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Here we review single photon and electron interference experiments by using op-
tical Mach-Zehnder Interferometer and 2-slits (2-pinholes) electron interferometer.
According to Maxwell equations, the electromagnetic fields in the Mach-Zehnder
waveguides can be described by a localized optical wave in the waveguide and non-
localized vector and scalar potentials. In a quantum mechanical description of the
interference, quantum-superposition state has been introduced. However even if we
assume the states are expressed as the localized optical wave (a photon) and the non-
localized potentials, single photon interference can also be calculated. In the same
way, Maxwell equations can be divided by localized electron beam and non-localized
potentials in case of the 2-slits (2-pinholes) single electron interferometer. From the
analysis results, the non-localized potentials can be identified as an indefinite metric
vector with zero probability amplitude and correspond to gauge fields introduced by
gauge transformation of the second kind. The results show we can express quantum
states without quantum-superposition state, which leads to an improved understand-
ing of the uncertainty principle and resolution of paradox of reduction of the wave
packet. The concept provides not only exactly the same calculation and experimental
results using quantum-superposition state, but also can eliminate zero-point energy
and cause spontaneous symmetry breaking without complexity. The results insist

that Quantum theory is a kind of statistical physics.
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FIG. 1. Schematic view of MZI.

I. CLASSICAL ELECTROMAGNETIC FIELD IN WAVEGUIDES -
POTENTIALS AND PHOTON

Figure 1 shows schematic view of the Mach-Zehnder Interferometer (MZI) and coordinate
system.

First we examine the input waveguide. Assume that an x-polarized optical wave propagates
in z-direction with angular frequency w and propagation constant [, the electric field E of
the optical wave is well confined in the input, e.g., the cross section profile of the electric
field is expressed as Gaussian distribution.

Then, the electric field of the optical wave in the input can be expressed as follows.

2, ,2
E=e, Cg-exp (_:c u—;y ) - cos (wt — f52) (1)

0

Where, e, is unit vector parallel to the x-axis. Cg is an arbitrary constant of which squared
is proportional to the field intensity. wy is the mode field radius of the optical wave. E and

B are expressed by vector and scalar potentials as follows.

0
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From (1) and (2), A is expressed by introducing a vector function C as follows.
1 2 2
A=——e, - Cg-exp (—x —|—2y ) -sin (wt — fz) + C
w w§
0
—C=— 3
T (3)

By taking C as an irrotational vector function V x C = 0 in order for B to localize in the
input, for example, C and ¢ can be expressed by introducing an arbitrary scalar function A

as C=V\and V (%/\ + ¢) = 0 respectively.
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Then B is expressed as follows

B=VxA
2, .2
= gey -Cg - exp (_x u—%y ) - cos (wt — fz)
2 2 2
—w.—Z)geZ-CE-exp (_:1:' ;)—gy > -sin (wt — (2) (4)

Therefore, E and B are localized in the input waveguide but the vector and scaler potentials
are not necessarily localized, though the potentials can not be observed alone. The above
localized form is one example, other deformation can be made as will be described later in

the next section.

II. POTENTIALS AND ELECTRON

Figure 2 shows schematic view of the typical 2-slits (2-pinholes) single electron interference
setup.!

An electron is launched from the electron source and propagates in right direction. According
to the traditional explanation, the propagating electron passes through the both pinholes.
However, we can obtain the interference pattern even if the electron passes through one of
the two pinholes as described below.

The propagating electron can be identified as an electron beam, of which space current
density is j = Nqv, where N is the number of electron per unit volume, ¢ is the electron
charge and v is the electron velocity. When the radius of the electron beam is wy, the current
I can be expressed as [ = mw?2j. According to Biot-Savart Law, the propagation generates
magnetic fields and potentials around the propagation path.

Assume that the electron velocity is constant and the propagation path is parallel to z-axis.

Then, the vector potentials around the path are expressed as'?

In — (5)

where r = /22 + 42, &g is the permittivity and c is the speed of light.
Therefore the vector potential is admittedly not localized in the pinhole the electron passes
through and also passes through the opposite pinhole.

However, we examine the following Maxwell equations to clarify the discussion.
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FIG. 2. Schematic view of the typical 2-slits (2-pinholes) single electron interference setup.
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where g is the permeability and p is the electric charge density.

