Unobservable Potentials to Explain Single Photon and Electron Interference
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We show single photon and electron interferences can be calculated without quantum-superposition states by using
tensor form (covariant quantization). From the analysis results, the scalar potential which correspond to an indefinite
metric vector acts as a homodyne local oscillator and causes the interferences. The results insist there is no concept
of quantum-superposition states, which leads to an improved understanding of the uncertainty principle and resolution
of paradox of reduction of the wave packet, elimination of infinite zero-point energy and derivation of spontaneous
symmetry breaking. The results insist Quantum theory is a kind of statistical physics.

1. Introduction damental sense in nature. Only the concept of mixed states

Basic concept of the quantum theory is the quantumyvhose prqbqbilitieg are statistical sense is valid in nature.
superposition states. Arbitrary states of a system can be ddle new insight gives us novel and important results, i.e.,
scribed by pure states which are superposition of eigenstatB¥roved understanding of the uncertainty principle non-
of the system. Calculation results by the concept agree wéglated to measurements, elimination of infinite zero-point en-
with experiment. Without the concept, single photon or ele&ray without artificial subtraction, derivation of spontaneous
tron interference could not be explained. In addition to theYymmetry breaking without complexity and knowledge that
interference, entangle states also could not be explained. Quantum theory is a kind of statistical physics.

However the concept leads to the paradox of the reduction!n addition, new insight can conclude that the concept
of the wave packet typified by "Scbdinger’s cat” and "Ein- of entangle state is also not valid in nature though there
stein, Podolsky and Rosen (EPR)®) have been reported the validity of the concept of entangle

In order to interpret the quantum theory without paraStatest’?? We will discuss the entangle state by using the
doxes, de Broglie and Bohm had proposed so called *hiddéf#W insight in other letter? .
variables” theory:4 Although, "hidden variables” has been In section 2, we show easy example of Gaussian photon
negated) the theory has been extended to consistent with rék€am to explain that single photon can be described by sub-
ativity and ontology?~1? However the extension has not beerstantial (localized) photon and unobservable potentials (scalar
completed so far. potentials). In section 4, we also show easy explanation that

Although there were a lot of arguments about the pard/e shoulq recognize the exi.stence of the potentials in two-slit
doxes, recent paper related to the quantum interferences c8#gctron interference experiment. In section 3, we show the
vince us of the validity of the concept. For example, quamurgpllculatlon of the interferences by using tensor form which
mechanical superpositions by some experiments have bed@fs not require quantum-superposition states. In addition to
reviewed!?) The atom interference by using Bose-Einsteifthe form, we show an alternate formalism (however it's just a
condensates (BECs) has been reported experimentally F@gvisional treatment) convenient for the calculations.
theoretically!213 The coherence length of an electron or N gection 5, we.also show the calculation of tr_]e single elep-
electron-electron interference by using the Aharonov-Boh#on interference in the same manner. In section 6, we dis-
oscillations in an electronic MZI has been discussed theorefUss the paradoxes related to quantum-superposition states,
cally.24:15 A plasmonic modulator utilizing an interference ofZ€ro-point energy, spontaneous symmetry breaking and gen-
coherent electron waves through the Aharonov-Bolfface eral treatment of single particle interferences. In section 7, we
has been studied by the autBr.The entangle states haveSummarize the findings of this work.
been widely discussed experimentally and theoretidtf? ~ Aharonov and Bohm had pointed out the unobservable po-
The photon interference by using nested MZIs and vibraf€ntials can ffect the electron wave interferences and the
mirrors has been measured and analy?éd) The double-slit €ffect had been experimentally identified by Tonomura et.
electron difraction has been experimentally demonstratéd. al 27729
According to our analysis, BECs, condensate and bosoniza—The findings has ppinted out the unobservable potentials
tion systems correspond to mixed states with or without cdinclude scalar potentials) generate not only Aharonov-Bohm
herence rather than pure states, and no paper can solve $fgCt but also single photon, electron or an arbitrary particle
paradoxes. field interferences and fluctuation of the universe as will be

In this paper, we ffer a new insight of the single photon described later in this paper.
and electron interference that can solve the paradoxes. Ac-1he discussions in this paper are very simple to the same
cording to the new insight, there is no concept of quantunteVel as an introductory of quantum theory, because the quan-

superposition and pure states whose probabilities are fuittm theory has a misunderstanding in such a fundamental
concept and nature of nature will be simple.
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ThereforeE andB are localized in the free space in the in-
Ay put. In contrast, the vector and scaler potentials, which can not
y < 50:50 be observed alone, are not necessarily localized. Especially
BS the scalar potentials have nfiert on theE andB.
Tnput ’ N Path 1 \Mirror Note that, the Gaussian beam radius will be spatially ex-
Gaussian beam panded due to the free space propagation. However, the radius
50:50 F

of the propagated beam(z) will be approximately 10.5mm
when the beam with the initial radiusy = 10mm propa-
gatesz = 100m in free space. This value can be calculated

BS

i > Output 1
Mirror \ Path 2

2
by w(2) = wo4/1+ (ﬁ) when the wavelength = 1um is
0

Output 2 applied. Then the spatially expansion of the beam will be neg-
ligible small when the paths of the MZI are less than several
tens meters.

