16.4.4) 

by introducing the diffusion coefficients 
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 D΄ik = Σk Lijμjk                                                                                (16.4.5) 
 

does not matter since keeps invariable the former number of the kinetic Lij 
and thermodynamic μjk factors influencing the diffusion of the ith compo-
nent. The double sum in (18.4.3) with the number of summands K(K–1) 
results in an extremely complex relationship between the said values and 
makes the statement of the problem of finding the non-diagonal diffusion 
coefficients D'iℓ in metals and alloys with the existing methods of experi-
mental determining the fields of impurity concentration (including the X-
ray diffraction analysis) mathematically incorrect (Krishtal, Volkov, 
1985). This forces investigators to apply a number of assumptions. When 
investigating the diffusion in metals, both sums in (16.4.3) are most often 
neglected and the so-called Birchenall-Mehl approximation is used: 

 ji = – (Lij RμT/ai ) ∇ai = – Di
∗∇ai ,                              (16.4.6) 

or Darken approximation 

ji = – Di
∗(∂ai /∂ci )∇ci = – Di∇ci ,                              (16.4.7) 

wherein the chemical potential μi = μi
o  + RμT lnai is represented by a 

known way in terms of its standard value μk
o  and the activity ai of this 

component by Lewis, while the dependence of the ith diffusive flow on 
the concentration gradients of other components is allowed for indirectly 
in terms of the “true” Di =  LiiRμT/ai or “effective” Di = Di*(∂ai/∂ci) diffu-
sion coefficients with the help of a number of empirical or semi-empirical 
relationships (M. Krishtal, 1972). Without these additional relationships 
equations (16.4.6) and (16.4.7) can not describe the ascendant diffusion 
phenomenon, concentration discontinuities on the welding border, bulk 
effects like Kirkendal effect (replacement of diffusion pair border), etc. 
Therefore it is a matter of interest to compare the simplifying assumptions 
proposed with those ensuing from thermodynamics.  

Let us consider for example an arbitrary discontinuous system like 
the diffusive welding pair on Fig.16.1). Such a pair is formed as a result 
of vacuum diffusion welding of two plates having different compositions. 
One of the subsystems (left-hand) is a three-component system contain-
ing, along with iron (Fe), also chromium (Cr) and carbon (C), while the 
other (right-hand) – iron (Fe) and carbon (C). The dots on the figure de-
note the experimentally found atomic concentrations of the components.  
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As follows from Fig.16.1, in the course of high-temperature annealing 
of the system under consid-
eration   (Fe + Cr + C) – (Fe 
+ C) carbon transfer is ob-
served in the direction of car-
bon concentration increase 
(carbon ascending diffusion) 
leading to a carbon concen-
tration discontinuity in the 
diffusion we lding area with a 
thickness of δ. This disconti-
nuity can not be anymore ex-
plained by the generation of 
the so-called “dissipative 
structure” (according to the 

Prigogine’s terminology) supported by the irreversible processes running 
in the system since in this case the system in whole is closed and none of 
the thermodynamic forces –∇ck is artificially maintained therein. This 
means that the steady-state concentration distribution among the sub-
stances in the system refers indeed to partial equilibrium.  

Let us apply the thermodynamic approach to describe the phenome-
non of ascending diffusion. From the positions of thermodynamics there 
is the only motive force existing for a flow of any independent component 
ji, which engenders this flow with all the associated superposition effects. 
For the isobaric-isothermal diffusion in continuums according to (18.3.5) 
the negative gradient of the diffusion potential ζk is the resultant force of 
the process. However, since ζk = μk + Tsko –  рυko, then at р,Т = const the 
diffusion and the chemical potentials have the same dependence on con-
centration because [dζk]p,T  = [dμk ]p,T. Therefore the negative gradient of 
the chemical potential of the ith component may still remain the motive 
force of the concentration diffusion, i.e. XD = – ∇μi. Since this potential is 
the function of concentrations of all independent system components, the 
Fick’s generalized diffusion law takes the form: 
 

 ji = – LiiΣk μik∇сk = – Σk Dik∇сk,                              (16.4.8) 
 

where Dik= Liiμik – generalized diffusion coefficients. This expression fea-
tures much simpler form of diffusion coefficients, which consequences al-
low a direct experimental check with the up-to-date means of investigat-
ing diffusion in metals. One of such consequences is the simple relation-
ship between the thermodynamic μik and kinetic Lij factors of diffusion: 
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Fig.16.1. Carbon Ascending Diffusion in Alloys 
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 Dii/μii = Dik /μik .                                            (16.4.9) 

The relationship of such a kind was set up earlier in Darken approxi-
mation (Brown, Kirkaldy, 1969). Let us use now this condition of the si-
multaneously disappeared flow ji and its thermodynamic force XD. This 
condition should be referred to the partial (incomplete) equilibrium state 
since it occurs for components relatively fast diffusing with the redistribu-
tion of other components (in this case – chromium) going on. This state 
features, as experiment shows (Fig.16.1), a carbon concentration discon-
tinuity on the welding border. It may be more conveniently described if 
changing to the integral form of the diffusion motive force XD

с = –Δμk = 
Σk ikμ Δсk, where ikμ – mean value of the coefficient μik. Then from ex-
pression (16.4.9) it may be found: 

 Σk ikμ Δсk = 0 .                                        (16.4.10) 
 

In the particular case of three-component systems with the third com-
ponent slowly moving: 

 23D  = 22D  (c2΄ – c2˝)/(c3˝– c3΄) ,                            (16.4.11) 

where c2΄ , c2˝ , c3΄ , c3˝  – impurity concentrations on both sides of the 
welding border. 

This relationship evidences the generation of the concentration dis-
continuities (c2΄ – c2˝) in the fast diffusing substance when its equilibrium 
distribution sets in, which is experimentally confirmed. One more rela-
tionship for the diffusion pair under consideration may be obtained based 
on the expression: 
 

 Δμi = – Σk ikμ Δсk .                                   (18.4.12) 
 

When comparing (18.4.12) with the similar expression Δμi = – ikμ Δсi 
for a binary system and using relationship (18.4.9) one can find an ex-
pression for the so-called “distribution coefficient” of the ith component 
ci΄/ci˝, which is the relationship between its concentrations in the binary 
system and that under investigation: 

 
 æi = 1 + Σk χik ck ,                                             (18.4.13) 

where χik = Dik/Diick – the so-called parameter of cross-impact between 
the ith and the kth components.  
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This expression differs from a number of empirical relationships such 
as Wagner formula (Krishtal, 1972) and is a matter of principal interest 
since directly relates equilibrium concentrations and the hard-to-measure 
diffusion coefficients Dik (V. Etkin, 1994). To check it, let us apply to the 
amply available data on the carbon distribution in the system (Fe + 
6.5%Cr + 0.4%C) – (Fe + 0.49%C) after the 5-hour annealing at a tem-
perature of 1,0000C (see Table (18.1). 

The C (second component) – Cr (third component) cross-impact coef-
ficient remains practically constant within the given concentration range 
and equal to χ23  = –10,9 (Chipman, Bruch, 1968). The calculated f values 
have been found from expression (16.4.11) and compared in this table 
with the data from three independent experiments (M. Krishtal, 1972; 
Chipman, Burch, 1968; Shenk, Kaiser, 1960). As follows from the table, 
the calculated and mean measured data complies quite satisfactorily. It is 
worth noting that this result was earlier obtained by balancing the activi-
ties (supposing the activities ak΄ and ai" being equal in both parts of the 
pair at partial equilibrium) and confirmed experimentally on a number of 
metallic alloys Fe-based 1), which is illustrated by Fig.16.1 (Krishtal, 
1972).  
 

