Unobservable Potentials to Explain Single Photon and Electron Interference
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We show single photon and electron interferences can be calculated without quantum-superposition states by using
tensor form (covariant quantization). From the analysis results, the scalar potential which correspond to an indefinite met-
ric vector forms an oscillatory field and causes the interferences. The results clarify the concept of quantum-superposition
states is not required for the description of the interference, which leads to an improved understanding of the uncertainty
principle and resolution of paradox of reduction of the wave packet, elimination of infinite zero-point energy and deriva-
tion of spontaneous symmetry breaking. The results conclude Quantum theory is a kind of deterministic physics without
"probabilistic interpretation”.

1. Introduction require the concept of quantum-superposition and pure states
Basic concept of the quantum theory is the quantunWhose probabilities are fundamental sense. Only the concept
superposition states. Arbitrary states of a system can be A .mixed states whose probabilities are statistical sense will be
scribed by pure states which are superposition of eigenstatégtified in nature. The new insight gives us novel and impor-
of the system. Calculation results by the concept agree wé@nt results, i.e., improved understanding of the uncertainty
with experiment. Without the concept, single photon or eled2finciple non-related to measurements, elimination of infi-
tron interference could not be explained. In addition to thBite zero-point energy without artificial subtraction, deriva-
interference, entangle states could not be explained, either.tion of spontaneous symmetry breaking without complexity
However the concept leads to the paradox of the reducti@d knowledge that Quantum theory is a kind of determinis-
of the wave packet typified by "Sobdinger’s cat” and "Ein- tic physics without "probabilistic interpretation”.
stein, Podolsky and Rosen (EPR)®) In addition, new insight can conclude that the concept of
In order to interpret the quantum theory without paraentang_le.state is not required though there have been reported
doxes, de Broglie and Bohm had proposed so called "hiddde validity of the concept of entangle statés® We will
variables” theory# Although, "hidden variables” has been discuss the entangle state by using the new insight in other
negated) the theory has been extended to consistent with rdetter?®
ativity and ontology?~1? However the extension has not been N section 2, we show easy example of Gaussian photon
completed so far. beam to explain that single photon can be described by sub-
Although there were a lot of arguments about the Ioar6§_tantial (localized) photon and unobservable potentials (scalar
doxes, recent paper related to the quantum interferences cBRientials). In section 4, we also show easy explanation that
vince us of the validity of the concept. For example, quantury® should recognize the existence of the potentials in two-slit
mechanical superpositions by some experiments have pedgctron interference experiment. In section 3, we show the
reviewed™V) The atom interference by using Bose-Einsteiff@lculation of the interferences by using tensor form which
condensates (BECs) has been reported experimentally fRes not require quantum-superposition states. In addition to
theoretically!21® The coherence length of an electron oithe form, we show an alternate formalism (however it's just a
electron-electron interference by using the Aharonov-Bohirovisional treatment) convenient for the calculations.
oscillations in an electronic MZI has been discussed theoreti- In Séction 5, we also show the calculation of the single elec-
cally14 15 A plasmonic modulator utilizing an interference oftron interference in the same manner. In section 6, we dis-
coherent electron waves through the Aharonov-Bolffece CUSS the paradoxes related to quantum-superposition states,
has been studied by the autR®rThe entangle states haveZ€ro-point energy, spontaneous symmetry breaking and gen-
been widely discussed experimentally and theoretidatRp eral treatment of single particle interferences. In section 7, we
The photon interference by using nested MZls and vibragmmarize the findings of this work.
mirrors has been measured and analyZeéd) The double-slit ~ Aharonov and Bohm had pointed out the unobservable
electron difraction has been experimentally demonstriéd. Potentials can fect the electron wave interferences and
According to our analysis, BECs, condensate and bosoniZR€ €fect had been experimentally identified by Tonomura
tion systems correspond to mixed states with or without c&t- &l°7?% The findings has pointed out the unobservable
herence rather than pure states, and no paper has been abROf§Ntials (include scalar potentials) can generate not only
solve the paradoxes. Aharonov-Bohm &ect but also single photon, electron or an
In this paper, we fier a new insight of the single photon arbitrary pgrticle field i_nterferenges &_md fluctuation of the uni-
and electron interference that can solve the paradoxes. Aerse as will be described later in this paper.

cording to the new insight, the description of nature does not These findings are obtained from the reformulation of tra-
ditional treatment of quantum theory. The mathematical tools

involved in this paper such as routine state vectors, operators,
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ThereforeE andB are localized in the free space in the in-
put. In contrast, the vector and scaler potentials, which can not
be observed alone, are not necessarily localized. Especially
inner products and so on are identical to those used in trEalh-e scalar potentials haye hoiect on th_eE an_dB. .
Note that, the Gaussian beam radius will be spatially ex-

ditional quantum theory. The fiierence from the traditional ! )
) . . ) - . .panded due to the free space propagation. However, the radius
treatment is the introduction of indefinite metric as physi: . :
S S 2~ of the propagated beam(2) will be approximately 10.5mm
cal substance that contradicts "probabilistic mterpreta‘uonv.vhen the beam with the initial radi — 10mm propa
In this reformulation, the inner product of the states which 0

has been recognized as so called "probability amplitudes” %atesz = 100m in free space. This value can be calculated
unrelated to the probability but related to an amplitude of inby w (z) = wo /1 + (&