The above localized form (1) is one example, other forms
can be employed to satisfy the following Maxwell equations.

Fig. 1. Schematic view of MZI. BS:Beam Splitter.

2
2. Classical Electromagnetic field of MZI - potentials (A _ iza_)A v (V A+ £5_¢) = —uoi
and photon c? ot c? ot

Figure 1 shows schematic view of the Mach-Zehnder Inter- 1 2 0 v.A 1o\ p 5
ferometer (MZI) and coordinate system. T 2o ¢+ s\ At e2E) T & ®)
First we examine the input beam. Assume that an x- . o . .

) . ; S . wherepg is the permeability angd is the electric charge den-
polarized optical beam propagates in z-direction with anguI%Ety
frequencyfu and propagation cor_lstaﬁ; the electric fielde Wheni = 0 andp = 0, the equations (5) can express the
of the optical peam 'S.We” localized n the fr.ee SPace, €-Gicalized electromagnetic fields in free space as described in
the cross section profile of the electric field is expressed a5 above
Gaussian distribution. '

Then, the electric field of the optical beam in the input cal. |nterference of Sing|e photon

be expressed as follows. As described previously, there are potentials which are not

necessarily localized even if photons are localized. Especially
2 the scalar potential can populate the whole of space and the
vector and scalar potentials are combined by Lorentz trans-

Where,ex IS unit vectqr parallel to_the x—ax@E IS an ar - formation. Then we should make no distinction between the
bitrary constant of which squared is proportional to the flelgector and scalar potentials

intensity. wp is the radius of the optical beark. andB are
expressed by vector and scalar potentials as follows.

2

2
E = eX~CE-exp(—X

+y
W2

] -cos(wt—B2) (1)

However traditional treatment of the single photon interfer-
ence by using Coulomb gauge only uses the quantized vector

E - —EA _ Ve potentials as follows. In a quantum mechanical description,
B ot the photon interference is calculated by introducing the elec-
B = VxA (2) tric field operatorlE = <58 exp(i6) + ~;58 and the number

30) A . . .
From (1) and (2)A is expressed by introducing a vector func-.Statelr;? as follows: Whelre.alor'lz IS thhe electric field operator
tion C as follows. in path 1 or 2 respectively,is the phase dierence.

2 2

A 1 "T" l "T" A-‘LA
A - Lo .o exp(_x m;y ]_Sm(wt _gh+C (1) oc S(ni&y2aln) + 5 (Nja;aIm) + cosinia 2eln) - (6)
w A
0 Where(l) is expectation value of the field intensity which is
%C = -V¢ (3) proportional to photon numbeay g, anda"}Or2 are defined as

A A N
. . . . . a= 3% andg = 2722 py using the electric field operataas *
By taking C as an irrotational vector functiovi x C = 0 in #‘@ ) V2 Xh g i ATpA
order forB to localize in the space, for exampf@.andg can ~ anda’ atthe input with(ni&, &) = (nia;azIn) = (nla; aIn) =
be expressed by introducing an arbitrary scalar functias  3N. When photon number is onen(= 1), i.e., single photon,
C = ViandV (%/1 + ¢) = 0 respectively. the above expectation value is calculated tqibex  + 2 +
ThenB is expressed as follows 1cos = 3 + 1 coss.
In this traditional treatment, the electric field operators are
B = VxA . o LI
. obtained from quantization of the vector potentials in (5) by
2 4 ) . a
_ Eey Ce - exp(— Yy ) . cos(wt — B2) using Coulomb gauge under assumptlom of0 andp = 0. '
w w3 In order to equate scalar potentials with vector potentials,
2y NIy we should introduce tensor form (covariant quantization) as
+ .
———¢,-Cg-ex _—].Sm(wt _ﬁz) (4) follows.
w'W% Wg The electromagnetic potentials are expressed as following




four-vector in Minkowski space. longitudinal wave. Then we take these vectors as following
the easiest forms.