Table 16.1 
Carbon Distribution Coefficient in Austenite 

 
Content of components, 

atomic percentage 
Experiment,  

atomic percentage 
C,  Cr,   

[1] 
 

[2] 
 

[3] 
 

Mean 

Calcula-
tion 

Iron Alloy Alloy      
2.28 7.81 6.38 0.35 0.57 0.38 0.44 0.47 

4.76 6.58 0.52 0.46 0.41 0.46 0.44 
1.15 2.85 6.70 0.43 0.41 0.40 0.41 0.42 
0.74 1.64 6.78 0.47 0.38 0.41 0.42 0.41 

 
As another example, let us consider a three-component system Fe + 

Si + Cr that is a matter of not only theoretical, but also practical interest in 
the context of siliconizing of chromium steels. Diffusion pairs (Fe + Si) – 
(Fe + Cr) with different content of silicon and chromium were investi-
gated. Experimental value æ was determined as the ratio of the Si concen-
trations in iron and alloy; the ratio D23 /D22 was found from expression 
(16.4.10). The calculation and experimental data is shown in Table 16.2. 
                                                 
1) It is easy to note that the activities balancing method proceeds from the same assump-
tions as thermodynamics 
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It should be emphasized that theoretical calculations of such systems 
forming substitution solutions are especially complicated; therefore the 
possibility to find “cross” diffusion coefficients featuring their interfer-
ence is a matter of no small consequence. 
The data of the above table evidences quite exact compliance between the 
experimental and calculated æ values. The minor systematic deviation of 
the calculated æ values from the experimental ones may be explained by 
neglecting the c3' value calculated from (18.4.11). Thus the data of the 
considered experiments confirms that the diagonal form of the multi-
component diffusion laws includes the whole information of superposi-
tion effects despite it is much simpler than that Onsager postulated. 
Thereby the conclusion of thermodynamics is once again confirmed that 
the motive forces in non-related irreversible processes are unique (Etkin, 
1989) and the Onsager’s postulate should be superseded for such proc-
esses by a statement each flow depends on only all components of the re-
sultant thermodynamic force. 
 

Table 16.2 
Calculated and Experimental Values of Silicon Distribution Coeffi-

cient in Welded Diffusion Pairs 
 

Content Ratio 

 
Parameter 

 

Distribution coeffi-
cient 

Si, % Cr, % D23 /D22 χ23 Calculation Experiment 

1.0 6.7 0.03 3.00 1.20 1.30 
2.0 6.7 0.07 3.50 1.20 1.2 

3.0 6.7 0.11 3.66 1.26 1.33 

4.0 6.7 0.15 3.75 1.26 1.33 

3.0 1.0 0.10 3.33 1.04 1.15 
 

Since all summands of this force Xi have the same tensor order, such 
a revision of the physical concept of Onsager’s postulate intrinsically cor-
responds to Curie principle that excludes the interrelation between phe-
nomena of different (odd) tensor order. This is such (resultant) force that 
should have been named thermodynamic since the fact itself of its exis-
tence, as well as its particular form for each of the independent processes 
is defined by the basic equation of thermodynamics. Such a force found 
allows avoiding the “over-determination” of the flow given in expression 
(18.4.2) as a function of thermodynamic forces and retaining the simple 
form for known laws of thermal conduction, electric conduction, diffu-
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sion, filtration, momentum transfer at their generalization to the case of 
superposition of different-kind phenomena.  
 
 
16.5. Investigation of Superposition Effects with Reciprocal Relations 

Violated 
 

The Onsager’s symmetry conditions Lij = Lji or Onsager-Cazimir’s 
anti-symmetry conditions Lij = – Lji are known to be violated (S. De Groot, 
P. Mazur, 1974) providing the coefficients Lij and Lji are inconstant, i.e. 
depend on the parameters of the system, in particular, the thermodynamic 
forces Xi and Xj. This fact significantly restricts the existing TIP applica-
bility since the existence of such dependence is doubtless. The situation 
changes when the transfer equations are represented in diagonal form 
(16.1.6), while the superposition effects are determined from the partial 
equilibrium conditions. In this case, as shown hereinbefore, the kinetic 
coefficients are cancelled out and the superposition effects are found from 
the condition of mutual compensation of the resultant force components 
without appeal for the reciprocity relationships to be used.  
 Let us show this by a quite general example of multi-component 
systems divided into two subsystems with a porous partition, capillary, 
valve, finite-thickness membrane, etc (Fig.16.2).  

The partition has generally 
finite dimensions and is, there-
fore, considered as one of the 
subsystems within such a “com-
bined” (discontinuous-
continuous) system. The system 
in whole is a spatially heteroge-
neous medium featuring tem-
peratures T, pressures p, concen-
trations ck, etc. continuously 
varying across the thickness of 
the membrane, whereas distribu-
tion of temperatures, pressures 
and concentrations outside the 
membrane being practically ho-
mogeneous (intrinsically equilib-

rium) (respectively, T', p', ck' and T", p", ck", etc.). 
The effects arising in such a system is more conveniently to be con-

sidered starting off with the simplest case of a single-component medium 
(ck′ =ck″ = , υk = υ) having intrinsically the same pressure on both sides of 
the porous partition (p′ =p″). With the temperature difference (ΔT ≠ 0) 
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Fig.16.2. Combined (Discontinuous-
Continuous) System 

1 – membrane (continuum) 
2, 3 – reservoirs of heat and substance 
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generated in such a system a gas or liquid flow across the partition arises 
resulting in pressure difference. This phenomenon was first described by 
Feddersen (1873), who observed a flow of air across a plaster wall in the 
direction toward the higher temperature and termed it thermo-diffusion. 
This phenomenon is presently known as thermo-osmosis. The thermo-
osmosis ceases with both components of the osmotic force, FkТ = (sko – 
sk)ΔT and Fkр = – υkΔp, mutually balanced. From here, given the relation-
ship (sko – sk) = qk

∗/T (where qk
∗ – the so-called transfer heat of the kth 

component), a known expression of Feddersen stationary effect directly 
follows (Groot, 1956): 

 (Δp/ΔT)st = – qk
∗/Tυk .                                     (16.5.1) 

There is the inverse phenomenon also known, viz. a temperature dif-
ference arising across the two sides of a partition with air or other gas be-
ing forced thru it. Both these effects have the same nature with Knudsen 
effect (1910), as well as with Allen - Jones effect (1938) in liquid helium 
II (fountain effect) consisting in overflow of helium out from a bulb 
closed up with a porous cork under a minor heating (Haase, 1967). As-
suming for this case (London, 1938) that the superfluid component of he-
lium II passing thru the porous cork or capillary has zero entropy (sko  = 0) 
expression (16.5.1) becomes: 
  

(Δp/ΔT)st = sk/υk ,                               (16.5.2) 
 

which corresponds to the result London earlier obtained by the “pseudo-
thermostatic” way. There is the inverse phenomenon also known, viz. a 
temperature difference arising with a pressure difference generated across 
the two sides of a partition, which was termed as mechanocaloric effect 
(Daunt-Mendelson).  

In isothermal systems (ΔT = 0) under a pressure difference Δp gener-
ated across a membrane the phenomenon of reverse osmosis arises, viz. 
binary solution separation with extracting the kth component (usually sol-
vent) therefrom. This phenomenon is being applied in ever growing scale 
in water purification units. The stationary concentration difference of the 
kth component arising therein is described as: 

 (Δck /Δp)st = – υk /μkk .                                   (16.5.3) 

There is the inverse phenomenon also known, viz. an osmotic pres-
sure difference (osmotic pressure) Δp arising at redistribution of the kth 
component, which plays an important role in biological systems. Both 
these effects do not include the transfer heat and are reversible.  
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Now let us consider even more complicated case when the membrane 
is permeable (though in different degree) for both of the components. 
There are the flows of the 1st and 2nd components J1 and J2 arising in such 
a system, for which the thermodynamic transfer laws, due to Δc2 = – Δc1, 
take the form: 

 J1 = – L1 [Σkμ11Δc1 + (s1– s10) ΔT + υ1 Δp] ;              (16.5.4) 

 J2 = – L2 [Σkμ21Δc1 + (s2 – s20) ΔT + υ2 Δp] .              (16.5.5) 

The separation of a mixture in such systems into components due to a 
temperature difference maintained is sometimes termed as thermo-
effusion to distinguish this phenomenon from the thermo-diffusion (redis-
tribution of components in the absence of membranes and convective gas 
or liquid flow (S. De Groot, 1956). Given the interrelation of the chemical 
potential derivatives μ21 = – (c1/c2)μ11 ensuing from Gibbs-Duhem rela-
tionship at p,T = const and solving the set of equations (16.5.4)…(16.5.5) 
for the Δc1 and ΔT the expression of stationary thermo-effusive effect 
may be found: 

 (Δc1/ΔT)ст = (υ1q2
∗ – υ2q1

∗)/Tυμ11 .                   (16.5.6) 

Similarly solving the same set of equations for Δp and ΔT and given 
(s10 – s1) = q1

∗; (s20 – s2) = q2
∗  the expression for thermo-mechanical ef-

fect may be found (R. Haase, 1967): 

 (Δp/ΔT)st = – (c1 q1
∗ +c2 q2

∗)/υ ,                        (16.5.7) 

where υ = c1υ1 + c2υ2 .. 
All these results comply with those obtained within the frames of 