2
nw2) when the wavelength = 1um is
terferences. Hence the "interference amplitudes” is preferable . 2 . . )
to "probability amplitudes”. é%plled. Then the spatially expansion of the beam will be neg

The discussions and findings described in this paper I|eg|ble small when the paths of the MZI are less than several

. . . . . ns meters.
very simple from the mathematical viewpoint but rigorous

: L : : The above localized form (1) is one example, other forms
and the result is an inevitable conclusion by the rigoroug, . . satisfy the following Maxwell equations can be em-

Fig. 1. Schematic view of MZI. BS:Beam Splitter.

derivation. ployed.
2. Classical Electromagnetic field of MZI - potentials 1 62 1 8¢ .
and photon (A—@ﬁ)A—V(V'Aﬁ@E)——MoI
Figure 1 shows schematic view of the Mach-Zehnder Inter- 1 P 1 06
ferometer (MZI) and coordinate system. (A - __)¢ + = (V A+ __) __r (5)
First we examine the input beam. Assume that an x- c* o2 ot c* ot €0

polarized optical beam propagates in z-direction with angulavhereyy is the permeability ang is the electric charge den-
frequencyw and propagation constaff the electric fielde  sity.
of the optical beam is well localized in the free space, e.g., Wheni = 0 andp = 0, the equations (5) can express the
the cross section profile of the electric field is expressed #&scalized electromagnetic fields in free space as described in
Gaussian distribution. the above.

Then, the electric field of the optical beam in the input can )
be expressed as follows. 3. Interference of single photon

2 .2 As described previously, there are potentials which are not
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where, g, is unit vector parallel to the x-axi€g is an arbi-

necessarily localized even if photons are localized. Especially
the scalar potential can populate the whole of space and the
vector and scalar potentials are combined by Lorentz trans-

trary constant which is proportional to the magnitude of théormation. Then we should make no distinction between the

electric field.wy is the radius of the optical beais.andB are
expressed by vector and scalar potentials as follows.
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vector and scalar potentials.

However traditional treatment of the single photon interfer-
ence by using Coulomb gauge only uses the quantized vector
potentials as follows. In a quantum mechanical description,
the photon interference is calculated by introducing the elec-

tric field operatorE = %él exp(i6) + %az and the num-

From (1) and (2)A is expressed by introducing a vector funcber staten) of the MZI output as follows® Wheredi o is

tion C as follows.
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the photon annihilation operator corresponding to an optical
mode passing through path 1 or 2, respectivelyg,the phase
difference corresponding to thefférence in length between



the two paths. The four-vector potential satisfied Maxwell equations with
R o 1 . 1 vanishing the four-vector current can be expressed as follow-
(1) o< (NIE'EIN) = S(nlayaaIn) + 5 (Nla;2In) + cosnia;doIny  ing Fourier transform in terms of plane wave solutidhs.
(6) 3
Where{l) is expectation value ot the fieAITd intensity.which is A(X) = f dRZ[a“)(k) Eﬁﬁ)(k)e—ik»x + aWi(k) El(l/l)*(k)eikx]
proportional to photon numbesi > andd; , are defined as =0

8,43 4 +a . S 13

&= 2% andd = &\/;; by using the photon annihilation , (13)
. - . A ~ d>k

and creation operatossandd’at the input withKn|a &;|n) = k= —— =k 14

p p (njay &y n) Dho(20)? ko = IK| (14)

(njaf&Iny = (nfala,iny = in. When photon number is one . . - o
(n=1), ie., single photon, the above expectation value #here the unit vector of time-axis directiorand polarization

calculated to bel) « T+141cosn=14+1cos. vectorSeff)(k) are introduced ag? = 1, n° > 0 ande® = n,
In this traditional treatment, the photon annihilation ang'” ande® are in the plane orthogonal kaandn
creation operatora .émd.a”‘ are obtgined from quantization V(K - (k) = — Sov A, V=12 (15)
of the vector potentials in (5) by using Coulomb gauge under_ .
assumption of = 0 andp = 0. €® is in the planeK, n) orthogonal tan and normalized
In order t_o equate scalar potentials W_ith vector _pot_entials, €K -n=0, [OK)]? = -1 (16)
we should introduce tensor form (covariant quantization) as
follows. Then €© can be recognized as a polarization vector of
The electromagnetic potentials are expressed as followiggalar wavess®) ande® of transversal waves and® of a -
four-vector in Minkowski space. longitudinal wave. Then we take these vectors as following
No— (A0 AL A2 A3 A . the easiest forms.
= 9 9 b = C?
( )= (0/c. A) (7) ) 0 0 0
The four-current are also expressed as following four-vector. 0 ) 1 ) 0 @) 0
€7=1 0 €7=1 0 S €7=1 9
F=050005 1) =(©p i) (8) 0 0 0 1
When we set the axises of Minkowski spacedo= ct, x! = (17)
X, X% =y, x3 = z, Maxwell equations with Lorentz condition For simplicity, assume that photons are x-polarized transver-
are expressed as follows. sal waves with the scalar wave and we neglect the longitudi-
u i nal wave which is considered to be unphysical presence, i. e.,
oA" = o]
A, =0, A;=0.
AN =0 9
z ®) A, = (Ao, A, 0, 0) (18)

In addition, the conservation of charge divop/ot = 0 is ex-
pressed a8, j* = 0. Whered, = (1/cot, 1/0x, 1/0y, 1/0z) =
(1/0x°, 1/0xt, 1/0x?, 1/6x%) and o stands for the
d’alembertianm = §,0* = 6%/c?0t? - A.