A= (A0, AL, A% A3 = (p/cC, A) )
. 1 0 0 0
The four-current are also expressed as following four-vector. 0 W 1 @ 0 @ 0
o (0 i1 2 i3 ; =l ol € Tlol €711 €¢€ T|o
=05 0005 1) =(c. ) (8)
: . . 0 0 0 1
When we set the axises of Minkowski spacedo= ct, x! = (17)
X, X* =y, x* = z, Maxwell equations with Lorentz condition For simplicity, photons are x-polarized transversal waves with
are expressed as follows. the scalar wave and we neglect the longitudinal wave which is
oA = pojt considered to be unphysical presence, i.%.= 0, Az = 0.
N = 0 (9) A= (P, A1, 0, 0) (18)
In addition, the conservation of charge divdp/dt = 0 is ex- The potentials will be divided when there are two paths

pressed a8, j* = 0. Whered, = (1/cot, 1/0x, 1/dy, 1/87) = divided by the MZI interferometer. Here we consider the
(1/05°, 1/”3)(1’ 1/6%2, 176x3) and o stands for the Statethata photon expressed as x-polarized transversal waves

d’alembertiann = 8,0 = 62/c20t2 - A. passes through path 1 and unobservable potentialsAp(e),

The transformation between covariance and contravaf® divided into both path 1 and 2 with phasefefence be-
ance vector can be calculated by using the simplest form Byeen the two paths. In this state, the four-vector potentials in

Minkowski metric tenso,, as follows. MZI path 1AL, and path 2A2, can be expressed as follows.
1 .
1 0 0 O AL, = (EéQ/ZAo, A, 0, 0)
9. =g¥ = 0O -1 0 O 1
Hy h O 0 -1 o0 -i6/2
A2, = (z€ ,0,0,0 19
A = g A When the Fourier cdgcients of the four-vector potentials
H are replaced by operatorsAs= ¥.3_; a¥ (k) (k), the com-
A= g"A (10)  mutation relations are obtained as follows.
The following quadratic form of four-vectors is invariant un- [A,,(k), Ai(k')] = —g,,0(k—K) (20)

der a Lorentz transformation. ) )
The time-axis component (corresponds ity = 0 scalar

0 = (X2 = ()% - () (11)  wave, i. e., scalar potential becau$®(k) = 0 (u # 0)) has the

The above quadratic form applied a minus sign expresses 19%003“‘? sign of the space axes. Beca@&o(KA(k)I0) =
wave front equation and can be described by using metric tend(k — k') then

SOr. (A1) = ~(00) f dkif (k)12 (21)

—gu XX = =X'%, =X +Y +Z-ct" =0  (12) where|l) = [ dkf(KA(K)I0). Therefore the time-axis com-
This quadratic form which includes minus sign is also introPonent is the root cause of indefinite metric. In order to utilize

duced to inner product of arbitrarily vectors and commutatiof€ indefinite metric as followings, Coulomb gauge that re-
relations in Minkowski space. moves the scalar potentials should not be used.

The four-vector potential satisfied Maxwell equations with L€t define the operator at MZI path 1 and 24 andA2

vanishing the four-vector current can be expressed as follof2SPectively. The products of these operators must introduce
ing Fourier transform in terms of plane wave solutighs. ~ the same formalism.

3 . ' AA =g, ATA (22)
AX) = f dic > [V (eD (e ™ + a (e (9e ] oy
=0
(13) ATAL = -IAA+AlA
. dk Al'A2 = -1eAlA
k= —2k0(271)3 ko = |K| (14) A2IAL = —%e‘QAA;‘;AAo
fe = -iRA

where the unit vector of time-axis directiorand polarization
vectorSel(f)(k) are introduced ag? = 1, n® > 0 ande(® = n,  Finally we can obtain the operator at the MZI output
€M ande® are in the plane orthogonal koandn

{AL + A2)T(AL + A2)
D) - €D = 5. ' e
- el =0 A, =12 (19) = ArTAL+ ALTA2 + A2TAL+ A2TA2
e® is in the planeK, n) orthogonal tan and normalized Tasa  aex Llaia
= —5AA+ AA - SAAs coss (23)

eAK -n=0, [DK)]? = -1 (16)
i Noel_1
Then €© can be recognized as a polarization vector O,prpIymg the bra and ket vectots| and|1), I} o 3 — 3 cosf

i tained. Note that we identify the number operators as
lar wavese) and €@ of transversal waves and® of IS obte N alors
scalar wavess™ ande* of transversal waves antt™ of & <1|A(‘)A0|1> = (1JAjAq|1) = 1 because of the Lorentz invari-



ance. by using the output 1 (or Z phase diterence) statfl)s +[¢)

