Unobservable Potentials to Explain Single Photon and Electron Interference
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We show single photon and electron interferences can be calculated without quantum-superposition states by using
tensor form (covariant quantization). From the analysis results, the scalar potential which correspond to an indefinite
metric vector forms an oscillatory field and causes the interferences. The results insist there is no concept of quantum-
superposition states, which leads to an improved understanding of the uncertainty principle and resolution of paradox of
reduction of the wave packet, elimination of infinite zero-point energy and derivation of spontaneous symmetry breaking.
The results insist Quantum theory is a kind of statistical physics.

1. Introduction damental sense in nature. Only the concept of mixed states

Basic concept of the quantum theory is the quantumyvhose prqbqbilitieg are statistical sense is valid in nature.
superposition states. Arbitrary states of a system can be ddle new insight gives us novel and important results, i.e.,
scribed by pure states which are superposition of eigenstatB¥roved understanding of the uncertainty principle non-
of the system. Calculation results by the concept agree wéglated to measurements, elimination of infinite zero-point en-
with experiment. Without the concept, single photon or ele&ray without artificial subtraction, derivation of spontaneous
tron interference could not be explained. In addition to theYymmetry breaking without complexity and knowledge that
interference, entangle states also could not be explained. Quantum theory is a kind of statistical physics.

However the concept leads to the paradox of the reduction!n addition, new insight can conclude that the concept
of the wave packet typified by "Scbdinger’s cat” and "Ein- of entangle state is also not valid in nature though there
stein, Podolsky and Rosen (EPR)®) have been reported the validity of the concept of entangle

In order to interpret the quantum theory without paraStatest’?? We will discuss the entangle state by using the
doxes, de Broglie and Bohm had proposed so called *hiddéf#W insight in other letter? .
variables” theory:4 Although, "hidden variables” has been In section 2, we show easy example of Gaussian photon
negated) the theory has been extended to consistent with rék€am to explain that single photon can be described by sub-
ativity and ontology?~1? However the extension has not beerstantial (localized) photon and unobservable potentials (scalar
completed so far. potentials). In section 4, we also show easy explanation that

Although there were a lot of arguments about the pard/e shoulq recognize the exi.stence of the potentials in two-slit
doxes, recent paper related to the quantum interferences c8#gctron interference experiment. In section 3, we show the
vince us of the validity of the concept. For example, quamurgpllculatlon of the interferences by using tensor form which
mechanical superpositions by some experiments have bed@fs not require quantum-superposition states. In addition to
reviewed!?) The atom interference by using Bose-Einsteifthe form, we show an alternate formalism (however it's just a
condensates (BECs) has been reported experimentally F@gvisional treatment) convenient for the calculations.
theoretically!213 The coherence length of an electron or N gection 5, we.also show the calculation of tr_]e single elep-
electron-electron interference by using the Aharonov-Boh#on interference in the same manner. In section 6, we dis-
oscillations in an electronic MZI has been discussed theorefUss the paradoxes related to quantum-superposition states,
cally.24:15 A plasmonic modulator utilizing an interference ofZ€ro-point energy, spontaneous symmetry breaking and gen-
coherent electron waves through the Aharonov-Bolfface eral treatment of single particle interferences. In section 7, we
has been studied by the autBr.The entangle states haveSummarize the findings of this work.
been widely discussed experimentally and theoretidtf? ~ Aharonov and Bohm had pointed out the unobservable po-
The photon interference by using nested MZIs and vibraf€ntials can ffect the electron wave interferences and the
mirrors has been measured and analy?éd) The double-slit €ffect had been experimentally identified by Tonomura et.
electron difraction has been experimentally demonstratéd. al 27729
According to our analysis, BECs, condensate and bosoniza—The findings has ppinted out the unobservable potentials
tion systems correspond to mixed states with or without cdinclude scalar potentials) generate not only Aharonov-Bohm
herence rather than pure states, and no paper can solve $fgCt but also single photon, electron or an arbitrary particle
paradoxes. field interferences and fluctuation of the universe as will be

In this paper, we ffer a new insight of the single photon described later in this paper.
and electron interference that can solve the paradoxes. Ac-1he discussions in this paper are very simple to the same
cording to the new insight, there is no concept of quantunteVel as an introductory of quantum theory, because the quan-

superposition and pure states whose probabilities are fuittm theory has a misunderstanding in such a fundamental
concept and nature of nature will be simple.
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ThereforeE andB are localized in the free space in the in-

. — put. In contrast, the vector and scaler potentials, which can not
y© 50:50 be observed alone, are not necessarily localized. Especially
BS the scalar potentials have nfiert on theE andB.

Tnput ’ N Path 1 \Mirror Note that, the Gaussian beam radius will be spatially ex-
panded due to the free space propagation. However, the radius
50:50

Gaussian beam . .
of the propagated beam(z) will be approximately 10.5mm
when the beam with the initial radiusy = 10mm propa-

. gatesz = 100m in free space. This value can be calculated
Mirror > Output 1
N, Path2 2 :
byw(2 = wo+/1+ (ﬁ) when the wavelength = 1um is
0

Output 2 applied. Then the spatially expansion of the beam will be neg-
ligible small when the paths of the MZI are less than several
tens meters.

The above localized form (1) is one example, other forms
can be employed to satisfy the following Maxwell equations.