The potentials will be divided when there are two paths
divided by the MZI interferometer. Here we consider the
state that a photon expressed as x-polarized transversal waves

The transformation between covariance and contravafioocs through path 1 and unobservable potentialshb(&),

. : IS divided into both path 1 and 2 with a phaséwelience be-
ance vector can be calculated by using the simplest form R/veen the two paths. In this state. we can exoress the four-
Minkowski metric tensog,, as follows. P ' ' P

vector potentials along the MZI path E(A,:(pan1)) and path

1 O 0 0 2 (= Ay (path2)) as follows.
o 0 -1 0 O 1
9w=9" = 10 0 -1 0 Acparyy = (58"°A0, Av. 0, 0)
0 0 0 -1 1
A = guhA Aupany) = (56 "?Ao, 0,0, 0) (19)
A = g"A (10) When the Fourier cd&cients of the four-vector potentials

are replaced by operatorsAs= 33_; a0 (K)el" (k), the com-
mutation relations are obtained as follows.

[AuK), Al(K)] = —g,0(k - K) (20)

. . . . he time-axis component (corresponds ity = 0 scalar
The above quadratic form applied a minus sign expresses E b ( b H

wave front equation and can be described by using the metric Ve, I e.,lscalar potential becauéoé(k) - OA(” 7 2)) has the
tensor opposite sign of the space axes. Beca@(K)A(K)I0) =

—6(k-Kk’) then

The following quadratic form of four-vectors is invariant un-
der a Lorentz transformation.

0O = (<2 = 0 = (¢ (11)

X = XN = R H P+ 2P0 (12) i = -0 [ i (21)

This quadra‘uc form which mplud.es minus sign is also mtr_o\—Nhere|1> _ def(k)Ag(k)m). Therefore the time-axis com-
duced to inner product of arbitrarily vectors and commutation . . - . -
relations in Minkowski space. ponent is the root cause of indefinite metric. In order to utilize



the indefinite metric as followings, Coulomb gauge that rebetween the signal and local oscillator.

moves the scalar potentials should not be used. If we introduce following operatoﬁ(’) by using the above

_ Let define the photon annihilation operat@spaniyand  operatorA;, we can calculate the MZI interference based on
A,(path2) corresponding to the optical modes passing througHeisenberg picture without tensor form. Although the follow-
the MZI path 1 and 2 respectively. The products of these ojng formalism is just a provisional treatment, it is convenient

erators must introduce the same formalism. for the calculations.
AR =g, At i = —g”RIA, (22) A L
Because the photon annihilation operator at the MZI output Ay = zyele/zAl - E)’ef'mAl
iS Ay:path1) + A (path2) then we can obtain the photon number 1 1
operator at the MZI output as follows. Al = éye"g/ZAI - Eye“”zA’1 (25)
N A L A, A .
9" {A(patn) + Ay (patn2) {Avi(patha) + Avpath2) wherey? = -1 (i. e.,y corresponds to the square root of
lain  aon Llas h rminant of Minkowski metric tensqyf = =
_ ——AS%+MA1——A$%cow (23) the dete Aato 0 sA etric tens |ng| \/_
2 2 V-1 = v.) Aj correspond tdd, (scalar potential which ex-
where the following relations are used. press the homodyne local oscillator) in (24), though the corre-
v AT A B LREA AR spondence is not completely compatible with the tensor form
—9 A;Tt:(pathlf‘vi(Pa‘hl) - _itAQ':?;ZAlAl because of a provisional treatment, e. g., the phasshifted
~9A pamfvpatn) = 7€ Agho as described later.
_gﬂve‘;:(pa’(hz ﬁ\v:(pathl) = _%gieng _ Th_en by_ using this gpe[atPrk/theA expectation value of the
—9"A, (patmzfMi(pathz) = -3A0A0 gzlgollﬁsvr;sny(l) oc (1)(Ay+A1)"(Ay+A1)|1) can be calculated

Applying the bra and ket vectokd| and|1) to (23),(f) o

1 _ 1cosis obtained. Note that we identify the number op- . . . Lrn oo dommin 1
2 Rt A A A Ry = —ZAIA - ZATA + 2eATA + ZePATA
erators ag1|AjAol1) = (1JAjA1|1) = 1 because of the Lorentz - 41T g Ty 172 17
invariance. U
From the time-reversal invariance of the electromagnetic = _EAllAl + EAllAl cosd

fields, we should also make no distinction between the input 1 1

and output of the MZI. Then the photon annihilation operator AIA(’) = _yeie/ZAzAl - —ye“g/z,&jﬁq

at the confluence of the MZI can be expressed as same as the 2 2

MZI i e. 1 iepzia 1 eppia

output, i. e., AfA = 57e WIZRT Ay ~ Eye“’/ ZATA (26)

L. . 0. -
A = Ay(patht) + Ay(path2) = (COSEAOv As 0, 0) (24)  Finally the following result is obtained.

instead of (18). Although there is definitely a photon at the (UAIAJY = 1

MZI input, the calculation result of the photon number at o 1 1

the MZI input of a single photon state by using (18) is (1|A§A6|1> = 5t Ecos@

(U(-AlAo + AlA)I1) = 0. However we should not omit the . .