The tensor form (19) canfier clear image that the sub- and the electric field operatét = as at the output 1 (or 2).
stantial photon passes through one side path of the MZI andhere|1)s and|¢) represent the states of a photon passes
there are the unobservable potentials (scalar potentials) tirough path 1 and unobservable potentials (scalar potentials)
both paths. As the above calculation shows the unobservalplgsses through (exists in) path 2 respectively. Because noth-
potentials act as a homodyne local oscillator which retrievéag is observed in path 2, we should recognizg) =
phase information from a signal (photon) through interferenaglore precise definition is as follows. The operatais &s
between the signal and local oscillator. and state#l), |1)s can be translated by using the Hamiltonian

If we introduce following operators, we can calculate thegy asd; = ei'/?t/hase—i'f?t/h and|l)s = e—iﬂt/h|1> respectively.

interference based on Heisenberg picture without tensor formpeng,|1) can be expressed by using (24) as follows.
Although the following formalism is just a provisional treat-

ment, it is convenient for the calculations. Bll) = gHit/ng (2 b2 HUh _ ;ye i6/2¢5 —mt/h)m
5 1 oz 1 i0/2, g o2 L1 i
& = Eyé & - 5re = ¢ ye' - 5 "?D)s (28)
A 1 1 0. .
a = =) i0/25} _ Eyée/Za; (24) Here we define
— 1 ; 2 1 —i60/2
wherey? = —1 (ii. e.,y corresponds to the square root of 1) = (579'0/ —57e ! )|1>s (29)

the determmant of Minkowski metric tensgflg,,| = vg = ain i .
V=1 = y.) & andd, may correspond to quantized andA, Henceliaa|l) = ({lasasly). Wheno = 0,12) = 0, i. e.,

in (19) respectively. {1y = 0. In this picture, the expectation value can be ex-
Then by using these operators, the interfereride o«  Pressed as follows.
(1I(&] + &))(& + &)I1) can be calculated as follows. Ny« (s + 2N akas (s +10))
. loo Lo Lan 1 o = 1+ 1adaslo) + (Ud)s + (CDs
&d = —Caa--aa+-eaa+-eay
4 4 4 4 = 1—}+}c059—}+}c059 (30)
3 1”’3 N 1., oS0 B 2 2 2 2
- 2al 1754 In the above mathematical formula for the interference
A 1 io2at 021 by Schibdinger picture, there is no mathematical solution in
{2 = 57‘3' A — & usual Hilbert space. Therefore the unobservable potentials
scalar potentials), which can not be observed alone, must be
1 p
ala, = —ye 6/237 3, ye"’/2 a (25) regarded as a vector in indefinite metric Hilbert space as can
& 57€ P &2 fic .
, ) be seen from (29). Although the explicit expression such as
Finally the following interference is obtained. (29) has not been reported, the same kind of unobservable
<1|gj_al|1> - 1 vector has been introduced as "ghost” in quantum field the-
ory.32-3%) We also call|) "ghost” in this paper though this
<1|aZaz|1> = 1 + 1 cosd "ghost” has a dierent definition. The traditional "ghost” was
2 2 introduced mathematically as an auxiliary field for consis-
At A i 1 tent with relativistic covariance of the theory and had no ef-
T _ a2 i6/2
L&l = 2yeI Zye fect on physical phenomena. However, the above "ghost” is a
in 1 oo i0/2 physical field (corresponds to scalar potentials in (19)) which
Qaull) = 276 279' causes the interferences or is essential for the interferences

instead of the mathematical auxiliary field.
<1|alal|1> + <1|éééz|1> + <1|31T_a2|1> + (1|é£a1|1> From the equation (30), the unobservable potentials pass
through path 2 produce the single photon interference as if
- 1‘ + }cosa (26) the photon passes through the both paths in cooperation with

2 2 a photon field passes through path 1.
. ) p p
Note that when we use this provisional treatment instead of The photon number should be proportionale squared
the tensor form, the phasesisshifted. as can be seen in equation (3). However unobservable poten-
This provisional treatment will correspond to using the foltials C and¢ which express "ghost”, are not proportional to it.
lowing tensor form instead of (19). Therefore, the interferencefect will be drop ¢ when there
are a large number of photons. This will be the reason why
A _ A quantum &ects are hardly observed in macroscopic scale.
& = (OALOO) . S .
Note that the superposition principle may be used as a nice
8, = ( e"’/ZAO —IH/ZAO 0, 0, 0) (27) mathematical tool to simplify analyses in mixed states. How-

ever when we use the superposition principle in single pho-

The above calculat|on is based on Heisenberg picture. Wien case and fail to understand the mechanism of the single
can calculate the same interference based ord8etger pic- photon interference as described above, we may plunge into
ture. In Schddinger picture, the interference can be calculatedeniable engineering applications based on reduction of wave