Fig. 1. Schematic view of MZI. BS:Beam Splitter.

2
2. Classical Electromagnetic field of MZI - potentials (A _ iza_)A v (V A+ £5_¢) = —uoi
and photon c? ot c? ot

Figure 1 shows schematic view of the Mach-Zehnder Inter- 1 2 0 A 1o\ p 5
ferometer (MZI) and coordinate system. )tV At eu)T &0 ©)
First we examine the input beam. Assume that an x- . o . .

) . ; S . wherepg is the permeability angd is the electric charge den-
polarized optical beam propagates in z-direction with anguI%Ety
frequencyfu and propagation cor_lstaﬁ; the electric fielde Wheni = 0 andp = 0, the equations (5) can express the
of the optical peam 'S.We” localized n the fr.ee SPace, €-Gicalized electromagnetic fields in free space as described in
the cross section profile of the electric field is expressed a5 above
Gaussian distribution. '

Then, the electric field of the optical beam in the input cal. |nterference of Sing|e photon

be expressed as follows. As described previously, there are potentials which are not

necessarily localized even if photons are localized. Especially
2 the scalar potential can populate the whole of space and the
vector and scalar potentials are combined by Lorentz trans-

Where,ex IS unit vectqr parallel to_the x—ax@E IS an ar - formation. Then we should make no distinction between the
bitrary constant of which squared is proportional to the flelgector and scalar potentials

intensity. wp is the radius of the optical beark. andB are
expressed by vector and scalar potentials as follows.

2

2
E = eX~CE-exp(—X

+y
W2

] -cos(wt—B2) (1)

However traditional treatment of the single photon interfer-
ence by using Coulomb gauge only uses the quantized vector

E - —EA _v potentials as follows. In a quantum mechanical description,
B ot ¢ the photon interference is calculated by introducing the elec-
B = VxA (2) tric field operatorE = ~-8; exp(if) + -8 and the num-

0) ~
From (1) and (2)A is expressed by introducing a vector func-bher sLatein) of thﬁlM.Z | output as follows W_herealorz IS |
tion C as follows. the photon annihilation operator corresponding to an optical

mode passing through path 1 or 2, respectivelyg,the phase

A = —lex Ce- exp(— X% + yz] -sin(wt—82) + C difference corresponding to thefférence in length between
w w3 the two paths.
a ~ LY 1 "T" 1 "T" A-]-A
EC = -V¢ (3) (1) (nE'E[N) = E(n|a1a1|n>+ E(”IazazlnHCOSG(nlalazln)

(6)
Where(l) is expectation value of the field intensity which is
proportional to photon humbeay gro anda‘iOr2 are defined as

By taking C as an irrotational vector functiod# x C = 0 in
order forB to localize in the space, for examp(@,andg¢ can
be expressed by introducing an arbitrary scalar funclias

. a _ +é& _ é;-*-é; . S
C = V1andV %/1 + ¢) = O respectively. a-= —1‘52 andd = 7 by using the photon ahnlhllatlon
ThenB is expressed as follows and creation operatogsandd’at the input with(nja;&y|n) =
B = VxA (njaaIny = (nfala,in) = in. When photon number is one
5 o (n=1),ie, single photon, the above expectation value is
- Eey-CE 'exp(_x ty )~cos(wt—,82) calculated to bel) o< § + § + coso = 3 + Jcos.
w Wﬁ In this traditional treatment, the photon annihilation and
2y 2 42 creation operatora andd’ are obtained from quantization
——WZeZCE-ex —T]osin(wt —-pB2) (4) ofthe vector potentials in (5) by using Coulomb gauge under
@ Wo 0 assumption of = 0 andp = 0.



In order to equate scalar potentials with vector potentials® is in the planeK, n) orthogonal tsn and normalized
we should introduce tensor form (covariant quantization) as

G)(kY.n = O
follows. €K -n=0, [e7(K] 1 (16)
The electromagnetic potentials are expressed as followingThen © can be recognized as a polarization vector of
four-vector in Minkowski space. scalar wavese®) ande® of transversal waves and® of a
A= (A%, AL, A2, A%) = (g/c, A) ) Iongnudmal wave. Then we take these vectors as following
the easiest forms.
The four-current are also expressed as following four-vector. 1 0 0 0
=% 0N A =D ® O 2| |t @] ] @]
When we set the axises of Minkowski spacedo= ct, x! = 0 0 0 1
X, X2 =y, x3 = z, Maxwell equations with Lorentz condition 17)
are expressed as follows. For simplicity, assume that photons are x-polarized transver-
oA = pojt sal waves with the scalar wave and we neglect the longitudi-
nal wave which is considered to be unphysical presence, i. e.,
AN = 0 ® A=0 As=0.
In addition, the conservation of charge @livdp/ot = O is ex- A, = (Ao, A1 0, 0) (18)

pressed a8, j* = 0. Whered, = (1/cot, 1/0x, 1/0y, 1/0z) = ) ) o
(1/9%°, 1/0xt, 1/0%?, 1/0x%) and o stands for the  The potentials will be divided when there are two paths

d’alembertiann = 9,0 = 62/C0t2 — A. divided by the MZ| interferometer. Here we consider the
The transformation between covariance and contravagtate that a photon expressed as x-polarized transversal waves
ance vector can be calculated by using the simplest form Bfsses through path 1 and unobservable potentialsio(®),