~—

Here, we divide the potentials A, ¢ into localized A;, ¢, and non-localized A, ¢,. Then

the equations (6) can be divided into following equations

1 07 1 9¢ .
(A—§@> AI—V<VA1+§§) = — ol

1 9 0 Lop  p
(A 2 —at2> ¢+ e (V A+ 20 ) o (7)
and
1 82 1 astnl o
(A — _c2_8t2) A,—-V (V A+ 2 ot ) =0
1 82 0 1 agzsnl o
(A—§w>¢nl+a<V'AHI+c—2 8t>_0 ®)

When we assume the electron beam can be expressed by localized waveform, just as an
example, Gaussian with angular frequency w and propagation constant 3
2 + y?

io<e2~q-Cq'exp(— 3 )~cos(wt—ﬁz) 9)

0

where e, is unit vector parallel to the z-axis. C, is arbitrary constant which is proportional

to the number of electrons.



Hence the localized potential can be expressed as a function which produces (9).

This functional form is determined by i but (9) is just one example. If i = 0 and p = 0, the
equations (7) can express localized electromagnetic fields as described above.

In contrast, the equations (8) are independent of (7). Therefore the non-localized poten-
tials can populate the whole of space in any situation as waves defined as part of Maxwell
equations, which propagate at the speed of light.

(8) expresses the gauge invariance of the localized electro magnetic field or electron flows and
the non-localized potentials are well-known gauge field introduced by gauge transformation

of the second kind.

III. INTERFERENCE OF SINGLE PHOTON

In a quantum mechanical description, the photon interference is calculated as follows by
introducing the electric field operator £ = %dl exp (i0) + \/Lidg and the number state |n).?
Where G149 is the electric field operator in arm 1 or 2 respectively, 6 is the phase difference.

A | 1, .. At A
(I) x §<n|a1a1|n) + §<n|a£a2|n) + cos O(n|al ay|n) (10)

~

Where () is expectation value of the field intensity which is proportional to photon number.
Q1or2 and &Lﬂ are defined as a = % and af = % by using the electric field operators a
and a' at the input with (n|ala, |n) = (n|alag|n) = (n|alas|n) = +n. When photon number is
one (n = 1), i.e., single photon, the above expectation value becomes <f> x %‘—l—ivﬁ cosf =
% + %cos 0. In this traditional treatment, the electric field operators are obtained from the
replacement of Fourier coefficients of (6) by the operators under assumption of i =0, p =0
and Coulomb gauge .

However we can make different description as follows by using the concept of the above
non-localized potentials.

Photon number will be proportional to Cg squared in equation (3) but non-localized po-
tentials C and ¢ or (8) are not necessarily proportional to photon number. When photon
number is large, traditional premise which insist half of photons pass through arm 1 and

the rest pass through arm 2 is reasonable by law of large numbers because the probability

of "which arm does each photon select” should be % This concept corresponds to mixed
state of which probability is statistical sense instead of quantum-superposition state of which

probability is fundamental sense.



However when photon number is small, which correspond to the localized vector potential
expressed as first term of equation (3) is comparable with the non-localized potentials ex-
pressed as the rest terms or (8), we should consider greater probability that the localized
vector potential which represent a photon selects and passes through arm 1 and the non-
localized potentials pass through arm 2. This description can also be applied to (7) and
(8).

If we follow this description, the operator E = a; exp (if) 4 dy with (1|ala;[1) = 1 and
(1]abas|1) # 1 instead of E = \%&1 exp (i0) + \%dg should be introduced because the photon
passes through only arm 1. Note that a; is the electric field operator in arm 1 obtained
from the traditional manner as mentioned above using (7) instead of (6). In contrast as is
a purely-formal operator in arm 2 obtained from the traditional manner using (8) instead
of (6), which is not the electric field operator but provides some quantity related to the
non-localized potentials in arm 2.

Therefore the expectation value can be expressed as follows.

() oc (]afan|1) + (t|adas|1) + e (1|alaz|1) + e~ (1]aba |1)

= 1+ (adas|1) + ¢ (1]alas|1) + e " (1]adan|1) (11)
If (1|abas|1) = —3 and (1latay|1) = (1)alas1)* = +1¢, the same interference (I) o
% + %COS (0 + ¢) can be observed. Where % means complex conjugate.
The above calculation is based on Heisenberg picture. We can calculate the same interference
based on Schrodinger picture. In Schrodinger picture, the interference can be calculated by
using the output state |1) +|¢) and the electric field operator E = a at the output. Because
the operator is fixed in Schrodinger picture, the operator is obtained from the traditional
manner using (6). Where |1) and |() represent the states of a photon passes through arm 1
and non-localized potentials passes through arm 2 respectively. Because nothing is observed
in arm 2, we should recognize (C|() = 0.

