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Here we analyze the single photon and electron interference experiments by using an optical
Mach-Zehnder and a 2-slits (2-pinholes) electron interferometer. According to Maxwell equations,
the electromagnetic fields of the interference using the Mach-Zehnder Interferometers can be de-
scribed by a localized optical wave in one path and non-localized vector and scalar potentials in
the other path. In a quantum mechanical description of the interference, quantum-superposition
state has been introduced. However, the single photon interference can also be calculated under
the assumption that the states are expressed as the localized optical beam (a photon) and the non-
localized potentials. Similarly, Maxwell equations can be divided into a localized electron beam and
the non-localized potentials in case of the 2-slits (2-pinholes) single electron interferometer. From
the analysis results, the non-localized potentials can be identified as an indefinite metric vector with
zero probability amplitude and correspond to gauge fields introduced by gauge transformation of the
second kind. The results show we can express quantum states without quantum-superposition state,
which leads to an improved understanding of the uncertainty principle and resolution of paradox
of reduction of the wave packet. The concept provides not only exactly the same calculation and
experimental results using quantum-superposition state, but also can eliminate zero-point energy
and cause spontaneous symmetry breaking without complexity. The results insist that Quantum
theory is a kind of statistical physics.

INTRODUCTION

Basic concept of the quantum theory is the quantum-
superposition states. Arbitrary states of a system can be
described by pure states which are superposition of eigen-
states of the system. Calculation results by the concept
agree well with experiment. Without the concept, single
photon or electron interference could not be explained.
In addition to the interference, entangle states also could
not be explained.
However the concept leads to the paradox of the reduc-

tion of the wave packet typified by ”Schrödinger’s cat”
and ”Einstein, Podolsky and Rosen (EPR)”. [1, 2]
Although there were a lot of arguments about the para-

doxes, recent paper related to the quantum interferences
convince us of the validity of the concept. For exam-
ple, the atom interference by using Bose-Einstein con-
densates (BECs) has been reported experimentally and
theoretically. [3, 4] The coherence length of an electron
or electron-electron interference by using the Aharonov-
Bohm oscillations in an electronic MZI has been dis-
cussed theoretically. [5, 6] A plasmonic modulator utiliz-
ing an interference of coherent electron waves through the
Aharonov-Bohm effect has been studied by the author.
[7] The entangle states have been widely discussed exper-
imentally and theoretically. [8–13] The photon interfer-
ence by using nested MZIs and vibrate mirrors has been
measured and analyzed. [14, 15] The double-slit elec-
tron diffraction has been experimentally demonstrated.
[16] However, BECs, condensate and bosonization sys-
tems correspond to mixed states with or without coher-
ence rather than pure states, and no paper can solve the
paradoxes.
In this paper, we offer a new insight of the single pho-

ton and electron interference that can solve the para-
doxes. According to the new insight, there is no concept
of quantum-superposition and pure states whose proba-
bilities are fundamental sense in nature. Only the con-
cept of mixed states whose probabilities are statistical
sense is valid in nature. The new insight gives us novel
and important results, i,e., improved understanding of
the uncertainty principle non-related to measurements,
elimination of zero-point energy without artificial sub-
traction, derivation of spontaneous symmetry breaking
without complexity and knowledge that Quantum the-
ory is a kind of statistical physics.

In addition, new insight can conclude that the concept
of entangle state is also not valid in nature though there
have been reported the validity of the concept of entangle
states. [8–13] We will discuss the entangle state by using
the new insight in other letter. [17]

In section and , we show easy example of Gaussian
photon beam or electron flow to explain that single pho-
ton or electron can be described by substantial (localized)
photon or electron and non-localized potentials. In addi-
tion, more general description by using gauge invariance
is offered. In section and , we show the calculation of
the interferences by using states represent the substan-
tial photon or electron and the non-localized potentials,
which does not require quantum-superposition states. In
section , we discuss the paradoxes related to quantum-
superposition states, zero-point energy and spontaneous
symmetry breaking. In section , we summarize the find-
ings of this work.

The discussions in this paper are very simple to the
same level as an introductory of quantum theory, because
the quantum theory has a misunderstanding in such a
fundamental concept and nature of nature will be simple.
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FIG. 1. Schematic view of MZI. BS:Beam Splitter.