scalar potentials a&, = 0. . a AI A6|1> _ Eyém _ Eye-ie/z
In contrast, the photon number by using (24) wéth=

+Nz (N : odd number) is 1. Therefore we should recognize AR Y ez 1 e

the scalar potentials at the MZI input are not zero (not empty, A AL = Zye ZyeI

i. e., Ay # 0) but annihilate each other by the opposite phase L o L o

waves, i. e., co8(2) = 0. When there are two paths, the scalar (1A; Aq|1) + (LAY ALY + (LATAYIL) + (LA A1)

potentials make oscillatory fields lik&6)- A, wheref (6) is an 1 1

oscillating function o, which can be recognized as "hidden =5 + > cost  (27)
variables”. Then the substantial photons move with the in- _ . _
terference in the oscillatory fields. Therefore the expectaticmc’te that when we use th|§ pr.OV|S|onaI treatment instead of
value of the field intensity at an arbitrary point in space can &€ t€nsor form, the phasesisshifted. ,

calculated using (24) &8) o % _ % cos6 which means even if Thls provisional treatment will correspond to using the fol-
the substantial photon follows an arbitrary path the photon cAAWing tensor form instead of (19).

not be found at the point whoge= £Nx (N : even number)

on the path. Note that i, = 0, i. e., there are only scalar Acpary = (0, A, 0, 0)
potentials, the intensity of the oscillatory field at an arbitrary 1 1
point in space negatively fluctuates likg o« —3 — 1 coss. Apahy) = (éiem/ 2pg — Eie“g/z,&o, 0, 0,0) (28)

The tensor form (19) canfker clear image that the sub-
stantial photon passes through one side path of the MZI andThe above calculation is based on Heisenberg picture. We
there are the unobservable potentials (scalar potentials)c@n obtain the same interference based ond@thger pic-
both paths. As the above calculation shows the unobservafiie. In Schodinger picture, the expectation value of the field
potentials act as a homodyne local oscillator which retrieveBtensity can be calculated by using the output 1 (Gf @hase
phase information from a signal (photon) through interferencdifference) statgl)s + 1) and a photon annihilation operator

4



of Schibdinger pictures which is proportional to the electric expectation value for arbitrary geometries can be calculated
field operatolE « Ag at the output 1 (or 2). Whei#)s and|?) by using the photon annihilation operator as follows.
represent the states of a photon passes through path 1 and un- M

observable potent_ials (scalar potentia_ls) passes throu_gh (exists Aﬂ - {Z r| el A, Ay O, o] (33)

at) path 2 respectively. Because nothing is observed in path 2, i

we should recogniz€|) = 0. More precise definition is as
follows. The operatorfy, As and statel), |1)s can be trans- Then
lated by using the Hamiltoniafl asA, = €”/"Ase ™" and (I

153

1 -g"AA L)

|1)s = e U1y respectively. Themi6|1> can be expressed by "
using (25) as follows. _ _{ Z rjrkei(ej(?k)} <1|A€A0|1> + (1|A1A1|l)
AjLy = A (%yem/ze-mt/h _ %ye—ie/Ze—i’f{t/h) 1) j=1 k=1
M
_ 22,2 e Ai(6-6)
UL (}yeia/z _ }ye—ie/z) s (29) = {(rl I3+ 4T+ ; riree } +1 (34)
2 2
Here we define Because & rj < 1, then 0< (1 — g”AJA 1) < 1.
WhenM — oo, the multi path can be recognized as a con-
12y = (%yée/z - %ye‘m/z) 11)s (30) tinuum space. Because’, rjes that creates the oscillatory

field converges with 0 when the phases are completely ran-
Hence<1|AgA()I1> = <§|A15‘AS|§>. When¢ = 0, |7) = 0,i. dom, the real physical space (we refer to this space as "real
e.,{IZ) = 0. In this picture, the expectation value can b&acuum”. In contrast we refer to the space wih= 1 in (32)

expressed as follows. as "ideal vacuum”.) can be recognized as the continuum with
N o A completely random phases. In this cébex 1. When a par-
(e (s + () AsAs (Ds +10)) ticular geometry is formed in the space, the expectation value
= 14 (AL Al + (U< + (Z11 fluctuates by the oscillatory field.
(CIASAsI) + Lls + (cD)s The expression (32) is similar to a normalized quantum-
o1 w1 tw (31) Superposition state if we identify ande”i Ao as a normal-
2 2 2 2 ization codiicient and eigenfunction (eigenstate) respectively,