tween the two paths. In this state, we can express the four-
1 0 0 0O vector potentials along the MZI path E(A,patn1)) and path
g, =g¥ = 0 -1 0 O 2 (= Au(patn2)) as follows.
(g 0O 0 -1 o0 1
0 0 0 _1 A;z(pathl) = (Eelg/zAO, Al9 O’ 0)
A/l = gw,AV 1 .
. = (Ze2p,, 0,0, 0 19
A = gUA, (10) A (path) (56" A ) (19)
The following quadratic form of four-vectors is invariant un- YWhen the Fourier cagcients °f3theA (E())ur-\&e)ctor potentials
der a Lorentz transformation. are replaced b_y operatorsA;z Y-0aY(K)e; " (k), the com-
oo o 20 _ sy mutation relations are obtained as follows.
()" = ()" = (x)" = (x) (11) A i ,
[A.K), Al(K)] = —g,,6(k - K) (20)

The above quadratic form applied a minus sign expresses the

wave front equation and can be described by using the metﬂi—@e time-axis compongnt (corresponds;tor = O scalar
tensor. wave, i. e., scalar potential becaug’é(k) =0 (u # 0)) has the

opposite sign of the space axes. Becai@(k)A(K)0) =
—6(k— k') then
—gu XX = X%, =X +Y+Z-ctP =0  (12) ( )
— I 2
This quadratic form which includes minus sign is also intro- (A1) = ~00) fdk”(k)' (21)

duced to inner product of arbitrarily vectors and commutation o - . ,
relations in Minkowski space. where|l) = fdkf(k)Ag(k)|O>. Therefore the time-axis com-

The four-vector potential satisfied Maxwell equations withPonent is the root cause of indefinite metric. In order to utilize
vanishing the four-vector current can be expressed as follof2€ indefinite metric as followings, Coulomb gauge that re-

ing Fourier transform in terms of plane wave solutidis, ~ MOVves the scalar potentials should not be used.
Let define the photon annihilation operat@#gpatn1) and

3 N . . X
: ~ D1y D) (1 KX o (D () (kX A,(path2) corresponding to the optical modes passing through
AuX) = fdkz_;)[a (e (ke ™" + a™ (ke (e the MZI path 1 and 2 respectively. The products of these op-
= (13) erators must introduce the same formalism.

S LS (14) A'A= g, A'A = —g"A/A, (22)
2ko(27)3 Because the photon annihilation operator at the MZI output
where the unit vector of time-axis directiorand polarization iS A:(path1)+ Au:(pathz) then we can obtain the photon number
vectorse'! (k) are introduced ag? = 1, n° > 0 ande® = n, ~ operator at the MZI output as follows.
D (2) i ~ < A o
€ ande'® are in the plane orthogonal kbandn _Q#V{A;t:(pathl)"'Ap:(pach)}r{Av:(pathl)"'Av:(pach)}
VK - eVK=-60 2,2 =12 (15)

R N P
= —5AR+ AlA; - SAJA coss (23)



where the following relations are used. annihilation operator as follows.

v AT A 1RTA o ATR M
- \i:(path1y Wi(pathl) = —1Acfo + AjAL A 9 A A
VAT‘ ~ _ig Rt A = rel JAO, Al9 Os O (26)
Ry pufomn = 3R A=l 2,
_gyVAl_;:(pathzf‘v:(pathl) _Zjie'iAoAO
VA A _ 1ATA
-g" A;t:(pachfA“’:(Pathz) = _ZAOAO
Applying the bra and ket vectord| and|1) to (23), (I} «
1 — 1 coss is obtained. Note that we identify the number op- M o - -
RTAT = (LA AL = = - rine @91 (UAGAOIL) + (LA AglL)
erators agl|AjAoll) = (1JA A1|1) = 1 because of the Lorentz i 1
invariance. ==
From the time-reversal invariance of the electromagnetic {

Then
My o« A-g"AAIL

fields, we should also make no distinction between the input
and output of the MZI. Then the photon annihilation operator
at the confluence of the MZI can be expressed as same as Eﬁ'eecause & < 1, then Os (1| - g/‘VAf,AVll) <1,

Mzl output, . €., ; WhenM — oo, the multi path can be recognized as a con-
A _ A A _ LN tinuum space. Because?®, ri€’ that creates the oscillatory
P = Auctpanty + Ay patn2) = (COSZAO’ A O 0) @4) field converges with 0 vjvﬁe#] the phases are completely ran-
instead of (18). Although there is definitely a photon at thdom, the real physical space can be recognized as the con-
MZI input, the calculation result of the photon number atinuum with completely random phases. In this césex 1.
the MZI input of a single photon state by using (18) isWhen a particular geometry is formed in the space, the inten-
(1|(—A8Ao + A§A1)|1> = 0. However we should not omit the sity fluctuates by the oscillatory field.
scalar potentials a8 = 0. The expression (25) is similar to a normalized quantum-
In contrast, the photon number by using (24) with=  Superposition state if we identify; ande’i Ay as a normal-
+Nr (N : odd number) is 1. Therefore we should recognizé&ation codficient and eigenfunction (eigenstate) respectively,
the scalar potentials at the MZI input are not zero (not empt{jough 3.}, rj = 1 instead of commonly useBl}’, Irj* =
i. e., Ay # 0) but annihilate each other by the opposite phase Then we should recognize what forms the quantum-
waves, i. e., co8(2) = 0. When there are two paths, the scalapuperposition-like (not completely the same expression) is not
potentials make oscillatory fields likg6)- Ao wheref(9) isan @ substantial photon but the unobservable scalar potential.
oscillating function o, which can be recognized as "hidden If we introduce following operatoAy;, by using the above
variables”. Then the substantial photons move with the ireperatorA;, we can calculate the MZI interference based on
terference in the oscillatory fields. Therefore the expectatidrieisenberg picture without tensor form. Although the follow-
value of the field intensity at an arbitrary point in space can bgg formalism is just a provisional treatment, it is convenient
calculated using (24) &$) « % - 1 cosg which means even if for the calculations.
the substantial photon follows an arbitrary path the photon can