CLASSICAL ELECTROMAGNETIC FIELD OF
MZI - POTENTIALS AND PHOTON

Figure 1 shows schematic view of the Mach-Zehnder
Interferometer (MZI) and coordinate system.

First we examine the input beam. Assume that an x-
polarized optical beam propagates in z-direction with an-
gular frequency ω and propagation constant β, the elec-
tric field E of the optical beam is well localized in the free
space, e.g., the cross section profile of the electric field is
expressed as Gaussian distribution.

Then, the electric field of the optical beam in the input
can be expressed as follows.

E = ex · CE · exp
(
−x

2 + y2

w2
0

)
· cos (ωt− βz) (1)

Where, ex is unit vector parallel to the x-axis. CE is
an arbitrary constant of which squared is proportional to
the field intensity. w0 is the radius of the optical beam.
E and B are expressed by vector and scalar potentials as
follows.

E = − ∂

∂t
A−∇ϕ

B = ∇×A (2)

From (1) and (2), A is expressed by introducing a vector
function C as follows.

A = − 1

ω
ex · CE · exp

(
−x

2 + y2

w2
0

)
· sin (ωt− βz) +C

∂

∂t
C = −∇ϕ (3)

By taking C as an irrotational vector function ∇×C = 0
in order for B to localize in the space, for example, C and
ϕ can be expressed by introducing an arbitrary scalar
function λ as C = ∇λ and ∇

(
∂
∂tλ+ ϕ

)
= 0 respectively.

Then B is expressed as follows

B = ∇×A

=
β

ω
ey · CE · exp

(
−x

2 + y2

w2
0

)
· cos (ωt− βz)

− 2y

ω ·w2
0

ez ·CE ·exp
(
−x

2 + y2

w2
0

)
·sin (ωt− βz) (4)

Therefore, E andB are localized in the free space in the
input. In contrast, the vector and scaler potentials, which
can not be observed alone, are not necessarily localized.
The above localized form (1) is one example, other forms
can be employed as will be described in the next section.

Note that, the Gaussian beam radius will be spatially
expanded due to the free space propagation. However,
the radius of the propagated beam w (z) will be ap-
proximately 10.5mm when the beam with the initial ra-
dius w0 = 10mm propagates z = 100m in free space.

This value can be calculated by w (z) = w0

√
1 +

(
λz
πw2

0

)2

when the wavelength λ = 1µm is applied. Then the spa-
tially expansion of the beam will be negligible small when
the paths of the MZI are less than several tens meters.

POTENTIALS AND ELECTRON

Figure 2 shows schematic view of a typical setup for
the 2-slits (2-pinholes) single electron interference exper-
iment. [16, 18]

An electron is launched from the electron source and
propagates in right direction. According to the tra-
ditional explanation, the propagating electron passes
through the both pinholes. However, we can obtain the
interference pattern even if the electron passes through
one of the two pinholes as described below.

The propagating electron can be identified as an elec-
tron beam whose space current density is j = Nqv, where
N is the number of electron per unit volume, q is the
electron charge and v is the electron velocity. When the
radius of the electron beam is w0, the current I can be
expressed as I = πw2

0j. According to Biot-Savart Law,
the propagation generates magnetic fields and potentials
around the propagation path.

Assume that the electron propagates parallel to z-axis
at a constant velocity. Then, the vector potentials around
the propagation path are expressed as [18, 19]

Ax = Ay = 0

Az =
I

2πε0c2
ln

1

r
(5)

where r =
√
x2 + y2, ε0 is the permittivity and c is the

speed of light.
Therefore the vector potential clearly passes through

not only the pinhole the electron passes through but also
the opposite pinhole.
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FIG. 2. Schematic view of a typical setup for the 2-slits (2-
pinholes) single electron interference experiment.

However, we examine the following Maxwell equations
to clarify the discussion.