Whereg; = (X|1){1|s) and¢, = (X|2){2|s), which are com-
Electron posed of probability amplitudes

/'/; >z detector Interference pattern (1r2]s): "(electron arrives at pinhole 1 ofe2ectron leaves
I3 ~13 s (electron sourcé) and
y (X|10r2): "(electron arrives at screeqelectron leaves pin-
. Pinhole 1 hole 1 or 2.
::E’Z B I When either pinhole 1 or 2 is closed, the each and total
Electron &> Pinhole 2 probabilities are calculated to B8 = |¢12, P, = |¢-|? and
source P = Py + P, # P1,. Therefore we must admit the electron

passes through both pinholes at the same time despite an elec-
tron can not be splitfd, which forces us to introduces a con-
cept of quantum-superposition states .
However we can examine the states of the localized elec-
Screen tron propagation and unobservable potentials instead of the
quantum-superposition state as mentioned above.
Fig. 2. Schematic view of a typical setup for the 2-slits (2-pinholes) single [N such a case, the electron wave functions should be ex-

electron interference experiment. pressed as follows.
o = wneen|id [oat-A ]
h s—Pinholel-scree!
packet. ;o q
v = woexplid [wdt-a-d|  (33)
h s—Pinhole2-scree!

4. Potentials and electron )
where,y; andy/, are the electron wave functions on the

. In this sectl_on, we f.'rSt consider tW.O pinholes electran WaVEereen passing through pinhole 1 and 2 with the unobservable
mterference_ln classical manner. Flgurg 2 shows_ SChemaﬂBtentials respectively,; andy, are the electron wave func-
V'eW.Of a typical setup f_or theé)—shts (2-pinholes) single eIecﬁons heading to pinhole 1 and 2 at the electron source without
tron mterferencg experimefi. . . the dfects of the unobservable potentialsandA include not

The propagating electron can be identified as an electrofy . 1he ynobservable potentials expressed as (5) but also the

beam whose space curren_t density i§ Nqy, whereN is the unobservable part of the potentials generated by localized po-
number of electron per unit voluma,is the electron charge tentials such as (3) and (31)

andyv is the electron velocity. When the radius of the electron Then the probability of finding the electron on the screen

bea"_“ 1SWo, the current can be expresseq as= ”ng' Ac- by using these wave functions can be described as follows,
cording to Biot-Savart Law, the propagation generates mag-

netic fields and potentials around the propagation path. Pio o W=+l
Assume that the electron propagates parallel to z-axis at a = P + ol

constant velocity. Then, the vector potentials around the prop-
agation path are expressed®¥’ —2Re(exp[i q SE (¢dt—A - dx)] d”i@ﬁz) (34)

A — A =0 h s—l-screep>2—s

« = =
’ | 1 where 1 and 2 of the integration path denote pinhole 1 and 2
A, = ——In= (31) respectively. This description is identical to Aharonov-Bohm
2neoC® T effect?”

wherer = /X2 + y2, & is the permittivity anct is the speed N case of single electron interference, we can find the
of light. electron at pinhole 1 without fail but not at pinhole 2, i.e.,

Therefore the vector potential clearly passes through nbl” =1 al;dllﬁzl2 = 0. Although the exact expression should
only the pinhole the electron passes through but also the dif | [#10d°dV = 1 or 0 instead of the probability densities,
posite pinhole. we continue analysis withy1)* = 1 andjy»|* = 0 for simplic-

Even if we apart from this easy consideration, the eledty. _ .
tron motion definitely generates potentials. Therefore, when When we introduce a phasefidirencet betweeny; and
we consider the electron motion, we must take the potentiakéz, P12 €xpresses the interference as follows,
~ In next section, we consider the two pinholes interference P12 o 1 — 2Re(expi [¢ + 6] ¥ y2) (35)
in quantum mechanical manner with consideration for the po-
tentials. whereg = % (¢dt — A - dx).

i s—loscreer>2—s .
5. Interference of single electron Note that wher is fixed, the interference can be observed

In a traditional quantum mechanical description, the 2-slit@" the screen as a function ¢fi.e., position on the screen.
(pinholes) single electron interference is typically explainet/N€né¢ is fixed, the interference can be observed on a fixed

by the probability (density) of finding the electron on theP0Sition of the screen as a functionéf - _
screersd) However, the wave functiog, as a probability density

) must satisfy incoherent expressions, &y, # 0 andjy,| =
P12 = |1 + ¢2l (32) o.