M
(FP+rs++r3)+ Z rjrkei(gi‘gk)} +1 (27)
j#k

not be found at the point whoge= Nz (N : even number) 5, 1 s 1 ipos
on the path. Note that if; = 0, i. e., there are only scalar Ao Eye‘ PAL- 3¢ e
potentials, the intensity of the oscillatory field at an arbitrary . T I
.. . A 1 1 A _ T aa 0277 e|«9/2 T 28
point in space negatively fluctuates like « -1 - 1 cos. Ay = SYETTA - SyETA (28)
The tensor form (19) canfker clear image that the sub- 5 )
stantial photon passes through one side path of the MzI a¥@ereéy” = -1 (li. e,y corresponds to the square root of

there are the unobservable potentials (scalar potentials) 8¢ determinant of Minkowski metric tensgflg,,| = Vg =

both paths. As the above calculation shows the unobservablel = v.) Aj correspond tdA (scalar potential which ex-

potentials act as a homodyne local oscillator which retrievadess the homodyne local oscillator) in (24), though the corre-

phase information from a signal (photon) through interferencgpondence is not completely compatible with the tensor form

between the signal and local oscillator. because of a provisional treatment, e. g., the phassligted
This discussion can be generalized for arbitrary geometri@s described later.

include for the above 2-paths MZI. The arbitrary geometries Then by using this operator, the expectation value of the

can be modeled by using split ddeientsr; and phaseg; of ~ field intensity(I) oc (1|(Aj+A1)" (Ay+A1)|1) can be calculated

the scalar potential. When there are multiple path (M pathsys follows.

the scalar potentials can be divided as follows.

PN 1 aw 1 aia 1 ., A~sn 1 ., ~ea
y ATA, = -7 AA - 21A'lAl + Zé"A'lAl + Ze"GMAl
Zr,-e"’iAo (25) 1 e n 1 msn
= = —EA'lAl + éA}Al cosd

Wherez?ilrj = 1. The above MZl case 8l = 2,r; =15 = ~in,
1/2 andd; = —6, = 6/2. Then we can predict the intensity for AR

arbitrary geometries can be calculated by using the photon 1 i 1
AgAl — E,yeflﬁ)/ZAIAl _ E,yeIQ/ZAClAl (29)

1 owprir L igpaia
58P AAL - SyePAA



Finally the following result is obtained. regarded as a vector in indefinite metric Hilbert space as can
be seen from (33). Although the explicit expression such as

PP B

WAAIL =1 (33) has not been reported, the same kind of unobservable
VIR 11 vector has been introduced as "ghost” in quantum field the-
AN _ _- = g q

A AL = 3t 00 ory32-3% We also calll¢)y "ghost” in this paper though this
.y P "ghost” has a dierent definition. The traditional "ghost” was

UAAIL = 57"'3" - 57’9 introduced mathematically as an auxiliary field for consistent
o 1 1 with relativistic covariance of the theory and had tiieet on

(UATAL = Eye*'e/ 2_ Eye'g/z physical phenomena. However, the above "ghost” is a phys-

ical field (corresponds to the scalar potentials in (19)) which

causes the interferences, in other words, is essential for the

interferences instead of the mathematical auxiliary field.

_ 1 N 10059 (30) From the equation (34), the unobservable potentials pass
2 2 through path 2 produce the single photon interference as if

Note that when we use this provisional treatment instead 8t€ photon passes through the both paths in cooperation with

(UATALLY + (UAT ALY + (UAT ALy + (LA Agl1)

the tensor form, the phasesisshifted. a photon field passes through path 1. _
This provisional treatment will correspond to using the fol- Note that the superposition principle may be used as a nice
lowing tensor form instead of (19). mathematical tool to simplify analyses in mixed states. How-

ever when we use the superposition principle in single pho-
ton case and fail to understand the mechanism of the single

Acpatnyy = (0, A, 0, 0) photon interference as described above, we may plunge into
" 1. 0~ 1. 0a deniable engineering applications based on reduction of wave
A;::(pach) = (EIGIQ/ZAO - Ele |9/2A0’ 0, 0, O) (31) packet_