In the above mathematical formula for the interferenc&outh}\ilrj = 1 instead of commonly useE?illrjlz =
by Schiddinger picture, there is no mathematical solution irl. Then we should recognize what forms the quantum-
usual Hilbert space. Therefore the unobservable potentigigperposition-like (not completely the same expression) is not
(scalar potentials), which can not be observed alone, must 8substantial photon but the unobservable scalar potential.
regarded as a vector in indefinite metric Hilbert space as canln case of the provisional treatment, we can apply following
be seen from (30). Although the explicit expression such a¥perators and state to an arbitrary geometry instead of (25)
(30) has not been reported, the same kind of unobservalsied (30).
vector has been introduced as "ghost” in quantum field the-
ory.32-3% We also call|¢) "ghost” in this paper though this A o o o
» » T s » ” U Al a0
ghost” has a dferent definition. The traditional "ghost” was Ag )/Z ri€ A —y Z rie" A
introduced mathematically as an auxiliary field for consistent =1 j=1
with relativistic covariance of the theory and had rtizet on
physical phenomena. However, the above "ghost” is a phys-
ical substance (corresponds to the scalar potentials in (19))
which causes the interferences, in other words, is essential for
the interferences instead of the mathematical auxiliary field. o & .
From the equation (31), the unobservable potentials pass 1) = ?’Z rie’ —?’Z rie”%|Ds (36)
through path 2 produce the single photon interference as if =1 =1
the photon passes through the both paths in cooperation withNote that the superposition principle may be used as a nice
a photon field passes through path 1. mathematical tool to simplify analyses in mixed states. How-
This discussion can be generalized for arbitrary geometrieger we should investigate whether engineering applications
include for the above 2-paths MZI. The arbitrary geometrielsased on reduction of wave packet are feasible or not, be-
can be modeled by using split dieientsr; and phaseg; of  cause even single photon interference can be described with-
the scalar potential. When there are multiple path (M pathsyut quantum superposition as described above.
the scalar potentials can be divided as follows.

>
—F

er,-e‘i"iA}—erjemiAI (35)
=1 =1

4. Potentials and electron

Mo In this section, we first consider two pinholes electron wave
Zr,—e“’iAo (32) interference in classical manner. Figure 2 shows schematic
j=1 view of a typical setup for the 2-slits (2-pinholes) single elec-
tron interference experimefit.36)

The propagating electron can be identified as an electron
beam whose space current density is Nqv, whereN is the

whereZ}‘":lrj = 1. The above MZI case correspondsiMio=
2,r1 =rp, =1/2andd; = -6, = 6/2. Then we can predict the



the electron passes through both pinholes at the same time

. Electron despite an electron can not be split,avhich requires the
//; z detector Interference pattern introduction of the quantum—superposition states . '
I ~13 However we can examine the states of the localized elec-
y . tron propagation and unobservable potentials instead of the
7 Pinhole 1 gquantum-superposition state as mentioned above.
£-C 4 B I In such a case, the electron wave functions should be ex-
S>3
ctron. D , ressed as follows.
Electron Pinhole 2 p
source q
Y1 o= Y- exp[i— (pdt—A - dx)l
h s—Pinholel-scree
W = U exp[i9 (¢dt—A - dx)] (39)
. Tt Js—Pinhole2-scree
Screen

where,y | andy’, are the electron wave functions on the
screen passing through pinhole 1 and 2 with the unobservable
Fig. 2. _Schematic view of_atypical setup for the 2-slits (2-pinholes) Si”g"botentials respectively; andy, are the electron wave func-
electron interference experiment. tions heading to pinhole 1 and 2 at the electron source without
the dfects of the unobservable potentigiandA include not
only the unobservable potentials expressed as (5) but also the

ber of el it vol is the el h unobservable part of the potentials generated by localized po-
number of electron per unit voluma,is the electron charge .o tiais such as (3) and (37).

andv is the electron velocity. When the radius of the electron Then the probability of finding the electron on the screen

beam ISWo, the current can be expresseo_l as= ”ng' Ac- by using these wave functions can be described as follows,
cording to Biot-Savart Law, the propagation generates mag-

netic fields and potentials around the propagation path. Po o« [P =)+l
Assume that the electron propagates parallel to z-axis at a = Wl + ol
constant velocity. Then, the vector potentials around the prop-
agation path are expressed®¥’ —2Re(exp[i9 9§ (¢dt—A - dx)} Wil/’z) (40)
Ax — Ay — 0 h s—l-screerr»2—-s
where 1 and 2 of the integration path denote pinhole 1 and 2
A, = o n 1 (37) respectively. This description is identical to Aharonov-Bohm
2reoC? T effect2?
wherer = m &0 is the permittivity anct is the speed In case of single electron interference, we can find the
of light. electron at pinhole 1 without fail but not at pinhole 2, i.e.,

Therefore the vector potential clearly passes through nft” = 1 andiyz| = 0. Although the exact expression should
only the pinhole the electron passes through but also the (}?ﬁleorZ'de = 1 or 0 instead of the probability densities,
posite pinhole. we continue analysis withy1)* = 1 andjy,|*> = 0 for simplic-

Even if we apart from this easy consideration, the eledty.
tron motion definitely generates potentials. Therefore, when When we introduce a phasefidirence betweeny; and
we consider the electron motion, we must take the potentialé2. P12 expresses the interference as follows,

_ In next section, we consider the two pmholeg interference P12 o 1 — 2Re(expi [6as + 6] lu2) (41)
in quantum mechanical manner with consideration for the po-
tentials. wherefag = a (pdt— A - dx).
i h s—loscreem2—s |
5. Interference of single electron Note that wher® is fixed, the interference can be observed