Then in order to clarify the exact representation, we intradirect product becomés) (|0) + [)) = |, 0y + |y, £) = [W)s +
duce the electron number states that means there are n |y, /). Becausey, ) = |¥,), then the direct product becomes
electrons and charge opera@r= fd3xjo(x) defined by a [¥) (|0) +|)) = [w1) + [w2) which is identical expression with

conserved curren, = (q.i), i.e, #j, = D +Vv-i =0 (38). L w1
The charge operator satisfi€§n) = nqn), which means the =~ Whenlyz) = (é?’e' 12— 3ye )l¢’>s, (36) and (37) can be
n electron state is the eigenstateQf? 38 obtained as follows.

Because the charge operator is defined by a conserved cur- Ay = (ol + Wal) Qs (ln) + 1¥2))

rent which satisfies the Maxwell equations aavill corre-
sponds to the expression of photon number operatoa’3,
we can regard) as combinations of indefinite metric opera-
tors similar to (24), i. e.,

Wl (1 + %7949/2 - %Yeie/z) Qs

1 . 1
A1+ 2y dt/2 _ =i
( + 276' 57 )

Q = a4
G = Lerg - Leing, = (Wl (6] + 6) (G + G) bwa) (40)
2 2 When we introduce the phase terms of (33) and (34).as
CI; = }ye—i«?/ZqI _ }yeimqi (36) 42 and¢ = ¢; — ¢, the interference (38) is calculated to be as
2 2 follows.

Then we can obtain the single electron interference as same
manner as (26) in Heisenberg picture, i. e., i i i -
(20) ap M = (el + e (yal) Qs (€10) + €%1u))

. 1 1
_ at o at\ (A oA _ . '
(D) = Wl(& + &) @+ B ) = Q{z +5 COSG} 37 = q+ WalQsl2) + A Walw) + Qe (Wolu)
where(l) is the expectation value of charge intensity. = q {} L1 COSH}
Similarly, the interference of Schdinger picture can be 2 2
calculated as follows. Qe (o) + GE Wl (41)
0= (al+ Wal) Qs (1) +12)) Then,¢ does not seem to be the origin of the single electron
= g+ Y2lQsl2) + aral2) + qlal) interference. Aharonov-Bohmffect will be observed when
1 1 there are substantial electrons in both pinholes. The single
= q {— + = cos@} (38) electron interference will originate from the unobservable po-
2 2 tentials in vacuuny, £y = |w») which can be defined similar
where the charge operatQs and statey;) of Schiddinger to (29).
picture are obtained fronQ = GG = €7ViQge V" The above discussion suggests that the state "no electron
and e—i7:(t/h|w> -~ s = |u1) respectively. Because PaSS€s through pinhole 2 with the unobservable potentials”
Qs = e“";’t/hqiqlei"f“/h _ e_i(}f{t/hQé(}:{t/h, we defineds = generates the phaseffdrence for the interference without

electron charges.

~iHth g, AHER _ata . . .
e, €7Y". ThenQs = gg0s and In the above expression fdy,), there is no mathemati-

1 1. cal solution in usual Hilbert space. Therefore the state of "no

Gy = €"qs (579'9/2 - 579_'0/2) ey electron passes through pinhole 2 with the unobservable po-
tentials” must also be regarded as a vector with zero probabil-

é”l:{t/hqs (}yeia/z _ }ye-m/z) W)s ity amplitude in indefinite metric Hilbert space as can be seen

2 2 from (38), (39) and we can express the quantum state of the

iFit/h A interference without quantum-superposition state.

e Gslv2) (39) Note that the calculation using the superposition state of

Therefore state di/1) and|y») can be recognized as follows. (34) is valid in case of mixed state whose probability is statis-
"an electron passes through pinhole 1 with the unobsertical sense. The superposition states are convenient for appli-

able potentials” afg/,) with Py = (y1|y1) = f|¢l|2dv =1 cation to interference phenomena, however the states do not
and reflect the right mechanism of nature, which means there are
"no electron passes through pinhole 2 with the unobserg@reat possibility the quantum application using wave packet

able potentials” afy,) with P, = (yaly) = f|¢2|2dv =0. reduction of single photon and electron interference will be

In the above treatment, we introduce the new charge opétravailable.
ator (36) to emphasize the same expression as (24). Howev6er,
when we use direct product of the electron stajeand the
vacuum photon state)+|¢) in Schibdinger picture, a straight- 6.1 uncertainty principle and the reduction of the wave

Discussion

forward approach can be made as follows. packet

Traditional direct product of the electron staté and the By the existence of the unobservable (scalar) potentials,
vacuum photon stat®) is expressed ag)l0) = |¢,0) = Heisenberg’s uncertainty principle can be explained indepen-
[¥)s = [yre). dently of measurements. In addition, the paradox of the re-