The above calculation is based on Heisenberg picture. We potentials and electron
can obtain the same interference based on &fihger pic- hi ) . id inhol |
ture. In Schodinger picture, the expectation value of the field " thiS section, we first consider two pinholes electron wave
intensity can be calculated by using the output 1 (¢ ghase Interference in classical manner. Figure 2 shows schematic
difference) statfl)s + | and a photon annihilation operator\’iew_Of a typical setup for theé)—slits (2-pinholes) single elec-
of Schivdinger pictureAs which is proportional to the electric 0N interference experimefit o
field operatoE o As at the output 1 (or 2). Whet)s and|Z) The propagating electron can_b_e_ identified as an electron
represent the states of a photon passes through path 1 andlfﬁfj-‘rg Wh?SEi space current der|15|ty b Nr(]qv, V\I/hereN 'Shthe
observable potentials (scalar potentials) passes through (ex/&NP€r of electron per unit volume,is the electron charge

at) path 2 respectively.Because nothing is observed in path®1dV is the electron velocity. When the radius Ofvtvrz“? electron
we should recogniz&|?) = 0. More precise definition is as bear_n iSWo, the current can be expresseq hs= mwij. Ac-
follows. The operator,, As and statetd), |1)s can be trans- corglmg to Blot-Savart. Law, the propagation generates mag-
lated by using the Hamiltoniaf ash; = em‘/hAse‘mt/h and netic fields and potentials around the propagation path.

D = gt vely. Ther 1 b db Assume that the electron propagates parallel to z-axis at a
s =e |1) respectively. Thery|1) can be expressed by . tant velocity. Then, the vector potentials around the prop-
using (28) as follows.

agation path are expressed®¥’

A5|1> _ ei(l:{t/hAS (%yeia/ze—i(ﬂt/h _ %,ye—ie/Ze—i’l:{t/h) 1) Ac = A=0
| 1
(1 1 A = ——In= (35)
dHin Ag (éyem/z _ Eye—m/z) 1D)s (32) z 21egC2 T
Here we define wherer = /X2 +y2, g9 is the permittivity anct is the speed
of light.
1 1 Therefore the vector potential clearly passes through not
I e ele/z)l 33 p yp g
&) (27 Y Ds (33) only the pinhole the electron passes through but also the op-

Hence(UA; Arl1) = (JIALAsIZ). Whend = 0,12) = 0, i. e., posite pinhole.

— 0. In this pict the intensit b q Even if we apart from this easy consideration, the elec-
Iy = 0. In this picture, the intensity can be expresse 4Fon motion definitely generates potentials. Therefore, when

follows. we consider the electron motion, we must take the potentials.
(N o« (Us+NALAs (I1)s +12)) In next section, we consider the two pinholes interference
JUN in quantum mechanical manner with consideration for the po-
= 1+ (ASASID) +(U)s + (¢IDs tentials.
11 1 1 .
= 1- >*5 cosf = 575 cosd (34) 5. Interference of single electron

In a traditional quantum mechanical description, the 2-slits
pinholes) single electron interference is typically explained
¥ the probability (density) of finding the electron on the

In the above mathematical formula for the interferenc
by Schibdinger picture, there is no mathematical solution i
usual Hilbert space. Therefore the unobservable potenti£
(scalar potentials), which can not be observed alone, must be

5



N .
A X —2Re(exp[|£ 95 (pdt — A - dX)] d/l',l’z) (38)

s, Electron ) ] 1moscreemzos )
/,': detector Tnterference pattern wherg 1 and 2 of the mte_grayoln path denote pinhole 1 and 2
% ~ respectively. This description is identical to Aharonov-Bohm
y effect?”)
. Pinhole 1 In case of single electron interference, we can find the
::’:’Z g I electron at pinhole 1 without fail but not at pinhole 2, i.e.,
Electron > , lpal? =1 and|¢2|2 0. Although the exact expression should
source Pinhole 2 be [ ¥10r22dV = 1 or O instead of the probability densities,
we continue analysis wity1)?> = 1 andjy»|?> = 0 for simplic-
ity.
When we introduce a phasefigirenced betweeny; and
W2, P12 expresses the interference as follows,
Screen
P12 oc 1 - 2Re(expi [6as + 6] y1¥2) (39)
Fig. 2. Schematic view of a typical setup for the 2-slits (2-pinholes) S'ngl%herGHAB -1 (¢dt — A - dx).
electron interference experiment. S 1SCcreenRs2—s
Note that wher is fixed, the interference can be observed
on the screen as a function@fg, i.e., position on the screen.
Whend,g is fixed, the interference can be observed on a fixed
screers® position of the screen as a functionéf
5 However, the wave functiog, as a probability density
P12 = p1 + ¢ol (36)  must satisfy incoherent expressions, i # 0 andjyl? =
Where¢; = (X1)(1]|s) and¢, = (X|2){2|s), which are com- 0. ) ] ) )
posed of probability amplitudes Then in order to clarify the exact representation, we intro-
(12]S): "(electron arrives at pinhole 1 ofelectron leaves duce the electron number states that means there ame
s (electron source) and electrons and charge operar= fd3x10(x) defined by a
(X|15r2): "(electron arrives at screetelectron leaves pin- conserved currenf, = (q,i), i.e., "], = ‘(’,—f +V-i=0.
hole 1 or 3". The charge operator satisfi€gn)y = ngn), which means the

When either pinhole 1 or 2 is closed, the each and totalelectron state is the eigenstateQuf? 3%
probabilities are calculated to B& = |¢1]?, P> = |¢o]*> and Because the charge operator is defined by a conserved cur-
P = P; + P, # P Therefore we must admit the electronrent which satisfies the Maxwell equations a@awill corre-
passes through both pinholes at the same time despite an efgends to the expression of photon number operatorA’ A
tron can not be splitfd, which forces us to introduces a con-in terms of derivation of the charge or photon numbers, we re-
cept of quantum-superposition states . gardQ as combinations of indefinite metric operators similar
However we can examine the states of the localized eleto (28), i. e.,
tron propagation and unobservable potentials instead of the
quantum-superposition state as mentioned above.