(
∆− 1

c2
∂2

∂t2

)
A−∇

(
∇ ·A+

1

c2
∂ϕ

∂t

)
= −µ0i(

∆− 1

c2
∂2

∂t2

)
ϕ+

∂

∂t

(
∇ ·A+

1

c2
∂ϕ

∂t

)
= − ρ

ε0
(6)

where µ0 is the permeability and ρ is the electric charge
density.
Here, we divide the potentials A, ϕ into localized Al,

ϕl and non-localized Anl, ϕnl. Then the equations (6)
can be divided into following equations(

∆− 1

c2
∂2

∂t2

)
Al −∇

(
∇ ·Al +

1

c2
∂ϕl
∂t

)
= −µ0i(

∆− 1

c2
∂2

∂t2

)
ϕl +

∂

∂t

(
∇ ·Al +

1

c2
∂ϕl
∂t

)
= − ρ

ε0
(7)

and(
∆− 1

c2
∂2

∂t2

)
Anl −∇

(
∇ ·Anl +

1

c2
∂ϕnl
∂t

)
= 0(

∆− 1

c2
∂2

∂t2

)
ϕnl +

∂

∂t

(
∇ ·Anl +

1

c2
∂ϕnl
∂t

)
= 0 (8)

If the electron beam can be expressed by localized
waveform, just as an example, Gaussian with angular
frequency ω and propagation constant β

i ∝ ez · q · Cq · exp
(
−x

2 + y2

w2
0

)
· cos (ωt− βz) (9)

where ez is unit vector parallel to the z-axis. Cq is ar-
bitrary constant which is proportional to the number of
electrons, then the localized potential can be expressed
as a function which produces (9).

This functional form is determined by i. Note that (9)
is just one example. Arbitrary forms which satisfy (7) can
be employed for Al, ϕl and i. When i = 0 and ρ = 0, the
equations (7) can express the localized electromagnetic
fields in free space as described in the previous section.

In contrast, the equations (8) are independent of (7).
Therefore the non-localized potentials can eternally pop-
ulate the whole of space as waves defined by Maxwell
equations, which propagate at the speed of light.

(8) expresses the gauge invariance of the localized elec-
tro magnetic field or electron flows and the non-localized
potentials are well-known gauge field introduced by gauge
transformation of the second kind.

INTERFERENCE OF SINGLE PHOTON

In a quantum mechanical description, the photon in-
terference is calculated by introducing the electric field
operator Ê = 1√

2
â1 exp (iθ)+

1√
2
â2 and the number state

|n⟩ as follows. [20] Where â1or2 is the electric field oper-
ator in path 1 or 2 respectively, θ is the phase difference.

⟨Î⟩ ∝ 1

2
⟨n|â†1â1|n⟩+

1

2
⟨n|â†2â2|n⟩+cos θ⟨n|â†1â2|n⟩ (10)

Where ⟨Î⟩ is expectation value of the field intensity which

is proportional to photon number. â1or2 and â†1or2 are

defined as â = â1+â2√
2

and â† =
â†
1+â†

2√
2

by using the electric

field operators â and â† at the input with ⟨n|â†1â1|n⟩ =
⟨n|â†2â2|n⟩ = ⟨n|â†1â2|n⟩ = 1

2n. When photon number is
one ( n = 1 ), i.e., single photon, the above expectation
value is calculated to be ⟨Î⟩ ∝ 1

4+
1
4+

1
2 cos θ =

1
2+

1
2 cos θ.

In this traditional treatment, the electric field operators
are obtained from quantization of (6) by using Coulomb
gauge under assumption of i = 0 and ρ = 0.

However we can make a different description by us-
ing the concept of the above non-localized potentials as
follows.

Photon number will be proportional to CE squared
in equation (3). In contrast, the non-localized poten-
tials C and ϕ or (8) are not necessarily proportional to
photon number. When there are a large number of pho-
tons, it is reasonable to suppose that half of photons pass
through path 1 and the rest pass through path 2 by law
of large numbers because the probability of ”which path
does each photon select” should be 1

2 . This concept corre-
sponds to mixed state instead of quantum-superposition
state whose probabilities are statistical and fundamental
sense respectively.