TIP. However, there was no need to apply now to the Onsager-Cazimir’s 
reciprocity relationships and assume the linearity of phenomenological 
laws, as well as the constancy of phenomenological coefficients (their in-
dependence on the thermostatic parameters). On the contrary, it is quite 
evident that the processes in the system considered are non-linear since 
the coefficients of thermal conduction, electric conduction, diffusion, fil-
tration and viscous friction in Fourier’s, Ohm’s, Fick’s, Darcy’s and 
Newtons’s empirical laws depend on temperature, pressure, composition 
and number of other parameters varying across the thickness of the mem-
brane. This violates their constancy requirement which in the Onsager’s 
theory bears the principal character and constitutes a substantial part of 
his law (S. De Groot, P. Mazur, 1964). In fact the forces Xi in his theory 
were determined by a deviation of the system parameters ψi (temperature, 
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pressure, component concentrations, etc.) from their equilibrium values 
and were, therefore, functions of these parameters. In such a case the de-
pendence of the coefficients Lij on these parameters implies their depend-
ence on also the forces Xj, i.e. the non-linearity of phenomenological laws 
(5.1.6). This violates the conditions under which the statistic-mechanical 
substantiation may be applied to symmetry of phenomenological coeffi-
cients matrix as used by Onsager and, thus, excludes the possibility of us-
ing these coefficients in the membrane processes. It is even more impor-
tant that the method proposed does not demand the application of the On-
sager’s relationships violated in such systems. The analytic expressions 
for the superposition effects herein obtained do not depend on the fact 
whether the phenomenological laws (see 5.1.7) are linear or not and 
whether the Onsager-Cazimir’s reciprocity relationships are observed or 
not therein. This means that the said effects bear a more fundamental 
character.  

The fact attracts attention as well that all of the said effects reach their 
peak values at stationary states when one of the flows (mostly the flow of 
the kth component) disappears and therefore just can not superimpose on 
the remainder flows. This once again evidences the inconsistency of the 
TIP-associated interpretation of these effects as a result of superposition 
(interaction) of the flows. As appears on close inspection, these effects 
arise due to superposition of motive forces, i.e. in exactly the same way as 
this occurs in mechanics and other disciplines. The principal difference 
between these two interpretations is that the superposition effects in ther-
modynamics are functions of state, but not of process, and arise from the 
partial equilibrium conditions, but not from whatever order stationary 
state conditions.  
 
 
 
 
 
 
 

 
Chapter 17 

 
GENERALIZATION OF THE THEORY TO SYSTEMS STANDING  

FAR AWAY FROM EQUILIBRIUM 
 

 
This chapter is dedicated to thermokinetic description and investiga-

tion of a number of interrelated non-linear transport processes based on 
the method offered in the previous chapter. The method basically consists 
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in defining the superposition effects of irreversible processes from the 
partial equilibrium conditions. In the case of interrelated processes it is 
realized by using the differential reciprocity relationships allowing for the 
contribution of an alien force to a phenomenon under investigation and 
thus making such processes independent. This allows finding for each of 
them a resultant motive force which disappearance ceases the process. 
Such an approach enables the further (relative to TIP) reduction of the 
number of kinetic factors in these laws and the expression of the superpo-
sition effects in the same way as in Chapter 11 for independent processes.  

The efficiency of the method offered and the validity of the conclu-
sions obtained from thermodynamics will be here confirmed on a numer-
ous experimental data.  
 
 
 

17.1. Differential Reciprocal Relations Confirmed in Exponential 
Chemical Reactions 

 
Classic thermodynamics with its laws considers only initial and final 

states of a chemically reacting system not touching upon kinetics of 
chemical reactions, i.e. the rate of the initial-to-final state transit for the 
system. The factors affecting this rate, (such as temperature, concentra-
tion of reagents, catalysts available, etc.) have been subject of chemical 
kinetics. This postulates, according to the Guldberg & Waage mass action 
law, that the rate of a chemical reaction is proportional to the product of 
reagents’ concentration. Since any chemical reaction runs in both forward 
and backward directions, its resultant rate is defined by the difference be-
tween the rates of direct ωr' and reverse ωr" reactions: 
 

 vr = ωr΄ – ωr˝ = ωr΄ (1– ωr˝/ωr΄ ) .          (17.1.1) 
 

According to the detailed balance principle a reaction stops when the 
rate of direct reaction becomes equal to that of reverse reaction. In this 
case the affinity of the reaction Ar becomes equal to zero. From this it fol-
lows that  
 

 Ar = RμT ln (ωr˝/ωr΄) ,                          (17.1.2) 
 

where Rμ – universal gas constant. 
Considering (17.1.1) and (17.1.2) jointly the kinetic laws of chemical 

reactions may become exponential dependences of the type: 
 

 vr = ωr΄ [1– exp (–Ar /RμT)] .                       (17.1.3) 
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These equations term the Guldberg & Waage laws. The dependence 

of ωr' on temperature within a quite wide range is here described by the 
Arrenius empirical law: 

ωr = ωrо exp (–Ea/RT) ,                       (17.1.4) 

where ωrо – Arrenius factor; Ea – activation energy required to initiate re-
action 

This non-linearity of chemical reactions leads to a violation of the 
Omsager-Cazimir’s reciprocity relationships therein with the result that 
the applicability of TIP to chemically reacting systems is restricted to 
next-to-equilibrium states. The thermodynamic substantiation of more 
general differential reciprocity relationships (5.5.3) offered in Chapter 4 
allows overcoming this restriction. Let us consider for example the case 
of interrelated chemical reactions obeying the Guldberg & Waage chemi-
cal kinetics laws (19.1.3). For this let us apply to the class of ternary uni-
molecular reactions L. Onsager earlier considered (1931). These reactions 
with substances L, M, N may be described by two different ways: either 
as a two-linear-independent reaction model (R. Haase, 1967): 

L ↔M (реакция1),                               (17.1.5 а) 

 M↔N  (реакция 2),                               (17.1.5 б)                

or as a linear-dependent elementary reaction model (see Fig.15. 
 
 L ↔ M       (reaction  1),  
M ↔ N       (reaction 2),         (17.1.6) 
N ↔ L         (reaction 3). 

The first model features a purely 
macro-approach, where a merely general 
process is described with the help of 
mathematically independent equations. 
The second model describes a reaction 
mechanism, i.e. a real chemical conver-
sion process (R. Haase, 1967). The above 

elementary reactions run with rates w1, w2  and w3, respectively, being ex-
pressed, according to the Guldberg & Waage laws, by the following ex-
ponential kinetic equations 

                                    v1 = ω1΄ [1 – exp(–A1/RμT)] ; 

       v 2 = ω2΄ [1 – exp(–A2/RμT)];                       (17.1.7) 

   

 M

N
w3

w2
A1 A2

A3

w1 

L 
   

 Fig. 17.1.  Ternary   unimolecular   
                   reaction 
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     v 3 = ω3΄ [1 – exp(–A3/RμT)] , 
where ω1΄, ω2΄ , ω3΄ – rates of the corresponding direct reactions; A1, A2, 
A3 – their current affinities interrelated to the Gess law as A1 + A2 = A3. 
According to these equations the dissipation function Tσs for the system 
under consideration is: 
 

Tσs = v 1A1+ v 2A2 + v 3A3 .                        ( 17.1.8) 
 

For the considered case the rates of the reactions and their affinities 
are linear-dependent (i.e. represent a linear combination of each others). 
At such conditions the symmetry conditions are known not to be guaran-
teed (De Groot, 1956). Therefore let us introduce two new linear-
independent rates: 

 
                    v α = v 1 + v 2 ; v β = v 2 + v 3 .                                ( 

17.1.9) 
   

Two independent forces Aα and Aβcorrespond to these rates, which 
allows equations (19.1.7) to be transformed, subject to the invariance of 
the dissipation function Tσs, to the form: 

v α = L11 [1 – exp(–Aα /RμT)] + L12 [1 – exp(–Aβ /RμT)],     (17.1.10) 
      v β = L21 [1 – exp(–Aα /RμT)] + L22 [1 – exp(–Aβ /RμT)].     (17.1.11)  

Here 

                   L11 = ω1΄ + ω2΄; L12 = ω3΄ exp(–Aα /RμT )] ;           (17.1.12) 
 L21 = ω3΄ exp(–Aβ /RμT )];   L22 = ω1΄ +ω3΄ .          (17.1.13) 