Q = qlql

In such a case, the electron wave functions should be ex- A 025 L g2
’ = — el e
pressed as follows. % G- 27 h
1
al = 0/24 0/24
vy = 1 exp[l— (pdt— A - dx)] % = 3¢ 1] ~ 27’e| 2, (40)
s—Pinholel-scree .
Then we can obtain the single electron interference as same
v = Y- exp[l— (¢pdt — A - dx)] (37) manner as (30) in Heisenberg picture, i. e.,
s—Pinhole2->scree

where,y;, andy, are the electron wave functions on the (1> = (1(a] + 63) (@ + Go) Iy) = Q{% %0059} (41)

screen passing through pinhole 1 and 2 with the unobservable

potentials respectively; andy, are the electron wave func- Where(l) is the expectation value of charge intensity.

tions heading to pinhole 1 and 2 at the electron source without Similarly, the interference of Scbdinger picture can be

the efects of the unobservable potentiatsandA include not ~ calculated as follows.

only the unobservable potential_s expressed as (5) but_ also the ay (Wl + (Wal) Qs (1) + [W2))

unobservable part of the potentials generated by localized po-

tentials such as (3) and (35). q+ (W2lQsly2) + ayalyr2) + Alyralya)
Then the probability of finding the electron on the screen {

q

by using these wave functions can be described as follows, 273

Po o [P =y +ysP where the charge operatQs and statey,) of Schivdinger
= il + ol picture are obtained fronQ = §ig; = €MViQge VA
and e y)y = |y)s = |y1) respectively. Because

QS — e—i'Ht/thqlei?(t/h — e—i‘Ht/thi'Ht/h' we definqu =

} + }cose} (42)



e HUhg, MU ThenQg = ngs and In the above expression fay,), there is no mathemati-
. 1 1 - cal solution in usual Hilbert space. Therefore the state of "no
Gly) = &g (_,yeIG/Z _ _ye—lé'/2) e AUy electron passes through pinhole 2 with the unobservable po-
2 2 tentials” must also be regarded as a vector with zero probabil-

1 . 1 ity amplitude in indefinite metric Hilbert space as can be seen
_ éHt/hA = e|(-)/2 _ = e—|9/2 )
- s 27 57 ¥is from (42), (43) and we can express the quantum state of the
. interference without quantum-superposition state.
= Mgsly,) (43) Note that the calculation using the superposition state of

Therefore state dfs,) andjy,) can be recognized as follows, (_38) is valid in case of mlxgql state whose probab|_I|ty is statis-
tical sense. The superposition states are convenient for appli-

an electron passes through pinhole 1 with the unObser\éét'on to interference phenomena, however the states do not
able potentials” afgy;) with Py = (Yalyq) = f|¢,l|2dv =1 ! ! p , howev

and reflect the right mechanism of nature, which means there are
"no electron passes through pinhole 2 with the unobser\?-rﬁ"’lt tFi)or?SI?lllitr): tlhe (E‘u?nrt]umngppl)hc?rtur)]ni#t5|rr;grwr?ve vﬁ’,ﬁf Eet
able potentials” afg/,) with P, = (Yly2) = f|¢2|2dv =0. eduction of singie photon and €lectro erierence €

In the above treatment, we introduce the new charge OHpavanable.
erator (40) similar to (28) to emphasize the identity of thg. Discussion
mathematical formula. However, when we use direct produ%t
of the electron statig/) and the vacuum photon sta@+|/) in ’
Schibdinger picture, a straightforward approach can be made
as follows.

1 uncertainty principle and the reduction of the wave
packet
By the existence of the unobservable (scalar) potentials,

Traditional direct product of the electron state and the Heisenberg's uncertainty principle can be explained indepen-

vacuum photon stati®) is expressed ag)l0) = |v,0) = dent_ly of measurements. In ad(_ji_tion, th? p.ar_adox, of th:a re-
W)s = ). duction of the wave packet typified by "Sé¢iinger’s cat

From the above discussion, the vacuum photon state sho@l'ad "Einsthein, I?o_dolsry ar;]d Rosen (EPR}can be §9Ived,
be replaced bj0) + ) in Schibdinger picture. Therefore the ecause the origins of both are quantum-superposition state.

direct product becomes) (10) + 12)) = v/, 0)+ |, Z) = |ur)s + Former res.!,llt_s insist_ the states of_path land2or pinholg 1
W, ). Becausey, Z) = ), then the direct product becomesand 2 by Schidinger picture are dgflne_d when the system is
1) (10 + 12)) = |2 ) +1r2). This formula is identical with (42). prepared expressed as a substantlall single pho@on or electron
Whenly,) = ( L1ygll2 _ ;ye—ie/z) WW)s, (40) and (41) can be and the unobserva_ble (scalar) potentials respecuvlelly and each
2 2 state does not splittbsuch as quantum-superposition state,
which means there is no reduction of the wave packet.

obtained as follows.