However when there are only a few photons, which
correspond to the localized vector potential expressed as
first term of equation (3) is comparable with the non-
localized potentials expressed as the rest terms or (8),
we should consider greater probability that the localized
vector potential which represent a photon selects and
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passes through path 1 and the non-localized potentials
pass through path 2. This description can also be ap-
plied to (7) and (8).
According to this description, the operator Ê =

â1 exp (iθ)+â2 with ⟨1|â†1â1|1⟩ = 1 and ⟨1|â†2â2|1⟩ ̸= 1 in-

stead of Ê = 1√
2
â1 exp (iθ) +

1√
2
â2 should be introduced

because the photon passes through only path 1. Note
that â1 is the electric field operator in path 1 obtained
from the traditional quantization as mentioned above us-
ing (7) instead of (6). In contrast, â2 is a purely-formal
operator in path 2 obtained from the traditional quanti-
zation using (8) instead of (6), which is not the electric
field operator but provides some quantity related to the
non-localized potentials in path 2.
Therefore the expectation value of output 1 (π2 phase

difference will correspond to output 2) can be expressed
as follows.

⟨Î⟩ ∝ ⟨1|â†1â1|1⟩+ ⟨1|â†2â2|1⟩
+eiθ⟨1|â†1â2|1⟩+ e−iθ⟨1|â†2â1|1⟩

= 1 + ⟨1|â†2â2|1⟩
+eiθ⟨1|â†1â2|1⟩+ e−iθ⟨1|â†2â1|1⟩ (11)

If ⟨1|â†2â2|1⟩ = − 1
2 and ⟨1|â†1â2|1⟩ = ⟨1|â†2â1|1⟩∗ =

±1
4e

iϕ, the same interference ⟨Î⟩ ∝ 1
2 ± 1

2 cos (θ + ϕ) can
be observed. Where ∗ means complex conjugate.
The above calculation is based on Heisenberg pic-

ture. We can calculate the same interference based on
Schrödinger picture. In Schrödinger picture, the inter-
ference can be calculated by using the output 1 (or 2: π

2
phase difference) state |1⟩+|ζ⟩ and the electric field oper-
ator Ê = â at the output 1 (or 2). Because the operator
is fixed in Schrödinger picture, the operator is obtained
from the traditional quantization using (6). Where |1⟩
and |ζ⟩ represent the states of a photon passes through
path 1 and non-localized potentials passes through path
2 respectively. Because nothing is observed in path 2, we
should recognize ⟨ζ|ζ⟩ = 0.
In this picture, the expectation value can be expressed

as follows.

⟨Î⟩ ∝
(
eiθ⟨1|+ ⟨ζ|

)
â†â

(
e−iθ|1⟩+ |ζ⟩

)
= 1 + ⟨ζ|â†â|ζ⟩+ eiθ⟨1|ζ⟩+ e−iθ⟨ζ|1⟩ (12)

Where â†â|1⟩ = |1⟩ and ⟨1|â†â = ⟨1| are used.
If ⟨ζ|â†â|ζ⟩ = −1

2 and ⟨1|ζ⟩ = ⟨ζ|1⟩∗ = ±1
4e

iϕ, the

same interference ⟨Î⟩ ∝ 1
2±

1
2 cos (θ + ϕ) can be observed.

From this expression, we can recognize that |ζ⟩ has the
phase difference for the interference without substantial
photons.
Note that ϕ is determined by the phase difference of the

MZI paths. When there is no phase difference between
the MZI paths, ϕ is determined from the normalization
of probability, i.e., (⟨1|+ ⟨ζ|) (|1⟩+ |ζ⟩) = ⟨1|1⟩+ ⟨1|ζ⟩+
⟨ζ|1⟩+ ⟨ζ|ζ⟩ = 1+ ⟨1|ζ⟩+ ⟨ζ|1⟩+ ⟨ζ|ζ⟩ = 1, and ⟨ζ|ζ⟩ = 0

then ⟨1|ζ⟩ = −⟨ζ|1⟩. Therefore ϕ = π
2 + Nπ. Where N

is integer.
In the above mathematical formula for the interference

by Schrödinger picture, there is no mathematical solu-
tion in usual Hilbert space. Therefore the non-localized
potentials, which can not be observed alone, must be re-
garded as a vector in indefinite metric Hilbert space. The
same kind of unobservable vector has been introduced as
”ghost” in quantum field theory. [21–24] We also call |ζ⟩
”ghost” in this report though this ”ghost” has a differ-
ent definition. The traditional ”ghost” was introduced
mathematically as an auxiliary field for consistent with
relativistic covariance of the theory and had no effect
on physical phenomena. However, the above ”ghost” is
a physical field which causes the interferences or is es-
sential for the interferences instead of the mathematical
auxiliary field.