Thus a ternary reaction far from equilibrium may be described by two 
non-linear kinetic equations with linear-independent rates and forces. 
Here the coefficients ω1΄, ω2΄ and ω3΄ being functions of temperature, 
pressure and concentrations of parent substances for the corresponding 
reaction do not depend on its affinity. In fact, according to (17.1.2) the af-
finity Ar of any of the rth reactions is defined by the relation between the 
rates of direct and reverse reactions and does not depend on each of them 
separately. Hence chemical reactions are described by exponential kinetic 
equations with phenomenological coefficients independent on forces. In 
this case generalized reciprocity relationships (5.5.3) should be true hav-
ing in our case the form: 

 
∂vα /∂Aβ = ∂vβ /∂Aα .                                   (17.1.14) 
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To make sure they are valid, it is enough to differentiate expression 

(17.1.10) with respect to Aβ, given L11 and L12 independent on Aβ, and to 
repeat the similar operation on (17.1.11) with respect to vβ. The result will 
be as follows (V. Etkin, 1982): 

 
∂vα/∂Aβ = ∂vβ/∂Aα = (ω3΄/RμT) exp(–A3 /RμT ).      (17.1.15) 

 
It can be easily seen that with approaching equilibrium, when A1, A2 

and A3 are simultaneously tending to zero, relationship (17.1.15) goes 
over into known Onsager’s symmetry conditions for chemical reactions in 
the form: 

       L12 = L21 = ω3΄/RμT .                                           (17.1.16) 

This example shows that the generalized reciprocity relationships do 
not follow from the Onsager’s symmetry conditions as usually consid-
ered, but, on the contrary, these conditions themselves ensue from the dif-
ferential reciprocity relationships near equilibrium when the linear ap-
proximation appears to be valid.  

Thus thermokinetics appears to be quite compatible with the expo-
nential laws of Guldberg & Waage chemical kinetics, which opens up ad-
ditional vistas in the thermodynamic analysis of chemical technology 
processes and the evolutional problems of biological and ecological sys-
tems.  

 
 
 

17.2. Investigation of Irreversible Processes in Systems      
Standing far from Equilibrium 

 
Measuring gradients of temperature, pressure, chemical, electrical, 

etc. potential in non-equilibrium systems divided into parts (subsystems) 
with membranes, capillaries, gates, etc., is practically excluded. In this 
case the thermodynamic transport laws have to be written down in the in-
tegral form where the thermodynamic forces are represented in terms of 
differentials of the potentials mentioned. Then the phenomenological co-
efficients Кk which are functions of thermostatic variables become im-
plicit functions of the thermodynamic forces Fk since these depend now 
on the fields of temperatures, pressures, concentrations, etc. Such de-
pendence makes the transport laws linear since these fields vary with 
variation of the forces Fk themselves. As shown on example of chemical 
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reactions, the Onsager’s reciprocity relationships in such systems are vio-
lated all the more the further the system stands from equilibrium. That 
was brought out clearly in the very thorough experiments the group of 
American investigators from the Oak-Ridge National Laboratory (USA) 
carried out to solve the problem of creating nuclear reactors with gas heat 
carrier for spacecrafts (Ewans, Watson, Truitt, 1963; Mason, Wendt, 
Bresler, 1972). A system was considered comprised of two hollows sepa-
rated with a graphite membrane of medium permeability. There was sub-
stantially pure argon (х1 = 0.9711) on a one side of the membrane and 
substantially pure helium (х2 = 0.9917) on the other side. Both gases were 
maintained in a state with the same temperature. As a result, the counter 
flows J1 of argon and J2 of helium (mole/s) occurred across the mem-
brane. The pressure differential Δр having been generated across the 
membrane, the filtration process superimposed on the isothermal diffu-
sion with the result of the volumetric flux JV (cm3/s) arisen. By changing 
the pressure differential in value and sign a stationary state could be ob-
tained with the volumetric flux ceased 1).  

As independent flows, the investigators considered the diffusion flux 
JD (cm3/s) = J1/n1 – J2/n2 (where n1, n2 – molar concentrations of argon 
and helium, respectively, mole/cm3), which does not vary with filtration 
due to the equality of the volumes J1/n1 and J2/n2 therein, and the volu-
metric (filtration) flux of the gas mix JV (cm3/s) =Vμ (J1+J2), which does 
not vary with diffusion due to the equality of the flows J1= – J2 therein 
(i.e. the constancy of the mole numbers in the subsystems). Diffusion mo-
tive force was adopted as the mole fraction differential for one of the sys-
tem independent components (argon) XD = – Δx1, which remained practi-
cally constant in the experiment, while filtration motive force was 
adopted as the total pressure differential XV  = – ∇р. Then the Onsager’s 
phenomenological laws become: 

   jD = – LDD ∇x1 – LDP ∇р ,                                   (17.2.1) 

 jV = – LPD∇x1 – LPP ∇р ,                                    (17.2.2) 

where jD, jV –diffusion and volumetric flux densities, respectively, 
cm3/cm2⋅s; LDD, LDP – phenomenological diffusivity (the first index “D” in 
both subscripts) resulting from diffusion and filtration (the second index 
“P”) motive forces, respectively; similarly LPD and LPP – filterability of 
the volumetric flux resulting from the same forces.  

                                                 
1) To ascertain those conditions was the main task of the investigation mentioned. 
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However, to apply these laws to a finite-thickness membrane, it was 
necessary to change to integral forces expressed in terms of differentials 
of the same values Δx1 and Δр. To do that, it was necessary to know how 
the local factors LDD, LDP, LPD and LPP depended on the pressure and mo-
lar concentration of one of the gases n1. For this purpose the investigators 
applied to the Chapmen-Enskog’s kinetic theory of ideal gas transport. 
According to this theory a little bit modified to the intermediate flow un-
der consideration in-between the normal diffusion and Knudsen fluxes the 
binary gas in the porous membrane is approximated as a three-component 
system where one of the components is the membrane material itself as if 
distributed in the gas flow in the form of a more coarse suspended dust. 
The said “dusted gas” model certainly comprised the Onsager’s symmetry 
conditions and provided explicit equations for diffusivity and filterability: 

                      LDD = (D1/n1γ1 +D2/n2γ2)/р(n1γ1 + n2γ2) ,               (17.2.3) 

 LPD = LDP = (D1– D2)/р(n1γ1 + n2γ2) ,                    (17.2.4) 

 LPP = (n1D1+n2D2)/р(n1γ1 + n2γ2) + Bo/ν .             (17.2.5) 

Here D1 = (1/D1k+1/D12);   D2 = (1/D2k + 1/D12) – diffusion factors for argon 
and helium, respectively; γ1 = D1/D1k; γ2 = D2/D2k; D1k, D2k – Knudsen dif-
fusion factor and inter-diffusion factors for argon and helium, respec-
tively; Bo – membrane permeability; ν – dynamic viscosity of the system.  

The said dependence of the factors Lij in relationships (17.2.3)-
(17.2.5) on the local pressure p and the molar concentrations n1 and n2 of 
the components on the membrane made the diffusion and filtration inte-
gral laws  

jD = – LDD
ср

 Δx1 – LDP
ср

 Δр ,                               (17.2.6) 

 jV = – LPD
ср

 Δx1 – LPP
ср

 Δр                                  (17.2.7) 

non-linear since the fields of pressures and concentrations in the mem-
brane vary with the forces Δx1 and Δр; the averaged factors LDD

av, LDP
av, 

LPD
av and LPP

av also appear to be an implicit function of these forces. 
Therefore the associated targets of this investigation were to check the 
applicability of the linear TIP and the ideal gas transport kinetic theory to 
this system. The calculated results of one series of such experiments at a 
constant mean gas pressure of p = 1.96 kg/cm2 and a constant gas compo-
sition are plotted on Fig.17.2 as solid lines against the experimental val-
ues of the same parameters dotted (Mason, Wendt, Bresler, 1972).  

