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And I will make an everlasting covenant with them, that I will not turn
away from them, to do them good; but I will put my fear in their

hearts, that they shall not depart from me. — Jeremiah 32:40.

Abstract. I evaluate the constant % using the Babylonian identity

and complete elliptic integral of first kind. This resulted in two
representations in terms of the Euler’s gamma functions and
summations.

1. Introduction

By means of the complete elliptic integral of the first kind and Babylonian identity, I
demonstrated the identities following, among others:
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Lemma 1. For a and b any number, then
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Proof.1 know the Babylonian identity [1, page 119]
1
3) ab = Z[(a + b)? — (a — b)?].

Make the following algebraic manipulation in (3)
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Lemma 2. For a and b any number, then
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Proof 1 calculate
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Take z = g in (6) and (7), then replace in (1) and (2) respectively, completing the
proof.00

3. THEOREMS
Theorem 1. / have
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where K (k) is the complete elliptic integral of first kind.

Proof. Putting % =t in (5), | encounter
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Multiplying (8) by and integrating from 0 at 1 in ¢, I find
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On the one hand, in [2, page 21],  have
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for R(c) > R(b) > 0. Substituting (10) in (9), I encounter
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Theorem 2. / have
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Proof 1leave to the reader. O

Theorem 3. For 0 < k < 1, then

ki () r() e
2y,

where K (k) is the complete elliptic integral of first kind.

Proof1 consider

(oo}

(2n)!

11
K(k) = —————,F (—, =; —;kz)
(k) L 272+ D22 ntyints

o (o) i(%)r(“%)r o

2n 12 3
:02 (2n + Dn! o] (n+7)rr!



i()(i @ (n+3) ),%

22n(2n + Dn!? (n + ;)r

(Zr + 3 2r + 3) 2

‘WZ

= () re+n
Multiply both sides by \/i% and let r — n, so the result follows. 0O

Corollary 1. / have
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Proof Letk = g in Theorem 3

1y K(

On the other hand, in [3], I find
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[ substitute (12) into (11) and obtain
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Corollary 2. / have

and



5
l" =
—= 42— (24) ;
r(z) ()
Proof. From Theorem 2 and k = —, I find
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Using the Theorem (3), I discover that
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Iset (14) in (13)
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[ put (12) into (15), and have
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Theorem 4. For 0 < k < 1, then
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where K (k) is the complete elliptic integral of first kind.

Proof’1 putg = tin (5) and encounter
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Multiplying (16) by \/ﬁ and integrating from 0 at 1 in ¢, I find
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Let m — n, this concludes the proof. O
Corollary 3. / have
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where K (k) is the complete elliptic integral of first kind.

Proof.1 know [5, page 884] that
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for R(z) > 0.1 substitute (20) in Theorem 4
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