From the above discussion, the vacuum photon state showldction of the wave packet typified by "Sétinger's cat”
be replaced by0) + |} in Schidinger picture. Therefore the and "Einstein, Podolsky and Rosen (EPRY’can be solved,
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because the origins of both are quantum-superposition state. éq + é; = 1 (w§-ip) (46)
Former results insist the states of path 1 and 2 or pinhole 1 V2hw
and 2 by Schirdinger picture are defined when the system is Therefore Hamiltonian will be the same expression of the
prepared expressed as a substantial single photon or electimerference as follows.
and the unobservable (scalar) potentials respectively and each A ata  ata . ata  ata 1
state does not splitfbsuch as quantum-superposition state, H = hw (a1a1 tad+ajdy+ azal) + Shw (47)
which means there is no reduction of the wave packet.
"When the system is prepared” corresponds to immediately
after the branching point of the optical MZI or the pinholes. AIHL) = —hw(llélalllﬂ hw<1|3131|1> COSH+1'hw (48)
Which path or pinhole does the photon or electron select is 2
unpredictable but after the selection, the state is fixed insteB&cause a single photon can be observed wheaN7, (N :
of quantum-superposition state. The concept of these stategien numbers), then
identical with mixed states rather than pure states formed by
guantum-superposition, which suggests there is no concept of (1H|1)
guantum-superposition state.
As for Heisenberg’s uncertainty principle, we can clearly
recognize it as tradefis derived from Fourier transform non-
related to measurement, which correspond to the canoniqaierefore<1|é}al|1> = % which leads to the replacement of
commutation relation. expectation value of photon numbers as follows

Then the energy of single photon state also fluctuates.

1 1 1
ém)<1|éq;311|1> + ém)<1|éq‘€11|1> + Sho

(1jafa1yhw + %h(u = hw (49)

1 + 1 + 3
6.2 zero-point energy (018}84/0) = ~5 (Lalal) = > (218]84]2) = > (50)
The electric field operators obtained from traditional quan-
tization procedure for quantum optics with Coulomb gaugéraditionally,(0ja}2|0) has been con5|dered to be 0. However

have relationships with harmonic oscillator as follows. we should recogn|z®|a1a1|0) = —5 which requires indefi-
A 1 nite metric.
a = Then absolute value of the single photon interference
V2ho moves depending on the selection (ﬂéiéﬂO). However
at = 1 (WA —ip) (42) (N o 5 £ 3 1 cosd is maintained. _ _
V2hw By using the expectation value, zero-point energy is calcu-

whered and § are position and momentum operators obey@t€d to be
ing the commutation relatiom[p] = iz. Hamiltonian of har- (O[H10)
monic oscillator is expressed as follows.

1. in 1. in 1
Ehw(OlalaﬂO) + E;-zw<0|aQa1|o> cosd + i

YRR JOC I - Liw- hwcoss 51
(sz(p+wq) (43) 4w 4wco (51)
Then following relations are obtained. The zero-point energy also fluctuates, which can also explain
1 spontaneous symmetry breaking. Note thabiE"ya,,
aa = — (p?+ w6 +iwdp—iwpd
Ata AP A 1(~ 1
7o ) '8, = —al 1:——(7{— —hw) (52)
1 N 1 ha) 2
T o (7{ E ) Hence the isolate indefinite metric potentials may possess
negative energie®¥) Howeverd, # y&; as can be seen from
A = (7{ + hw) (44) (24) and can not be isolated but combined instead such as
how 2 (46), the negative energies can only appear through the in-

From (44) and0ja"3|0) = 0, traditional zero-point energy terference with the localized potentials. Therefore (51) can

has been recognized &374|0) = tho, i e., eliminate infinite zero-point energy due to the sum of infinite
degree of freedom.
(0a'a0) = i<0| o }ha) 0y The zero-point energy has been measured through Casimir
w effect39-43)

1 R 1 The above new insight explains there are energy fluctuation

= (<0I7{|0> - Ehw) =0 (45) in vacuum due to the phasefidirence. The attractive force
from this kind of fluctuation is identical with the basic concept

This traditional fixed zero-point energy originates from thef VVan der Waals force which will be the origin of Casimir

definition of the electric field operators in (42) without theeffect*4

unobservable (scalar) potentials. However we have obtainedTherefore the above calculation will not be inconsistent

the idea that there are unobservable potentials in whole spaggth Casimir dfect.