As follows from the figure, the calculated from kinetic theory diffu-
sion and volumetric flux densities jD and jV vs. pressure differential well 
agree with the experimental data and have a complex non-linear character 
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complying with that experimentally found. At the same time both the ex-
periment and the calculation reveal a violation of the Onsager’s symmetry 
conditions in the system under consideration, which aggravates with the 
system drifting from equilibrium. In fact, the tangent of jD curve inclina-
tion defining the diffusivity LDP changes not only its value, but also the 
sign, whereas the vertical segments in-between the curves Δх1 = 0,963 
and Δх1 = 0 characterizing the symmetrical filterability LPD change much 
less in value and does not change the sign at all. Only close to the point 
Δp = 0.2 atm, where volumetric flux becomes zero, while the jD and jV 
curves may be quite accurately approximated by the linear phenomenol-
ogical laws, the Onsager’s reciprocity relationships apply with relative 
accuracy. However, as experimenters stress, the space where the linear 
laws and the Onsager’s reciprocity relationships are valid, becomes eva-
nescent if equations (17.2.6)-(17.2.7) are integrated with the fluxes jD and 
jV related to the mean integral value of argon concentration (which ensued 
from the TIP requirement for invariance of dissipation function with 
change to new forces and flows). It is also significant that the tangents of 
jD and jV curves inclination are opposite on the major part of their length 
(at Δp > 0.2 atm), which evidences the anti-symmetrical character of the 
reciprocity relationships). This also contradicts the TIP stating the anti-
symmetry conditions show in only the case when the forces XD and XV 
have different parity relative to time reversal (H. Cazimir, 1945). Mean-
time, in this case these forces do not change the sign when time “re-
verses”, i.e. both of them refer 
to even time function. It is worth 
noticing that close to the sta-
tionary state (jV = 0) the On-
sager’s reciprocity relationships 
apply despite the extremely pos-
sible drift of the system from 
material equilibrium (Δх1 ≈1), 
which evidences that the TIP re-
quirement for a system to be 
immediately close to equilib-
rium is superfluous. Thus we 
encounter here the situation 
when practically none of the lin-
ear TIP known statements ap-
plies.  

It becomes even more at-
tractive to check the applicabil-
ity of thermokinetics at these conditions. Note immediately that the inde-
pendent diffusion and volumetric fluxes jD and jV, as well as the volumet-
ric flux motive force XV = – ∇р, comply with the thermokinetic require-
ments. However, the diffusion flux motive force at S,V = const is the 
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negative gradient of diffusion potential of any (e.g. the first) independent 
component XD = –∇ζ1. Since the molar entropies sko and volumes υko re-
main constant in this case, then according to (17.3.4)  

 XD = –∇ζk1 = – ∇μ1,                                (17.2.8) 

so that it may be used a known representation of the ideal gas chemical 
potential μi in terms of its standard value μi

о and the partial pressure рi  
 

 μi = μi
о + Rμ T ln рi .                                 (17.2.9) 

Applying the ideal gas equation рi = рxi = niRμT (where xi , ni , Rμ – 
mole fraction of the ith gas, its molar concentration and universal gas con-
stant, respectively) the diffusion motive force may be expressed as XD = – 
(Rμ T/рi)∇рi. Thus the forces XD and XV appear in this case to be interre-
lated so that the local diffusion and filtration laws should be written down 
in the matrix (Onsager’s) form: 
 

XD = RDD jD + RDР jV                                                        (17.2.10) 
 XV = RРD jD + RРР jV                                     (17.2.11) 

где RDD , RDР , RРD , RPP – phenomenological resistibility as inverse value 
to the phenomenological diffusivity and filterability LDD, LDP and LPD, LPP, 
respectively (S De Groot, P. Mazur, 1964).  

To change to the integral form of these equations where the diffusion 
and filtration motive forces are expressed in terms of pressure differen-
tials X̄D = – Δр1 ; X̄V = – Δр), let us apply to the same phenomenological 
factors vs. pressure and concentration as in 19.2.3-19.2.5. Taking into 
consideration that X̄D = ∫XDdℓ; X̄V = ∫XVdℓ, where ℓ – membrane thick-
ness, and given constancy of the jD and jV fluxes, gives that change to the 
integral form of laws (19.2.3) and (19.2.4) comes to calculation of the to-
tal resistibility to the said flows Řij  = ∫Rijdℓ =  ∫Lij 

-1dℓ.  This leads to 
pseudo-linear integral laws of the following kind: 

                  X̄D
 = ŘDD jD + ŘDP jV                                                        (17.2.12) 

 X̄V = ŘPD jD + ŘPP jV                                     (17.2.13) 

These laws differ from (19.2.6), (19.2.7) basically in the behavior of 
the diffusion motive force vs. the pressure differential across the mem-
brane with the result that the non-linearity of the jD curves becomes less 



 314 

distinct. It only remains to confirm the validity of generalized reciprocity 
relationships (5.5.3) for such processes. The computation results based on 
(17.2.3)-(17.2.5) for the same experimental conditions are described in 
Table 17.1 (V. Etkin, 1983). 
 
Table 17.1 

Reciprocal Relations for Non-Linear Cross Diffusion  
of Helium and Argon 

 
As follows from the table, the generalized reciprocity relationships 

(columns 3 and 4) apply well enough for even the close-to-limit drift of 
the system from diffusion equilibrium. At the same time the computation 
results show the Onsager’s reciprocity relationships go over into the 
Cazimir’s anti-symmetry conditions thru the entire range of thermody-
namic forces. This is caused by the fact that the concentration gradients 
across the membrane for argon and helium are counter-directed (i.e. are 
opposite in sign). In this case the equalization of concentration of one of 
the system components (argon) causes the “ascending diffusion” of the 
other component (helium), i.e. its motion toward its increased concentra-
tion. The two flows (argon and helium) become now interconnected (“re-
lated”) so that an enhancement of one of them suppresses the other. This 
means that in the course of relaxation of one of the components useful 
work on the other one is being done. Since TIP does not consider the use-
ful work processes, it could not predict this result. In this respect ther-
mokinetics supplements the existing concepts regarding the origin of anti-
symmetrical reciprocity relationships including in their number the cases 
of counteracting forces of the same parity. 

Motive forces, atm Diff. reciprocal reltions, 
cm3/cm2 ⋅s⋅ atm 

Onsager’s symmetry 
conditions, 

cm3/cm2 ⋅s⋅ atm 
X̄D X̄V  ∂jD /∂ X̄V  ∂jV/∂  X̄D

 LDP
 LPD

 

0 0 – 1.75 1.75 – 1.749 1.749 
0 0.5 – 1.77 1.77 – 1. 765 1.915 
0 0.9 – 1.83 1.82 – 1.837 2.12 

0.5 0 – 1.91 1.905 – 1.875 1.85 
0.5 0.5 – 1.70 1.76 – 1.786 1.97 
0.5 0.9 – 1.21 1.25 – 1.81 2.15 

– 0.5 0 – 1.75 1.77 – 1.835 1.745 
– 0.5 0.5 – 2.87 2.96 – 1.85 2.08 
– 0.5 0.9 – 4.51 4.55 – 1.89 2.21 
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It follows also from Table 17.1 that the anti-symmetry conditions ap-
ply quite satisfactorily close to the stationary state associated with disap-
pearance of the volumetric flux jV, though the system in whole stands in 
this case extremely far from material equilibrium (concentration differen-
tial close to unity). This confirms the deduction of thermokinetics that, to 
agree with the Onsager-Cazimir’s symmetry conditions, it is enough that 
the cross terms in the Onsager’s phenomenological laws be linear, which 
complies with partial (in this case, filtration) equilibrium. Thus we en-
counter in this example a situation when practically all statements of lin-
ear TIP do not come true.  

 
 

17.3. Simplification of Transport Laws Based on Differential 
Reciprocal Relations 

 
A significant advantage of the method for investigation of irreversible 

processes consists in the possibility to reduce the transport kinetic equa-
tions to the “diagonal” form containing a single (resultant) motive force. 
This allows dramatic reduction of the kinetic (empirical) factors these 
equations contain. This may be instantiated most clearly by the interrela-
tion between anisotropic thermal conduction and electrical conduction of 
bodies in magnetic field.  

Artificial anisotropy, viz. a distortion of current lines and heat stream 
in conductors placed in magnetic field, engenders a number of effects 
usually referred to the “thermo-galvano-magnetic” group and subdivided 
into “thermoelectric” (due to the interrelation between thermal and elec-
tric phenomena), “galvanomagnetic” (due to the interrelation between 
electric current and magnetic field) and “thermomagnetic” (due to the im-
pact of magnetic field on heat flow), while depending on the magnetic 
field direction (lengthwise or across the conductor) – also into longitudi-
nal and transversal. An empirical approach to the description of such phe-
nomena is usually restricted to the 2D case (heat and charge streams lie in 
the x–y plane) and introduces the tensors of thermal conduction and elec-
trical conduction thus providing a set of 6 interrelated equations (equal to 
the total number of the electric current and heat stream vectors’ compo-
nents) with 36 empirical factors (S. De Groot, 1956). Due to the isotropy 
of the system in the x–y plane only 12 factors of 36 remain independent.  