From the equation (11) and (12), the non-localized po-
tentials pass through path 2 produce the single photon in-
terference as if the photon passes through the both paths
in cooperation with a photon field passes through path
1.

The photon number should be proportional to CE

squared as can be seen in equation (3). However non-
localized potentials C and ϕ or (8), which express
”ghost”, are not proportional to it as mentioned above.
Therefore, the interference effect will be drop off when
there are a large number of photons. This will be the rea-
son why quantum effects are hardly observed in macro-
scopic scale.

In a classical description, we can express the electric
field of the interference formed by one side MZI path, i.e.,
Eout =

1
2E1 +

1
2E2, as follows by using the potentials

Eout = − ∂

∂t
Al −∇ϕl −

∂

∂t
Anl −∇ϕnl

= E1 −
∂

∂t
Anl −∇ϕnl (13)

If the non-localized potentials configure the following
electric field, the interference by one side MZI path can
be produced in cooperation with a photon field passes
through path 1.

− ∂

∂t
Anl −∇ϕnl =

1

2
E2 −

1

2
E1 (14)

where subscripts 1 and 2 stand for the MZI path 1 and
2 respectively.

INTERFERENCE OF SINGLE ELECTRON

In a quantum mechanical description, the 2-slits (pin-
holes) single electron interference is typically explained
by the probability of finding the electron on the screen.
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[18]

P12 = |ϕ1 + ϕ2|2 (15)

Where ϕ1 = ⟨x|1⟩⟨1|s⟩ and ϕ2 = ⟨x|2⟩⟨2|s⟩, which are
composed of probability amplitudes
⟨1or2|s⟩: ”⟨electron arrives at pinhole 1 or 2|electron

leaves s (electron source)⟩” and
⟨x|1or2⟩: ”⟨electron arrives at screen x|electron leaves

pinhole 1 or 2⟩”.
When either pinhole 1 or 2 is closed, the each and total

probabilities are calculated to be P1 = |ϕ1|2, P2 = |ϕ2|2
and P = P1 + P2 ̸= P12. Therefore we must admit the
electron passes through both pinholes at the same time
despite an electron can not be split off, which forces us
to introduces a concept of quantum-superposition states
.
However we can examine the states of the localized

electron propagation and non-localized potentials instead
of the quantum-superposition state as mentioned above.
In such a case, the electron wave functions should be

expressed as follows.

ψ′
1 = ψ1 · exp

[
i
q

h̄

∫
s→Pinhole1→screen

(ϕnldt−Anl · dx)
]

ψ′
2 = ψ2 · exp

[
i
q

h̄

∫
s→Pinhole2→screen

(ϕnldt−Anl · dx)
]

(16)

where, ψ′
1 and ψ′

2 are the electron wave functions on
the screen passing through pinhole 1 and 2 with the non-
localized potentials respectively. ψ1 and ψ2 are the elec-
tron wave functions heading to pinhole 1 and 2 at the
electron source without the effects of the non-localized
potentials. ϕnl andAnl include not only the non-localized
potentials expressed as (8) but also the non-localized part
of the potentials generated by localized potentials such
as (3) and (5).
Then the probability of finding the electron on the

screen by using these wave functions can be described
as follows,

P12 ∝ |ψ′|2 = |ψ′
1 + ψ′

2|2

= |ψ1|2 + |ψ2|2

−2Re

(
exp

[
i
q

h̄

∮
s→1→screen→2→s

(ϕnldt−Anl · dx)
]
ψ∗
1ψ2

)
(17)

where 1 and 2 of the integration path denote pinhole 1
and 2 respectively. In case of single electron interference,
we can find the electron at pinhole 1 without fail but not
at pinhole 2, i.e., |ψ1|2 = 1 and |ψ2|2 = 0. Although∫
|ψ1or2|2dV = 1 or 0 should be exact expression, we

continue analysis with |ψ1|2 = 1 and |ψ2|2 = 0 for sim-
plification.
When we introduce a phase difference θ between ψ1

and ψ2, P12 expresses the interference as follows,

P12 ∝ 1− 2Re (exp i [γ + θ]ψ∗
1ψ2) (18)

where γ =
q

h̄

∮
s→1→screen→2→s

(ϕnldt−Anl · dx).