Then we should replace (42) with followings by using the op-

erators in (24). 6.3 spontaneous symmetry breaking
A 4 1 IR Traditional treatment of the spontaneous symmetry break-
a +a NG (w8 +ip) ing, which explores the possibility @|0) # 0 or generally

|0y is not an eigenstate @”, needs an intricate discussion



using Goldstone boson or Higgs bosBr®Where|0) is vac-  removed. In addition, it can explain the uncertainty princi-
uum state. ple independently of measurements, eliminate infinite zero-
However, the unobservable potentials eternally populafmint energy and cause spontaneous symmetry breaking with-
the whole of space as mentioned above and there are oat complexity.
electron at pinhole 2. Therefore the state of pinhol@s2), We should consistently introduce indefinite metric because
can be identified as vacuum instead|@f. From the rela- Maxwell equations are wave equations in Minkowski space.
tion (yolp) = 0 as described above, |if,) is an eigenstate When we introduce state vectors in Minkowski space, indefi-
of Q, i.e., Qz) = aly2), then(y2|Qly2) = alyly2) = 0, nite metric vectors are absolutely required. The required vec-
wherea is an eigenvalue. However from the discussion undeor should be recognized not only as an auxiliary field but also
(38), (y2|Qly2) fluctuates betweeng and 0 depending on the as a real physical field just like a homodyne local oscillator
phase diterence. Hence the vacuumy) is not an eigenstate which is the root cause of single photon and electron interfer-
of Q, which expresses the spontaneous symmetry breaking.é¢nces.
addition to this discussion, the above zero-point energy, i.e., The results insist the vacuum space is filled with the un-
vacuum is not an eigenstate #f, also expresses the sponta-observable potentials which can eternally exist as waves and
neous symmetry breaking. correspond to scalar potentials. This mechanism can be spon-
The above discussion that the new vacuum is filled wittaneously obtained by using tesor form.
potentials whose state exists under original ground state isThis idea provides exactly the same calculation and ex-
identical with the spontaneous symmetry breaking using thgerimental results by using quantum-superposition state be-
analogy of superconductivity when we repla@eor H with  cause the phaseftirence between the photon or electron and
energy level reported by Y. Nambu and G. Jona-Lasihity) the unobservable potentials provide the interferences as if the
When the phase flerence is fixed, the one vacuum is selectedquantum-superposition state exists. In addition, the concept is
and the selection breaks symmetry of vacuum. based on an analogy from the expression of substantial local-
In addition, the spontaneous symmetry breaking by the uree electromagnetic fields or an electron and the unobservable
observable (scalar) potentials (gauge fields) leads to mass acalar potentials instead of curious quantum-superposition
quire of gauge fields (Higgs mechanisff). state that forces us to imagine a photon or an electron passes
Therefore the above discussion will not be inconsisterthrough the both paths or pinholes despite a photon or an elec-
with traditional treatment of spontaneous symmetry breakingon can not be splitfd.

and the mass acquire mechanism. Furthermore, this idea will not be inconsistent with tra-
ditional treatment of CasimirfBect, spontaneous symmetry
6.4 general treatment of single particle interferences breaking, the mass acquire mechanism and can be applied to
From (30) and (38), the single particle interferences can @n-Abelian gauge fields.
expressed as following manner. The superposition states are valid in case of mixed states
whose probabilities are statistical sense. However, quantum-
0= (l+DF o) +10) superposition state is not valid in case of pure state whose

f+ (ZIFICY + TR0y + T{1p) (53) probability is fundamental sense, though the superposition
. principle may be used as a nice mathematical tool to sim-
Then when({[FIZ) + TgI0) + T((1¢) = _%f +%f cosd, single plify analyses. Therefore, there is no concept of quantum-
particle interferences df, i.e.,(l) = f {% + %0059} can be  gyperposition state in nature, and Quantum theory is a kind
generated. Wherk is an arbitrary observable operator of theyf statistical physics.
particle,|¢) is an eigenstate df, f is the eigenvalue df un-  The incompleteness of "Quantum theory”, which has been
der state¢) and|{) is an indefinite metric vector expressinggjerted by A. Einstein, will originates from lack of introduc-
unobservable potentials. In case of Maxwell equations as dggn of indefinite metric. Quantum theory with introduction of
scribed in this papei() is identified as commutative gaugejndefinite metric will be complete. Quantum theory should be
fields (Abelian gauge fields). When we study multicompore-formulated by using tensor form.
nent statép), |£) will be identified as non-commutative gauge M. Arndt and K. Hornberger have reviewed some testing
fields (non-Abelian gauge field$}->?) However the above of quantum mechanical superpositidiswe hope the results
general treatment can be applied in both cases. will be tested by those technologies.

WhenF is a number operatar of the particle andg) is
single particle stat@) = |1) in (53), the existence probability Acknowledgment
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