In this picture, the expectation value can be expressed as follows.

(I) oc (e”(1] + (¢]) a'a (e7|1) +1¢))
= 1+ (¢lafal¢) + €™ (1]¢) + e~ (¢]1) (12)

Where a'a|l) = |1) and (1]a'a = (1| are used.
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If (Clafal¢) = —1 and (1]¢) = (¢|1)* = £1e™, the same interference (I) o< 1 & L cos (0 + ¢)
can be observed. From this expression, we can recognize that |{) has the phase difference
for the interference without substantial photons.

Note that ¢ is determined by the phase difference of the MZI arms. When there is no phase
difference between the MZI arms, ¢ is determined from the normalization of probability,
e (1 (C1) (11 + 1)) = (L) + (11¢) + {CI1) + (CI¢) = 1+ (1I¢) + (€11 + (¢[) = 1, amd
(¢|¢) = 0 then (1|¢) = —(¢|1). Therefore ¢ = 7 4+ Nmw. Where N is integer.

In the above single photon interference of Schrodinger picture, there is no mathematical
solution in usual Hilbert space. Therefore the non-localized potentials, which can not be
observed alone, have to be regarded as a vector in indefinite metric Hilbert space. The same
kind of unobservable vector has been introduced as "ghost” in quantum field theory.*”
We also call |¢) ”ghost” in this report though this ”ghost” has a different definition. The
traditional ”ghost” was introduced mathematically as an auxiliary field for consistent with
relativistic covariance of the theory and had no effect on physical phenomena. However,
the above "ghost” is a physical field which causes the interferences or is essential for the
interferences instead of the mathematical auxiliary field.

From the equation (11) and (12), we can think the non-localized potentials pass through
arm 2 produce the single photon interference as if the photon passes through the both arms
in cooperation with a photon field passes through arm 1.

The photon number should be proportional to Cr squared as can be seen in equation (3).
However non-localized potentials C and ¢ or (8), which express ”ghost”, are not proportional
to it as mentioned above. Therefore, the interference effect will be drop off when the photon
number is large. We can interpret this is why quantum effects are hardly observed in
macroscopic scale.

In a classical description, we can express the electric field of the single photon interference

at the MZI output, i.e., By = %El + %EQ, as follows by using the potentials

0 0
Eouw = _EAI — V¢ — EAHI — Von
0
- El - &Anl - v¢nl (13)

If the non-localized potentials form the following electric field, single photon interference
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can be produced in cooperation with a photon field passes through arm 1.

0 1 1
—aAnl — Vo = §E2 — §E1 (14)

where subscripts 1 and 2 stand for the MZI arm 1 and 2 respectively.

IV. INTERFERENCE OF SINGLE ELECTRON

In a quantum mechanical description, the 2-slits (pinholes) single electron interference is

typically explained by the probability of finding the electron on the screen.!

Py = |¢1 + ¢ (15)

Where ¢ = (z|1)(1]s) and ¢o = (x]2)(2]s), which are composed of probability amplitudes

7

(1,:2]5): 7 (electron arrives at pinhole 1 or 2|electron leaves s (electron source))” and
(x]|14:2): 7 (electron arrives at screen x|electron leaves pinhole 1 or 2)”.

When either pinhole 1 or 2 is closed, the each and total probabilities become P, = |¢1|?,
Py = |¢)?> and P = P, + P, # Pi5. Therefore we must admit the electron passes through
both pinholes at the same time despite an electron can not be split off, which forces us to
introduces a concept of quantum-superposition states .

However we can examine the states of localized electron propagation and non-localized

potentials instead of the quantum-superposition state as mentioned above.

In such a case, the electron wave functions should be expressed as follows.