Note that when θ is fixed, the interference can be ob-
served on the screen as a function of γ, i.e., position on
the screen. When γ is fixed, the interference can be ob-
served on a fixed position of the screen as a function of
θ.

However, the wave function ψ2 must satisfy ψ∗
1ψ2 ̸= 0

and |ψ2|2 = 0.

Then we introduce the states ”an electron passes
through pinhole 1 with the non-localized potentials” as
eiγ1 |ψ1⟩ with P1 = ⟨ψ1|ψ1⟩ = 1 and ”no electron passes
through pinhole 2 with the non-localized potentials” as
eiγ2 |ψ2⟩ with P2 = ⟨ψ2|ψ2⟩ = 0. In these states, γ1, γ2
and γ = γ1 − γ2 correspond to the phase terms of (16)
and (17).

After the example of single photon interference as de-
scribed above, [20] we introduce the charge operator Q ≡∫
d3xj0(x) defined by a conserved current jµ = (q, i), i.e.,

∂µjµ = ∂q
∂t + ∇ · i = 0. The charge operator satisfies

Q|ψ1⟩ = q|ψ1⟩, which means the electron state incoming
from pinhole 1 is the eigenstate of Q. [25, 26]

The interference can be calculated using the charge
operator as follows.

⟨I⟩ =(
ei(θ−γ1)⟨ψ1|+ e−iγ2⟨ψ2|

)
Q

(
e−i(θ−γ1)|ψ1⟩+ eiγ2 |ψ2⟩

)
= q + ⟨ψ2|Q|ψ2⟩

+qei(θ−γ)⟨ψ1|ψ2⟩+ qe−i(θ−γ)⟨ψ2|ψ1⟩ (19)

where ⟨I⟩ is the expectation value of charge inten-
sity. If ⟨ψ2|Q|ψ2⟩ = −1

2q and ⟨ψ1|ψ2⟩ = ⟨ψ2|ψ1⟩∗ =
± 1

4e
iδ, then the single electron interference ⟨I⟩ =

q
{

1
2 + 1

2 cos (θ − γ + δ)
}
can be obtained.

The above discussion suggests that the non-localized
potentials produce phase shift of the electron wave func-
tions or electron states and will correspond to gauge fields
introduced by gauge transformation of the second kind
as can be seen from (16). Hence, we can recognize the
state ”no electron passes through pinhole 2 with the non-
localized potentials” has the phase difference for the in-
terference without electron charges.

In the above expression for |ψ2⟩, there is no mathe-
matical solution in usual Hilbert space. Therefore the
state of ”no electron passes through pinhole 2 with the
non-localized potentials” must also be regarded as a vec-
tor with zero probability amplitude in indefinite metric
Hilbert space and we can express the quantum state of
the interference without quantum-superposition state.

Note that the calculation using the superposition state
of (17) is valid in case of mixed state whose probability
is statistical sense.



6

DISCUSSION

uncertainty principle and the reduction of the wave
packet

By the existence of the non-localized potentials,
Heisenberg’s uncertainty principle can be explained in-
dependently of measurements. In addition, the para-
dox of the reduction of the wave packet typified by
”Schrödinger’s cat” and ”Einstein, Podolsky and Rosen
(EPR)” [1, 2] can be solved, because the origins of both
are quantum-superposition state.

Former results insist the states of path 1 and 2 or pin-
hole 1 and 2 by Schrödinger picture are defined when the
system is prepared expressed as a substantial single pho-
ton or electron and the non-localized potentials respec-
tively and each state does not split off such as quantum-
superposition state, which means there is no reduction of
the wave packet.

”When the system is prepared” corresponds to imme-
diately after the branching point of the optical MZI or
the pinholes. Which path or pinhole does the photon
or electron select is unpredictable but after the selec-
tion, the state is fixed instead of quantum-superposition
state. The concept of these states is identical with
mixed states rather than pure states formed by quantum-
superposition, which suggests there is no concept of
quantum-superposition state.