These are the laws that served for L. Onsager as a prototype to his 
“matrix” phenomenological laws (4.4.1). According to these laws the 
electric charge and heat stream vectors’ components are considered as in-
dependent flows, while the temperature gradient and electric potential 
vectors’ components – as independent thermodynamic forces. The linear 
theory of irreversible processes (TIP) based on this assumption sets an 
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additional interrelation between some of the abovementioned phenomena 
and reduces the number of the independent empirical factors to 9 due to 
the application of the Onsager-Cazimir’s symmetry conditions (R. Haase, 
1967).  

Thermokinetics allows to go even further and to reduce the number of 
the said factors more than twice by imparting the thermodynamic form to 
the equations of anisotropic thermal conduction and electrical conduction. 
This becomes possible by applying the reciprocity relationships not be-
fore, but after the final (thermokinetic) form of anisotropic thermal and 
electrical conductivities has been determined.  

According to thermokinetics the artificial anisotropy of electrical con-
duction may be allowed for by proceeding from the traditional definition 
of work as the product of a force and the distance the object covers under 
this force applied. According to (2.4.7), providing the force direction does 
not coincide with the travel direction as it takes place in anisotropic bod-
ies, the dissipation function (dissipation process power) should be repre-
sented as: 

Nd = Σi ⏐Xi ⏐⋅⏐ji ⏐cos γi ,                                         (17.3.1) 

where γ – angle between the vectors Xi and ji. 
From this it follows that the thermodynamic form of Ohm’s and Fou-

rier laws for bodies with artificial anisotropy requires the angle γe be-
tween the anisotropic electrical conduction motive force Xe

a and the cur-
rent vector je to be allowed for, as well as the angle γq between the anisot-
ropic thermal conduction motive force Xq

a and the entropy flow js: 

je = σe Xe
a cos γe = Le (Xe

a) Xe
a ,                               (19.3.2) 

 js = (λ/T)Xq
a cos γq = Lq (Xq

a)Xq
a ,                            (19.3.3) 

where λ, σe – thermal conductivity and electric conductivity, respectively, 
in the absence of magnetic field; Lq(Xq

a) = λcosγq /T; Le(Xe
a

 ) = σecosγe  – 
phenomenological coefficients as functions of the thermodynamic forces 
Xs

a and Xe
a thru the angles γq и γe.  

Before obtaining an extended expression for these laws, let us find 
their thermodynamic form in the absence of anisotropy. We will consider 
electrical conduction in metals as a particular case of the diffusion in a 
multi-component system where free electrons are the only movable com-
ponent (Groot, Mazur, 1964). The chemical potential μk for a multi-
component system with components carrying the electrical charge per 
mass unit ϑеk is known to give place to the electrochemical potential μk

∗ = 
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μk + ϑеkϕ, where ϕ – electrical potential of a particular zone in the system. 
Therefore assuming the “electron gas” to be, as usual, one of the compo-
nents of the system “free electrons + ions” and the uniqueness conditions 
for the diffusion of free electrons to be the same as in the diffusion of the 
kth component, gives the additional term ϑеk∇ϕ appearing in the equation 
for the thermodynamic force Xk = –∇ζk of this process: 

 Xk = – [Σkμkℓ∇cℓ + (sk – sko)∇T – (υk – υkо)∇p +ϑеk∇ϕ].     (17.3.4) 

Since mechanical equilibrium (∇p = 0) takes place in the system un-
der consideration and the gradient of ion concentration (second compo-
nent) is absent, i.e. ∇cℓ = 0, the expression for the diffusion flux of the kth 
component in electrolytes becomes: 

 jk = – Lkk [ϑеk∇ϕ + (sk – sko)∇T].                       (17.3.5) 

To endue this equation with the form of Ohm’s generalized law, it is 
necessary to change to the electrical charge flux with the kth component jе  
= ϑеkjk and to simultaneously introduce the related force Xe proceeding 
from the product jk⋅Xk to be maintained (dissipation function invariance). 
This condition is associated with the force Xe  = Xk/ϑеk so that Ohm’s 
generalized law becomes: 

jе = σеXe = σе [E + Xeq] ,                                    (17.3.6) 

where E = –∇ϕ – electric field; Xeq = – sе∗∇T – thermodynamic represen-
tation of the so-called “thermomotive force”; sе∗ = (sе – sеo) – specific (per 
charge unit) electron transport entropy (Haase, 1967); σе = Lkkϑеk

 2.  
Thus there is an additional force of Xeq appearing along with EMF in 

conductors with inhomogeneous temperature field and responsible for 
homogeneous thermoelectric effects (Etkin, 1991). In magnetic field it is 
supplemented with the Lorenz force FL  = ve × B = υe je × B (where ve , B – 
electron transport velocity and magnetic flux density, respectively; υe, je – 
specific volume of “electron gas” and current density, respectively). This 
force projection on the charge transfer direction is equal to zero. How-
ever, this force is exactly responsible for the artificial anisatropy of the 
primordially isotropic heat and charge conductors since it changes the di-
rection of the anisotropic electrical conduction resultant force Xe

a = E + 
Xeq + Fл. Allowing for the force Fл the developed form of the Ohm law 
becomes: 

 je = – σe Xe
a = σe [∇ϕ + sе∗∇T + Fл.] .                 (17.3.7) 



 318 

To facilitate further computations, the charge flux je is to be reasona-
bly factored into two components, one of which, jeх , is directed the same 
way as in the absence of anisotropy, whereas the other, jey , on the con-
trary, is caused by anisotropy and directed normally to magnetic field 
(Fig. 17.3). 

In this case 

jeх = – σe Xe  = σe [∇хϕ + sе∗∇хT ] ,                 (17.3.8) 

 jey  = σe cosγe [∇yϕ + sе∗∇yT ] ,                (17.3.9) 

where ∇yϕ, ∇хT and ∇yϕ, ∇yT – electric potential and temperature gradi-
ents on the axes x and y, respectively, 
 

 cos γe = 1 –⏐Fл⏐/⏐Xe⏐.                   (17.3.10) 

The ensuing dependence of cos γe on the flux je makes the anisotropic 
electrical conduction law (17.3.7), strictly speaking, non-linear. Neverthe-
less, as shown above, the differential reciprocal relations (5.5.3) are still 
valid for it, but in the following form: 

 (∂je y /∂Xq
a) = (∂js /∂Xe

a) .                           (17.3.11) 

These relations allow directly finding the anisotropic thermal conduc-
tion. Considering (17.3.9) gives for ∇yϕ being constant: 

(∂je y /∂Xq
a) = σe Xe( ∂ cos γe /∂Xq) = – σe sе∗.       (17.3.12) 

Then according to (17.3.11) considering the components Fл. and Xeq 
of the force Xe

a as being constant gives: 

  (∂js /∂Xe
a) = (∂js /∂ Xe) = – σe sе∗ .                   (17.3.13) 
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This means that in the Fourier law thermodynamic form (5.2.1) gen-
eralized to the case of anisotropic thermal conduction an additional term 
appears – σe sе∗E: 

 js = – (λ/T)∇T – σe sе∗E .                        (17.3.14) 

The found diagonal form of equations for anisotropic thermal and 
electrical conduction allow obtaining all the superposition effects inherent 
in such systems from the equilibrium conditions, i.e. by the same method 
as described in the previous chapter. 

 
 

17.4.  Further Reduction of the Number of Kinetic Factors                     
in Transport Equations 

 
Let us apply the found equations of anisotropic thermal and electrical 

conductions to determine the analytical expressions for the abovemen-
tioned superposition effects. Let us start off with the magneto-resistive ef-
fects consisting in resistance variation of the conductors in magnetic field 
and used for the magnetic field measurement (in magnetometers).  

From the positions of thermokinetics these effects are explained by 
the deviation of the current direction from the electric field direction E. If, 
for the sake of demonstrativeness (see Fig.19.3), the field direction E co-
incides with the axis x, then at ∇T = 0 the current direction will make the 
angle γe with this axis, while the current component along this axis, jeх(B), 
in the transverse magnetic field will vary by a factor of cosγe against its 
value without the field, which, according to the definition method of the 
electric conductivity σe = je/E, will lead to reducing this conductivity in 
the transverse magnetic field down to σe": 

σe̋  = jeх /∇х ϕ = σe cos γe ,                                           (17.4.1) 

where ∇х ϕ – projection of the vector ∇ϕ on the axis x. 
As next step, let us consider thermoelectric effects in the presence of 

magnetic field. Let the conductor plane and the current therein (see 
Fig.17.3) are oriented in the magnetic field direction, i.e. along the axis z 
(je = jez). Then the angle between the vectors je and B is equal to zero, so 
Ohm’s law becomes: 
 

jez = – σe cos γe [∇z ϕ + se
 ∗∇zT],                                   (17.4.2) 
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where ∇z ϕ , ∇z T – projections of the vectors ∇ϕ and ∇T on the current 
direction.  