= (Yl + Wal) Qs (Y1) + ¥2)) "When the system is prepared” corresponds to immediately
PR B after the branching point of the optical MZI or the pinholes.
= (¢1|(1+ E)’e_' /Z - 579' / ) Which path or pinhole does the photon or electron select is
unpredictable but after the selection, the state is fixed instead
1 2 1 o of quantum-superposition state. The concept of these states is
Qs (1 " 2yeI 27/e W) identical with mixed states rather than pure states formed by

AN A A quantum-superposition, which insists there is no concept of
(6 +65) @ + 6) ) (44)  quantum-superposition state.
When we introduce the phase terms of (37) and (38 as AS for Heisenberg’s uncertainty principle, we can clearly
6, andbag = 61 — 6, the interference (42) is calculated to be'ecognize it as tradefis derived from Fourier transform non-

as follows. related to measurement, which correspond to the canonical
commutation relation.
<I> = (eii01<w1| + eii92<lﬁ2|) QS (ei01|w1> + ei92|lﬁ2>) 62 Zero_pc)'nt energy
= g+ WalQsly2) + e B (1 lw) + Qe B (Yolr) The electric field operators obtained from traditional quan-

tization procedure for quantum optics with Coulomb gauge
1 1 . . . . . : .
q{— + = cos@} + Qe 81 o) + qE%E(Yoln) have relationships with harmonic oscillator as follows. (We
2

2 consider only x-polarized photon for simplicity.)
o) A= —E(a+ip
Then, 655 does not seem to be the origin of the single V2hw
electron interference. Aharonov-Bohitfieet will be observed o 1 o
when there are substantial electrons in both pinholes. The sin- A= N (wq - ip) (46)
gle electron interference will originate from the unobservable R R N
potentials in vacuury, £) = [y2). whered and g are position and momentum operators obey-

The above discussion suggests that the state "no elect/}§ the commutation relatiom[p] = iz Hamiltonian of har-
passes through pinhole 2 with the unobservable potential@nic oscillator is expressed as follows.
generates the phasefgrence (in other words, unobservable 7l = }(Az N wz‘z) 7)
oscillatory field as mentioned above.) for the interference 2 P 4
without electron charges.



. . . 1 1
Then following relations are obtained. = Zhw - Zhw cost (55)
A}Al = — (p2 + W’ +iwdp - iwpq) The zero-point energy also fluctuates, which can also explain
2hw spontaneous symmetry breaking. Note tha{jit= yA;,
1/(~ 1
= —|H-:Zn MR RTA 1 (1
fiw ((H 2 “’) ATAy = -AA = - (7{ - Ehw) (56)
AA = L (ﬁ n }hw) (48) Hence the isolate indefinite metric potentials may possess
hiw 2 negative energie¥®) HoweverA|, # yA; as can be seen from

From (48) andOIAiAﬂO) = 0, traditional zero-point energy (28) and can not be isolated but combined instead such as
has been recognized (aQVFﬂO) — lhw i e (50), the negative energies can only appear through the inter-
C ference with the localized potentials that express the substan-

i<0| ((ﬁ{ B }ha)) 0) tial photon. Therefore the infinite zero-point energy due to the
hiw 2 sum of infinite degree of freedom is eliminated by (55) with
0 = =Nr, (N : even numbers).
_ 1 (<0|7f(|o> - }hw) =0 (49) When we use the formula of the tensor product (23) for the
hw 2 expression of the interference (51) instead of the provisional
This traditional fixed zero-point energy originates from thdreatment (28), the phasef the above discussion in this sub-
definition of the electric field operators in (46) without thesection ist shifted. In addition, (26) can be used for the fluc-
unobservable (scalar) potentials. However we have obtainéthtion of the zero-point energy, i. e.<X0|H|0) < %hw.
the idea that there are unobservable potentials in whole spacefFrom the discussion in section 3, the fluctuation of the zero-
Then we should replace (46) with followings by using the oppoint energy will exist when there are particular geometries

(0JATA|0)

erators in (28). in space and vanish in the continuum space with completely

o 1 random phases.

Ap+A = ——=(wq+ip) The zero-point energy has been measured through Casimir

Vohw effect39-43)

R R 1 PO The above new insight explains there is energy fluctuation

N g p gy
Al = —— - . X :
Ao+ A N (@q-ip) (50) when particular geometries of vacuum exist due to the phase

giﬁerence. The attractive force from this kind of fluctuation is

Identical with the basic concept of Van der Waals force which

1 will be the origin of Casimir &ect**

H = ho Ag,&(') +ATA + A;;Al + 'B&A() +Zhw  (51) Therefore the above calculation will not be inconsistent
( ' ) 2 with Casimir dfect.

Therefore Hamiltonian will be the same expression of th
interference as follows.

Then the energy of single photon state also fluctuates.