In a traditional quantum mechanical description, the 2-slit8" the screenas a fUDCtiOH @fg, i.e., position on the screen.
(pinholes) single electron interference is typically explainet/N€ndas s fixed, the interference can be observed on a fixed
by the probability (density) of finding the electron on theP0Sition of the screen as a functionéof

screers®) However, the wave functiog, as a probability density
must satisfy incoherent expressions, i€y, # 0 andjy,|? =
P12 = g1 + ¢l (38) 0.
Whereg: = (X1)(1s) andé, = (x|2)(2]s), which are com- Then in order to clarify the exact representation, we intro-
posed of probability amplitudes duce the electron number states that means t_here ane
(15:29): " (electron arrives at pinhole 1 ofeectron leaves €l€ctrons and charge operalr= [ d°xjo(x) defined by a
s (electron sourcé) and conserved current, = (q,i), i.e.,dj, = % +V-.i=0.
(X1or2): " (electron arrives at screetelectron leaves pin- The charge operator satisfi€n) = ngn), which means the
hole 1 or 3", n electron state is the eigenstateQ@f?-38)

When either pinhole 1 or 2 is closed, the each and total Because the charge operator is defined by a conserved cur-
probabilities are calculated to B = |¢1]2, P, = |¢,/> and rent which satisfies the Maxwell equations @@aill corre-
P = P, + P, # Py, Therefore we can not help but admitsponds to the expression of photon number operatoA’A

6



from the viewpoint of derivation of the charge or photon num-
bers, we regar@® as combinations of indefinite metric opera-
tors similar to (25), i. e.,

1 . 1 .
Wl (1 + Eye—wz - 579'9/2)

Qs (1 - %Veie/ 2 %76’”/ 2) 2

Q = G&
AT AT P P
. ' = + + 46
6 — Laug Lo, (wal (6] + 63) (O + G2) lwa) (46)
2 2 When we introduce the phase terms of (39) and (4@) as
. 1 s 1 g0 6, andfag = 01 — 62, the interference (44) is calculated to be
T T ai02aT L 0/24T 2 AB 1— b2,
2 = ¥ % 27/el % (42) as follows.
Then we can obtain the single electron interference as same
manner as (27) in Heisenberg picture, i. e., ay = (e—ielwﬂ + e_i92<w2|)QS (ei61|¢,1> + é92|w2>)

At oAb\ A oA 1 1 . _
(1) = wl(@; +6) @+ B W) = Q{E +5 0059} (43) q+ (W2lQsl2) + ae ™2 (Yal2) + Q€™ (Woly1)

where(l) is the expectation value of charge intensity. = q {} + 1 cos@} + e 8 (o) + qe%e (o)
Similarly, the interference of Schdinger picture can be 2 2
calculated as follows. 47
Ay = (| + Wa2l) Qs (Y1) + W2)) Hence,f,g does not seem to be the origin of the single

electron interference. Aharonov-Bohifiiect will be observed
when there are substantial electrons in both pinholes. The sin-
gle electron interference will originate from the unobservable
potentials in vacuuny, £) = |¥2).

The above discussion suggests that the state "no electron
passes through pinhole 2 with the unobservable potentials”
generates the phasdidrence (in other words, unobservable

q+ (2l Qsly2) + ayilyz) + Alalya)
1 1
= q{z + > cos@} (44)

where the charge operatQs and statey) of Schiddinger
picture are obtained fronQ = §ign = €MV/IQge V"

and e""y) = s = |y1) respectively. Because oscillatory field as mentioned above.) for the interference
Qs = eMhglg @Vt = e MUhQdHUh we definegs =  without electron charges.
e Mg, MY ThenQg = q*sqs and In the above expression fay,), there is no mathemati-
) ) cal solution in usual Hilbert space. Therefore the state of "no
GQlvy = €MV (%yeiﬂ/z _ %ye“"/z) e HUR elegtron passes through pinhole 2 with the gnobservable po-
tentials” must also be regarded as a vector with zero probabil-

dina (1 oz 1 g ity amplitude in indefinite metric Hilbert space as can be seen

= &7gs (579' —5v€ )W’)s from (44), (45) and we can express the quantum state of the
i interference without quantum-superposition state.

= Mggly) (45) In case of the provisional treatment as described above, we

. can apply following operators and state to an arbitrary geom-
Therefore state dfy;) and|i,) can be recognized as follows. etry instead of (42) and (45).

"an electron passes through pinhole 1 with the unobserv-
able potentials” ag/1) with Py = (yaly1) = [|yaPdV =1

and Q = §4,G
"no electron passes through pinhole 2 with the unobserv- oo oo

able potentials” afy) with P, = (yalyr2) = [ y2?dV = 0. & = 72 refig, — 72 rie o,
In the above treatment, the new charge operator (42) simi- i1 i1

lar to (25) is introduced in order to emphasize the identity of - -

the mathematical formula. However, if we take advantage of qg _ 72 rje Cﬁ _ 72 rje Cﬁ (48)
direct product of the electron stgi® and the vacuum photon =t =t

state|0) + |) in Schiddinger picture, then a straightforward

approach can be made as follows. X = o R
Traditional direct product of the electron staté and the  ly) = €7Vgs [yz rigf —y rje"’iJem‘/”hp)

vacuum photon stati) is expressed ag)l0) = |,0) = =1 j=1

W)s = ).

From the above discussion, the vacuum photon state should - dHtng r.dfi _ r.aif

be replaced by0) + |} in Schibdinger picture. Therefore the ¢ {y; i€ yjz_;‘ i€ ]WS

direct product becomeég) (10) + |)) = |, Oy +|¢, &) = lW)s +

¥, ¢). Becausey, £y = |2), then the direct product becomes

[) (10) + |£)) = 1) +w2). This formula is identical with (44).
From (30), we can definelypy = |WIE) =

(37692 - $ye®2)jy)s, then (42) and (43) can be ob-

tained as follows.