As follows from this expression, the electric current is a result of the 
joint action of the thermoelectric force se

∗∇zT and the electric field ∇zϕ. 
And otherwise, the current flow in the conductor generates a heterogene-
ous temperature field with the conductor surface releasing (or absorbing) 
the Thomson heat qт* = Tse* which is similar to the transport heat qk* of 
the kth component. That phenomenon was first predicted by Thomson in 
his theory of thermoelectricity (1864) and has been called Thomson effect 
since that time. From the expression for the Thomson specific heat qт* it 
follows that the Thomson effect value is proportional to the current den-
sity je, while for the conductor as a whole – to the displacement current 
therein, which has been experimentally confirmed (R. Haase, 1967). It is 
worth mentioning the stationary state supported by the thermal conduc-
tance process and featuring the current disappearing (jez = 0) due to the 
thermodynamic force Xe components mutually balanced out in (17.3.7). 
This phenomenon is called the Thomson stationary effect and estimated 
as the electric potential gradient related to the temperature gradient in a 
conductor de-energized (jez  = 0): 

αТ΄ = (∇zϕ/∇zT)st = se
*,                                            (17.4.3) 

where αТ' – thermoelectric motive force coefficient 1).  
The similar effect appears in the transverse magnetic field as well 

when the current is directed along the axis x. In this case in Ohm’s law 
(19.3.7) je = jex;∇ϕ =∇xϕ;∇T = ∇xT. For stationary conditions (je x= 0) 
from (17.3.7) the expression for the Thomson cross effect follows as: 
 

 αТ˝ = – (∇x ϕ/∇xT)st = se
*.                           (17.4.4) 

 
Now let us consider the thermomagnetic effects. One of them – 

Righi-Leduc effect – means a temperature gradient arising in the direction 
normal to the heat flow jq and the field B in the absence of current (je = 0). 
This effect is as well caused by the abovementioned thermal conductance 
anisotropy in magnetic field. If, for the sake of convenience, the heat 
stream direction coincides with the axis x and given the vector ∇T makes 

                                                 
1) The left-hand side of the expression for an adequate effect will hereafter everywhere 
contain the coefficient corresponding to the empirical description of this particular phe-
nomenon in the monograph by R. Haase, 1967. 
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the angle γq with this axis (see Fig. 17.4), the components ∇xT and ∇yT 
will be evidently interrelated as: 

αRL B = (∇yT/∇xT) = tg γq (je = 0),                               (19.4.5) 

where αRL – Righi-Leduc coefficient.  

That effect was discovered almost simultaneously by A. Righi and S. 
Leduc (1887). It is usually represented as the product of some constant 
αRL and the magnetic intensity B thus stressing the proportionality of this 
effect to the field B. Note – this fact directly ensues from (17.4.4) thereby 
confirming the deductions of thermokinetics.  

Another thermomagnetic effect consists in the emergence of a weak 
electrical field of ∇yϕ in a de-energized conductor containing a tempera-
ture gradient of ∇T caused by the heat flow jq in the direction normal to 
the field intensity B. That effect was discovered by W. Nernst and A. 
Ettinshausen (1886) and has borne their names since that time. It can be 
more conveniently described with the vector ∇T oriented along the axis x 
(see Fig.17.4). Then ∇T = ∇xT and, given the evident relation ∇yϕ/∇xϕ = 
tgγe (Fig.17.4), the desired relationship can be represented as: 

ΑENB = – (∇yϕ/∇xT) = – (∇xϕ/∇xT)(∇yϕ/∇xϕ) = se
*tg γe ,            

(17.4.6) 

where αEN – Ettinshausen–Nernst constant. The proportionality of this ef-
fect to the field B is also experimentally confirmed.  

Let us now consider the group of galvanomagnetic effects in more de-
tail. Hall effect discovered in 1879 is the best known of them. It consists 
in the emergence of the electrical field E in the direction normal to the 
electrical current je and the magnetic field B. To derive the Hall effect 
analytically, let us align the axis x with the current density je vector (Fig. 
15.4). Then jey = 0; je = jex , while the force Xe will make an angle of γe 
with the axis x so that its component along the axis y will become equal 
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to ∇y ϕ = ∇хϕ tgγe. Taking into account that in a conductor thermally ho-
mogeneous je = – σe"∇хϕ gives: 

αHB = – (∇y ϕ /jex )ст = tg γe /σe˝ ( jey = 0 ),                        (17.4.7) 

where αH – Hall constant.  
From (17.4.7) it directly ensues that Hall constant is nothing else but 

the specific volume per electrical charge unit (positive or negative). 
Therefore the Hall effect sign depends on the charge carrier sign, while 
the Hall effect value – on the charge carrier concentration. These facts 
make Hall effect one of the most efficient methods for investigating the 
charge energy spectrum in metals and semiconductors. It is also used for 
measurement of magnetic intensity, for current multiplication in analog 
computers and in some kinds of MHD-current generators.  

Another effect also discovered by Nernst in 1887 and bearing his 
name consists in the emergence of a temperature gradient of ∇xT in the di-
rection of the current je = jex with the transverse magnetic field available 
when the heat flow jq is absent. This effect differs from the Thomson 
thermoelectric effect because arises in a conductor that initially is ther-
mally homogeneous. This effect results from setting the stationary state 
when the heat stream ceases. Then substituting the product σeЕ for jex in 
Fourier’s generalized law (17.4.5) gives that at this state jsx = – (λ˝/T)∇xT 
+ se

*jex = 0. From this it directly follows that 

αN = (∇xT/jex)cт = Tse
∗/λ˝ ( jey = 0 ),                            (17.4.8) 

где αN  – Nernst constant; λ" – thermal conductivity in the transverse 
magnetic field.  

The effect of a temperature gradient of ∇zT emerging in the magnetic 
field direction is similar to the Nernst effect providing the current flows in 
the same direction je  = jez, while the system in this condition is thermally 
homogeneous. This phenomenon does not have a special name – R. 
Haase proposed to call it Kelvin effect. Expressing, similar to the above, 
Fourier’s law for the heat flow along the axis z gives jsz = – ( λ/T )∇zT + 
se

*jez, so that with the stationary state setting in: 
 

αK = (∇zT/jez )cт = Tse
*/λ    ( jex = 0) ,                         (17.4.9) 

 
where αK is a value R. Haase proposed to call Kelvin constant.  

Ultimately, there is one more effect among the galvanomagnetic ef-
fects, which was also discovered by Ettinshausen in the mentioned 1887 
and consists in the emergence of a temperature gradient of ∇yT in the di-
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rection normal to the current je  = jex and the field B. It is also caused by 
the different directions of the vectors Xe and ∇T. If, by way of explana-
tion, the axis x coincides with the current je direction, then the compo-
nents ∇y T and ∇xT will be interrelated thru tgγq. Then substituting the ex-
pression ∇yT tgγq into (17.4.9) gives instead of ∇xT: 
 

αE B = (∇yT /jex)st = Tse
*tg γq/λ˝ ( jey = 0),                (17.4.10) 

 
где αE – Ettinshausen constant.  

Thus the entire spectrum of the thermoresistive, thermoelectric, ther-
momagnetic and galvanomagnetic effects in the longitudinal and trans-
verse magnetic fields may be expressed using only 4 phenomenological 
coefficients (λ, λ", σe,σe″). This substantially facilitates their theoretical 
analysis and experimental investigation. 
  
 

17.5.  Setting Additional Constraints between Superposition Effects 
 

The above-found thermo-galvano-magnetic effects allow setting a 
number of relationships between them earlier obtained in TIP based on 
the Onsager-Cazimir’s reciprocity relationships. This is first of all the 
Bridgeman’s relationship (1929) connecting the Ettinshausen-Nernst ef-
fect with the Ettinshausen effect: 
 

 TαEN = λ"αE  .                                                        (17.5.1) 
 

This relationship can be also obtained from thermokinetics by com-
paring expressions (19.4.6) and (19.4.10). Another relationship connects 
the Nernst effect with the Thomson effect in the transverse magnetic 
field: 
 

 αN  = T αT"/λ".                  (17.5.2) 
 

This relationship generalizes the thermoelectric effects to the systems 
in the transverse magnetic fields. It can be also obtained by directly com-
paring expressions (19.4.9) and (19.4.8). A similar relationship takes 
place in the longitudinal magnetic field as well: 
 

αК  = TαT'/λ.                                (17.5.3) 
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This expression extends the Thomson relationships obtained for ther-
mocouples to particular current-carrying conductors. It can be also ob-
tained by comparing expressions (17.4.8) and (17.4.14).  