- 1 . n 1 A 1 6.3 spontaneous symmetry breaking
(UHID) = Ehw<1|A£Al|1> + Ehw<1|N1A1|1> cosd + éh‘“ Traditional treatment of the spontaneous symmetry break-
(52) ing, which explores the possibility @|0) # 0 or generally

Because a single photon can be observed wheaNz, (N :  ”|0) is not an eigenstate @, needs an intricate discussion
even numbers), then using Goldstone boson or Higgs bosBrf® Where|0) is vac-
A 1 PN 1 PN 1 uum state.
UHL) = Eh“’<1|A1A1|1>+ Qh‘”<1|AiAl|1>+ Eh‘” However, the unobservable potentials eternally populate
1 the whole of space as mentioned above and there are no
= (YA ADhw + Sho = ho (53) electron at pinhole 2. Therefore the state of pinhol@2),

o can be identified as vacuum instead|@f. From the rela-
Therefore(1/A; A1) = % which leads to the replacement bytion (4,|y2) = 0 as described above, |if,) is an eigenstate

following expectation values of photon number. of Q, i.e., Qly2) = alyz), then{y,|Q2) = alyaly,) = O,
L 1 A 1 L 3 whereq is an eigenvalue. However from the discussion under
(0JATAL|0) = ~5 (UATAY|L) = > (2ATA|2) = 5 (42),(y2|Qly») fluctuates betweenq and 0 depending on the

(54) phase dierence. Hence the vacuupp) is not an eigenstate
Traditionally, (OJAl A1|0) has been considered to be 0. How-of Q, which expresses the spontaneous symmetry breaking. In

ever we should recogniz@|A§Al|O> - _% which requires addition to this discussion, the above zero-point energy, i.e.,

indefinite metric. vacuum is not an eigenstate #f, also expresses the sponta-
Then absolute value of the single photon interferencd@®0us symmetry breaking. o _

moves depending on the selection (@fAIAﬂO). However Iqotherworgls, thereis no flgctuatlon, i. e., there is symme-

(1) o« 1 + 1 cosd is maintained. try, in thg continuum space W.Ith completely rqndom_ phases
By using the expectation value, zero-point energy is calc@S mentioned in section 3. This space can be |dent|f|¢d as an

lated to be ideal vacuum. However the fluctuation gains entrance into the

R 1 o 1 L 1 ideal vacuum when a pa_lrticula_r geometry is introduced, i. e.,
OHI0) = Ehw(OM{AllO) + Ehw<0|A‘lA1|0) cosd + Ehw the symmetry is broken in the literature.

The above discussion that the ideal vacuum is filled with
potentials whose state exists under original ground state is



identical with the spontaneous symmetry breaking using thmental results by using quantum-superposition state because
analogy of superconductivity when we repl&@er H with  the scalar potential forms the oscillatory field and the sub-
energy level reported by Y. Nambu and G. Jona-Lasifity)  stantial photon or electron moves in the field with the inter-
When the phase fierence is fixed, the one vacuum is selecteterences as if the quantum-superposition state exists. In ad-
and the selection breaks symmetry of vacuum. dition, the concept is based on an analogy from the expres-

In addition, the spontaneous symmetry breaking by the usion of substantial localize electromagnetic fields or an elec-
observable (scalar) potentials (gauge fields) leads to mass &on and the unobservable scalar potentials instead of curious
quire of gauge fields (Higgs mechanisff). gquantum-superposition state that forces us to imagine a pho-

Therefore the above discussion will not be inconsisteribn or an electron passes through the both paths or pinholes
with traditional treatment of spontaneous symmetry breakindespite a photon or an electron can not be sylit o

and the mass acquire mechanism. Furthermore, this idea will not be inconsistent with tra-
ditional treatment of Casimirfiect, spontaneous symmetry
6.4 general treatment of single particle interferences breaking, the mass acquire mechanism and can be applied to
From (34) and (42), the single particle interferences can @n-Abelian gauge fields.
expressed as following manner. The superposition states are valid in case of mixed states
whose probabilities are statistical sense. However, quantum-
N = (@+F ) +10) superposition state is not valid in case of pure state whose

=+ FI0) + T@l) + T{Llo) (57) probability is fundamental sense, though the superposition
. principle may be used as a nice mathematical tool to sim-
Then when({IFIg) + 1¢I5 + T((1¢) = _%f +%f cosd, single plify analyses. Therefore, there is no concept of quantum-
particle interferences df, i.e., (1) = f {3 + 1 cos#} can be syperposition state in nature, and Quantum theory is a kind
generated. WherE is an arbitrary observable operator of theys statistical physics.
particle,|¢) is an eigenstate d¥, f is the eigenvalue dF un- The incompleteness of "Quantum theory”, which has been
der statel¢) and|{) is an indefinite metric vector expressinggjerted by A. Einstein, will originates from lack of introduc-
unobservable potentials. In case of Maxwell equations as dggn of indefinite metric. Quantum theory with introduction of
scribed in this papel() is identified as commutative gaugejndefinite metric will be complete. Quantum theory should be
fields (Abelian gauge fields). When we study multicompore-formulated by using tensor form.
nent statey), |£) will be identified as non-commutative gauge . Arndt and K. Hornberger have reviewed some testing
fields (non-Abelian gauge field$}->?) However the above of quantum mechanical superpositidiswe hope the results
general treatment can be applied in both cases. will be tested by those technologies.

WhenF is a number operatar of the particle andg) is
single particle statg) = |1) in (57), the expectation value of Acknowledgment
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