& N Gs ) (49)

By using these operators or state, the same expectation
value (34) is obtained.

Note that the calculation using the superposition state of
(40) will be justified in case of mixed state whose probability

1y = (Wl + Wal) Qs (1) + Iy2)) is statistical sense.



6. Discussion - 1 (0|7:(|0>—1'hw =0 (53
hiw 2
6.1 uncertainty principle and the reduction of the wave_ . » ! , .
packet This traditional fixed zero-point energy originates from the
definition of the electric field operators in (50) without the

By the existence of the unobservable (scalar) potentialshobservable (scalar) potentials. However we have obtained
Heisenberg’s uncertainty principle can be explained indepep- . P ' o
e idea that there are unobservable potentials in whole space.

dently of measurements. In addition, the paradox of the re- ; : .
duction of the wave packet typified by "Séfinger's cat” q’hen we should replace (50) with followings by using the op-

and "Einstein, Podolsky and Rosen (EPR¥’can be solved, erators in (25).

because the origins of both are quantum-superposition state. Aé +A = 1 (g +ip)
Former results clarify the description that the states of path \2hw
1 and 2 or pinhole 1 and 2 by Séialinger picture are defined R R 1
when the system is prepared expressed as a substantial single Aj+A = ——(wg-ip) (54)
photon or electron and the unobservable (scalar) potentials re- V2ho

spectively and each state does not spiitsnich as quantum-  Therefore Hamiltonian will be the same expression of the
superposition state, which means there is no reduction of thgerference as follows.
wave packet. A f R, Ara PP i R, 1
"When the system is prepared” corresponds to immediately 71 = 1% (A Ay + AlAy + ATA + ALAG) + Shw  (39)
after the branching point of the optical MZI or the pinholes. ance the energy of single photon state also fluctuates.
Which path or pinhole does the photon or electron select is
unpredictable but after the selection, the state is fixed in-(q4y|1) = }hw(1|AIA1|1> + }hw<1|:5¢jA1I1> cos + }hw
stead of quantum-superposition state. The concept of these 2 2 (56)
states is identical with mixed states rather than pure Statﬁ%causeasingle photon can be observed wheaNr, (N :
formed by quantum-superposition, which insists the conceg(/en numbers), then A
of quantum-superposition state is not required for the descrip- '
tion of the phenomenon. <1|¢,|1>
As for Heisenberg’s uncertainty principle, we can clearly
recognize it as tradefis derived from Fourier transform non-
related to measurement, which correspond to the canonical
commutation relation.

1 . 1 - 1
Ehw<1|A’1A1|1> + Ehw<1|A}Al|1> + Sho

. 1
(YA A1) + Sho = ho (57)

Therefore(1JAlA1|1) = 1 which leads to the replacement by

6.2 zero-point energy following expectation values of photon nhumber.

The electric field operators obtained from traditional quan- (OJAT A]0) = 1 (AT A1) = 1 QAT A2) = 3
tization procedure for quantum optics with Coulomb gauge ! 2’ ! 2’ 1 '

) . . . : 58)
have relationships with harmonic oscillator as follows. (Wi " P . (
consider only x-polarized photon for simplicity.) el'radmonally, (01A;A1[0) has E’S?” c0n5|dfred.to be 0'_H0W_
ever we should recogniz@®|/A; A1|0) = —35 which requires
A = (wd+ip) indefinite metric.
V2hw Then absolute value of the single photon interference
. 1 L moves depending on the selection @A} A1|0). However
Al = (wq—-ip) (50) (o L !cosdis maintai A
1 Vohe (I) o 5 + 5 cosA is maintained.

By using the expectation value, zero-point energy is calcu-
whered and p are position and momentum operators Obeyl'ate?j/ to beg P P 9

ing the commutation relatiorg[p] = iz. Hamiltonian of har-

monic oscillator is expressed as follows. (O/HI0) = %hw(OlAjAllO) + %hw(OlA}AﬂO) cos + %hw
o 1 A2 2a2
H =5 (0 + ) (51) - %hw - %hw cosd (59)

Then following relations are obtained. The zero-point energy also fluctuates, which can also explain

ARy = 2hi (P + w26 + P — 1P spontaneous symmetry breaking. Note th#{/jt= yA,
w
A PO 1/~ 1
LGN N) - __— _ =
- hi(ﬂ—%hw) Ao =Mk =37 (7{ zh“’) (60)
w

Hence the isolate indefinite metric potentials may possess
AAT 1 (ﬁ N }hw) (52) negative energie®) queverA{) % yAs as can be seen from
hw 2 (25) and can not be isolated but combined instead such as
(54), the negative energies can only appear through the inter-
ference with the localized potentials that express the substan-
tial photon. Therefore the infinite zero-point energy due to the

. 1 ~ 1 sum of infinite degree of freedom is eliminated by (59) with
(OAAO) = %<0| ((H - Eh“’) 10) 6 = =Nx, (N : even numbers).