At the same time thermokinetics allows obtaining 5 additional rela-
tionships between the thermo-galvano-magnetic effects. One of such rela-
tionships directly ensues from comparing the thermo-EMF coefficients in 
the longitudinal and transverse fields (see 17.4.8 and 17.4.9), which evi-
dences the identity of the Thomson longitudinal and transverse effects: 
 

 αТ'  = αТ"  = se*     (17.5.4) 
 

This provision, as well as the representation of the Thomson effect in 
terms of the transport entropy, did not ensue from TIP. It means that the 
thermo-EMF value does not depend on magnetic field – only the thermo-
EMF direction varies and to the same extent as the direction of the heat 
stream creating this EMF. From this a physically significant conclusion 
follows about the coincidence of the angles γq and γe, i.e. about a unified 
mechanism of the magnetic field impact on both the heat and electrical 
charge flows, which allows definition of the angle γ = γe = γq by measur-
ing the magnetoresistive effect (see 17.4.6): 

Another relationship, due to γ = γe = γq, connects the Ettinshausen ef-
fect (19.4.10) with the Nernst effect (15.4.8): 
 

 αN tgγ = αEB  .                (17.5.5) 
 

One more relationship connecting the Righi-Leduc and Hall effects 
can be obtained by comparing expressions (19.4.5) and (19.4.7) given the 
equality γe = γq  : 

αRL = σe"αH  .                                           (17.5.6) 
 

That relationship was earlier set within the electron theory of metals 
and many times experimentally confirmed.  

The relationship between the Righi-Leduc (17.4.5) Ettinshausen-
Nernst (17.4.6) effects can be found in the same way: 
 

 αEN = se*αRL .                            (17.5.7) 
 

Considering relationships (17.5.6) (17.5.7) jointly gives Wiedemann-
Franz law stating constancy of the metal thermal conductance/electric 
conductance ratio: 
 

Λ = λ"/Tσe ″  = αH αEN /αRL αE ,   (17.5.8) 
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where Λ is the so-called Lorenz constant. Thus Wiedemann-Franz law, as 
well as relationship (17.5.6), take a character of the deductions of ther-
mokinetics. This shows, in particular, in the fact that all the above ther-
momechanical, thermochemical, thermoelectric and thermo-galvano-
magnetic effects appear to be expressed in terms of the exclusively ther-
modynamic variables. This fact, as well as the possibility to set additional 
relationships between the superposition effects, results from the interrela-
tion between the diagonal and non-diagonal phenomenological coeffi-
cients in the Onsager’s phenomenological laws having been taken into 
account. To reveal the nature of such a relation, let us apply again to the 
thermokinetic form of transport equations (2.6.11) deriving them for a 
particular case of transporting any kth substance in the form: 

Jk = Кk Σi Fki = LkXk ,                                              (17.5.9) 

where Fkj = αkj∇ψj – components of the resultant force Xk = – ∇ψk ; 
αkj ≡ μkℓ, sk

∗, θek, υk, etc. – thermodynamic values associated with the gen-
eralized potential gradients ∇ψj ≡ ∇сℓ ,∇T, ∇ϕ, ∇p, etc.  

To return to the matrix form of the phenomenological laws adopted in 
TIP, let us introduce new phenomenological coefficients Lkj = Lkαkj. То-
гда 

 
 jk = Σ jL kjXj .                                                     (17.5.10) 

It can be easily noticed that in such (onsager’s) form of phenomenol-
ogical laws the non-diagonal coefficients Lkj  (k ≠ j) are connected with the 
diagonal coefficients Lkk = Lkαkk  thru a simple relationship: 

 Lkk /αkk = Lkj /αkj = Lk .                                    (17.5.11) 

The relationship of such a kind may be instantiated by the above-
found relation between the diagonal and non-diagonal diffusivities. Thus 
the definition of the thermodynamic form of phenomenological laws 
(17.3.1) is equivalent to imposing (n – 1) additional constraints between 
the diagonal Lkk and the non-diagonal Lkj phenomenological coefficients 
by representing their ratio in terms of relations of the corresponding 
thermodynamic parameters: 

Lkj /Lkk = Xkj /Xj = αkk /αkj .                                                    (17.5.12) 
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This becomes possible because the kinetic factors conditioning these 
coefficients (permeability of membranes, mobility of components, etc.) 
equally enter in both Lkk and Lkj with no impact on their ratio. The number 
of such constraints in each of the equations of the (17.5.11) type is evi-
dently equal to (n–1), which gives, with n of such equations, n(n–1) con-
straints of the (17.5.12) type and allows reducing the number of the phe-
nomenological coefficients from n2 in empirical description down to n, 
whereas TIP reduces the number of such coefficients to only n(n+1)/2. In 
particular, to describe the diffusion, thermal diffusion and pressure diffu-
sion of the kth substance, one kinetic factor (along with the thermody-
namic factors) appears to be sufficient, while, to describe anisotropic 
thermal conductance and electric conductance in the longitudinal and 
transverse magnetic field, per one thermal conductivity and electric con-
ductivity (λ , λ", σe, σe") are sufficient. In this respect the thermokinetic 
approach may be considered as a final stage of the transition from a 
purely phenomenological (pre-thermodynamic) investigation of a phe-
nomenon to a thermodynamic-phenomenological investigation and fur-
ther – to a purely thermodynamic one.  
 
 
 
 
 

Conclusion to Part 4 

The information set forth in this part is interesting primarily because it 
states general mechanisms of the substance, charge, momentum and en-
tropy transfer processes in solid, liquid, gaseous media and their unity 
with the energy transfer processes in force fields. 

The new method developed here for description and investigation of 
phenomena at the interfaces between various scientific disciplines is a 
further evolution and generalization of the theory of irreversible proc-
esses. This shows first of all in extending the applicability of the non-
equilibrium thermodynamic methods to states far from equilibrium, 
wherein processes become nonlinear. The method is distinguishing in not 
only fundamentally other, hypothesis-free approach to the construction of 
this theory. It does not exclude from consideration some (reversible or ir-
reversible) part of real phenomena, which allowed exposing the narrow-
ness and groundlessness of the existing linear theory of irreversible proc-
esses in the majority of its statements. Among them are the following: 
Prigogine’s local equilibrium hypothesis, Onsager’s linearity principle, 
Onsager’s postulate of the generalized rate of some process as depending 
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on all thermodynamic forces in the system, Onsager’s interpretation of 
the reciprocal relations and the “superposition” of irreversible processes 
in its essence. 

Instead, it has been shown that for each independent transfer process 
an only (resultant) motive force exists which disappearance ceases the 
process – just as per Fourier, Ohm, Fick, Darcy, Newton, etc laws. The 
existing therein forces of the same nature being replaced by a resultant of 
dissimilar forces allowed simplifying the transfer laws, significantly re-
ducing the number of the transfer coefficients to be experimentally de-
fined, removing limitations for their linearity and finding the superposi-
tion effects without resorting to the reciprocal relations violated in non-
linear systems. As a major result of such an approach, the concepts have 
changed as regarding the origin of the flow multiple "superposition" ef-
fects. It is shown in the book that all such effects without exception result 
from the counterdirectivity of the resultant force components and from 
their equilibrium, but not from the “synergism” (mutual intensification) of 
their action. 

Not less important are the results obtained by applying such an ap-
proach to the theory of the field-forms-of-energy transfer. Here not only 
the unity of transfer processes in substance and field has been determined, 
but a new explanation for a number of phenomena has been proposed, 
viz. dependence of acceleration force on velocity, potential retardation 
phenomenon, reasons of disturbed equilibrium between substance and 
field, appearing “self-rotation”, existing convective components of dis-
placement currents and necessity of their consideration in Maxwell’s 
equations, possibility of single-wire energy transmission and existing 
longitudinal electromagnetic waves. The consistency of the results ob-
tained has been also demonstrated, as well as the possibility to explain on 
their basis a number of “anomalies” observed  

 