As for Heisenberg’s uncertainty principle, we should
recognize it as trade-offs derived from Fourier transform
non-related to measurement, which correspond to the
canonical commutation relation.

zero-point energy

If we calculate the equation (12) under vacuum instead
of single photon, ⟨ζ|â†â|ζ⟩ = − 1

2 can eliminate zero-point
energy as follows.

(⟨0|+ ⟨ζ|)
(
â†â+

1

2

)
(|0⟩+ |ζ⟩)

=
1

2
+

1

2
(⟨0|ζ⟩+ ⟨ζ|0⟩+ ⟨ζ|ζ⟩)

+⟨0|â†â|ζ⟩+ ⟨ζ|â†â|0⟩+ ⟨ζ|â†â|ζ⟩

=
1

2
+ ⟨ζ|â†â|ζ⟩ = 1

2
− 1

2
= 0 (20)

where â|0⟩ =
(
⟨0|â†

)†
= 0 and normalization of prob-

ability, i.e.,

(⟨0|+ ⟨ζ|) (|0⟩+ |ζ⟩) = ⟨0|0⟩+ ⟨0|ζ⟩+ ⟨ζ|0⟩+ ⟨ζ|ζ⟩
= 1 + ⟨0|ζ⟩+ ⟨ζ|0⟩+ ⟨ζ|ζ⟩ = 1

then ⟨0|ζ⟩+ ⟨ζ|0⟩+ ⟨ζ|ζ⟩ = 0, are used.

spontaneous symmetry breaking

Traditional treatment of the spontaneous symmetry
breaking, which explores the possibility of Q|0⟩ ̸= 0 or
generally ”|0⟩ is not an eigenstate of Q”, introduces an
artificial intricate boson field such as Goldstone boson or
Higgs boson. [26] Where |0⟩ is vacuum state.

However, the non-localized potentials eternally popu-
late the whole of space as mentioned above and there
are no electron at pinhole 2. Therefore the state of pin-
hole 2, eiγ2 |ψ2⟩, can be identified as vacuum instead of
|0⟩. From the relation ⟨ψ2|ψ2⟩ = 0 as described above, if
eiγ2 |ψ2⟩ is an eigenstate of Q, i.e., Qeiγ2 |ψ2⟩ = αeiγ2 |ψ2⟩,
then ⟨ψ2|e−iγ2Qeiγ2 |ψ2⟩ = α⟨ψ2|ψ2⟩ = 0 ̸= −1

2q, where
α is an eigenvalue. Hence the vacuum eiγ2 |ψ2⟩ is not an
eigenstate of Q, which expresses the spontaneous sym-
metry breaking.

The traditional intricate bosons may correspond to the
non-localized potentials.

SUMMARY

There are some unresolved paradoxes in quantum the-
ory.

If we take advantage of the indefinite metric vectors as
described in this report, the paradoxes can be removed.
In addition, it can explain the uncertainty principle inde-
pendently of measurements, eliminate zero-point energy
and cause spontaneous symmetry breaking without com-
plexity.

We should consistently introduce indefinite metric vec-
tors because Maxwell equations are wave equations in
Minkowski space. When we introduce state vectors in
Minkowski space, indefinite metric vectors are absolutely
required. The required vector should be recognized not
only as an auxiliary field but also as a real physical field
which is the root cause of single photon and electron in-
terferences.

The results insist the vacuum space is filled with
the non-localized potentials which can eternally exist as
waves and correspond to gauge fields introduced by gauge
transformation of the second kind.

This idea provides exactly the same calculation and ex-
perimental results by using quantum-superposition state
because the phase difference between the photon or elec-
tron and the non-localized potentials provide the inter-
ferences as if the quantum-superposition state exists. In
addition, the concept is based on an analogy from the ex-
pression of substantial localize electromagnetic fields or
an electron flow and the non-localized potentials instead
of curious quantum-superposition state that forces us to
imagine a photon or an electron passes through the both
paths or pinholes despite a photon or an electron can not
be split off.
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The superposition states are valid in case of mixed
states whose probabilities are statistical sense. However,
quantum-superposition state is not valid in case of pure
state whose probability is fundamental sense. Therefor,
there is no concept of quantum-superposition state in na-
ture, which insists Quantum theory is a kind of statistical
physics.
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