From (52) and0jAAy|0) = 0, traditional zero-point energy
has been recognized &3H|0) = %hw, i. e.,



When we use the formula of the tensor product (23) for thé.4 general treatment of single particle interferences
expression of the interference (55) instead of the provisional From (31) and (44), the single particle interferences can be
treatment (25), the phagef the above discussion in this sub-expressed as following manner.
section isr shifted. In addition, (33) can be used for the fluc-
tuation of the zero-point energy, i. e.<X0H|0) < iiw. M g1+ CDF () +10))

The zero-point energy has been measured through Casimir f+ (IFIO) + T{pl0) + T{19) (61)

Fhen when(IFIty + fgl) + £(igy = —1f + 1f coss,

effect3%-*3) The following circumstance can be identified as

typical setup for the measurement of Casinfieet. From the . o .
rT‘F,mgle particle interferences d&f by 2-path geometry, i.e.,

1y = f {l + 3 cosf| can be generated. WheFeis an arbi-

discussion of (32), if a certain space that is not "real vacuu
2

but "ideal vacuum” is prepared and a certain geometry, e. g., . ! ,
two parallel plates, is placed in the space, then the zero-polf@’y Observable operator of the partidg) is an eigenstate
of F, f is the eigenvalue df under statéy) and|) is an in-

energy of the space and geometry are calculated téhbe RS ) A )
and 0< (O[H|0) < 1hw respectively. Because the energy oefinite metric vector expressing unobservable potentials. In
- -2 : case of Maxwell equations as described in this pagis

the geometry IS not exce_ed that of the space, the geometryidsentified as commutative gauge fields (Abelian gauge fields).
subjected to a compressive stress from the space .

This kind of attractive force of the geometry derived fro \When we study multicomponent sta, |¢) will be iden-
mLified as non-commutative gauge fields (non-Abelian gauge

the energy dference is identical with the basic qoncept4a)f Var}ields).“g‘f’z) However the above general treatment can be ap-
der Waals force which will be the origin of Casimiffect: S
. ) . . lied in both cases.
Therefore the above calculation will not be inconsisterlt ) . .
with Casimir efect WhenF is a number operatar of the particle andg) is
' single particle statg) = |1) in (61), the expectation value of
the single particle number fluctuates, i.e.,

6.3 spontaneous symmetry breaking

Traditional treatment of the spontaneous symmetry break- (1 +{)n(1) +10)) = 1+ nly + (L) + (<11
ing, which explores the possibility @|0) # O or generally
|0y is not an eigenstate @”, needs an intricate discussion = 3 + 5 cost (62)
using Goldstone boson or Higgs bosBrf> Where|0) is vac- . . .
uum state. In case of arbitrary geometry, the expectation value will be

jdentical with (34) in the same manner as (35), (36), (48) and

However, the unobservable potentials eternally populal
ﬁg) as follows.

the whole of space as mentioned above and there are

electron at pinhole 2. Therefore the state of pinhol@/2), R

can be identified as vacuum instead |@f. From the rela- (1) oc -

tion (yolp) = 0 as described above, |if,) is an eigenstate

of Q, i.e., QW2) = aly2), then(y2lQly2) = aYal2) = 0,  These kinds of self fluctuation of a particle will be consis-

whereqa is an eigenvalue. However from the discussion undggnt with neutrino oscillatioB3 54

(44),{p2|Qly2) fluctuates betweeng and 0 depending on the

phase dierence. Hence the vacuymy) is not an eigenstate 7. Summary

of Q, which expresses the spontaneous symmetry breaking. InThere are some unresolved paradoxes in quantum theory.

addition to this discussion, the above zero-point energy, i.e., f we take advantage of the tensor form or indefinite met-

vacuum is not an eigenstate &f, also expresses the spontaric vectors as described in this paper, the paradoxes can be

neous symmetry breaking. removed. In addition, it can explain the uncertainty princi-
In other words, there is no fluctuation, i. e., there is symmgsle independently of measurements, eliminate infinite zero-

try, in the continuum space with completely random phases ggint energy and cause spontaneous symmetry breaking with-

mentioned in section 3. This space can be identified as a reglt complexity.

vacuum. However the fluctuation gains entrance into the reale should consistently introduce indefinite metric because

vacuum when a particular geometry is introduced, i. e., th@axwell equations are wave equations in Minkowski space.

symmetry is broken in the literature. When we introduce state vectors in Minkowski space, indefi-
The above discussion that the real vacuum is filled withite metric vectors are absolutely required. The required vec-

potentials whose state exists under original ground state s should be recognized not only as an auxiliary field but also

identical with the spontaneous symmetry breaking using thg a real physical field just like a homodyne local oscillator

analogy of superconductivity when we repla@eor H with o1 negative oscillatory field which is the root cause of single
energy IeVeI reported by Y. Nambu al’ld G. Jona'LaSQﬁﬁi) photon and e|ectr0n interferences_

When the phase fierence is fixed, the one vacuum s selected The results insist the vacuum space is filled with the un-

and the selection breaks symmetry of vacuum. observable potentials which can eternally exist as waves and
In addition, the spontaneous symmetry breaking by the Ugorrespond to scalar potentials. This mechanism can be spon-

observable (scalar) potentials (gauge fields) leads to mass ggeously obtained by using tensor form.

quire of gauge fields (Higgs mechanistf). This idea provides exactly the same calculation and exper-
Therefore the above discussion will not be inconsistenental results by using quantum-superposition state because

with traditional treatment of spontaneous symmetry breakinge scalar potential forms the oscillatory field and the sub-

and the mass acquire mechanism. stantial photon or electron moves in the field with the inter-

ferences as if the quantum-superposition state exists. In ad-

M
2413+ +13)+ Z rjrké“’i‘ek)} +1 (63)
j#k
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