Yy =1y - exp [2% / (Gmdt — Ay - dx)}
s—Pinholel—screen

Yy = 1hg - €xp [z% / (Ppmdt — Ay - dx)} (16)
s—Pinhole2—screen

where, 1| and 1}, are the electron wave functions on the screen passing through the pinhole
1 and 2 with the non-localized potentials respectively. ; and v are the electron wave
functions heading to pinhole 1 and 2 at the electron source without the effects of the non-
localized potentials. ¢, and A, include not only the non-localized potentials expressed as
(8) but also the non-localized part of the potentials generated by localized potentials such

as (3) and (5).



Then the probability of finding the electron on the screen by using these wave functions can

be described as follows,
Pra o< [/ = |9 + 45 = [ * + [eho[?

—2Re | exp z% ]{ (Gudt — Apy - dx) | P1)o (17)

s—1—screen—2—s

where 1 and 2 of the integration path stand for pinhole 1 and 2 respectively. In case of
single electron interference, we can find the electron at the pinhole 1 without fail but not at
the pinhole 2, i.e., [¢1]* = 1 and [¢)2|* = 0. Although [ |[¢16:2|*dV = 1 or 0 should be exact
expression, we continue analysis with |¢|> = 1 and |¢5|* = 0 for simplification.

When we introduce a phase difference 6 between 1, and 1, Py expresses the interference
as follows,

Py o< 1 —2Re (expi [y + 0] ¥1)g) (18)

where 7 = f{ (Gudt — Ay - dx).
h s—1—screen—2—s

Note that when 0 is fixed, the interference can be observed on the screen as a function of
v, i.e., position on the screen. When ~ is fixed, the interference can be observed on a fixed
position of the screen as a function of 6.

However, the wave function 1, must satisfy 11, # 0 and |¢|* = 0.

Then we introduce the states "an electron passes through pinhole 1 with the non-localized
potentials” as e”[y)) with P, = (¢1]11) = 1 and "no electron passes through pinhole 2
with the non-localized potentials” as €2[1)y) with Py = (1)5]1)9) = 0. In this states, we can
recognize that 71, 7, and v = 71 — 72 correspond to the phase terms of (16) and (17).
After the example of single photon interference as described above,® we introduce the charge
operator Q = [ d*zjy(x) defined by a conserved current j, = (¢, 1), i.e., 9"j, = %+V-i = 0.
The charge operator satisfies Q|¢1) = ¢|11), which means the electron state incoming from
pinhole 1 is the eigenstate of Q.%*

The interference can be calculated using the charge operator as

(I) = (") (ihy| + e (1h5]) Q (€70 ihy) + €72 [1hs))
= g+ (2| Q|tha) + g™ (3 [1hs) + g O (s ihy) (19)

where (I) is the expectation value of charge intensity. If (¢|Qyo) = —3¢ and (¢1]hs) =
(ho|thr)* = +1€™, then the single electron interference (I) = ¢ {5 + 2 cos (0 — v+ )} can
be obtained.



The above discussion suggests that the non-localized potentials produce phase shift of elec-
tron wave functions or electron states and will correspond to gauge fields introduced by
gauge transformation of the second kind as can be seen from (16). From the discussion,
we can recognize the state "no electron passes through pinhole 2 with the non-localized
potentials” has the phase difference for the interference without electron charges.

In the above expression for [t¢)), there is no mathematical solution in usual Hilbert space.
Therefore the state of "no electron passes through pinhole 2 with the non-localized poten-
tials” must also be regarded as a vector with zero probability amplitude in indefinite metric
Hilbert space and we can express quantum states without quantum-superposition state.
Note that we can use superposition state of (17) in case of mixed state, which probability is

statistical sense.

V. DISCUSSION
A. uncertainty principle and the reduction of the wave packet

By the existence of the non-localized potentials, Heisenberg’s uncertainty principle can be
explained independently of measurements and the paradox of the reduction of the wave
packet typified by ”Schrodinger’s cat” and ”Einstein, Podolsky and Rosen (EPR)”1%1! can
be solved, because the origins of both are the quantum-superposition state.

Former results insist the states of arm 1 and 2 or pinhole 1 and 2 are defined when the
system is prepared expressed as substantial single photon or electron and non-localized
potentials respectively in Schrodinger picture and a state does not split off such as quantum-
superposition state, which means there is no reduction of the wave packet.

"When the system is prepared” corresponds to immediately after the branching point of
the optical MZI or the pinholes. Which arm or pinhole does the photon or electron select
is unpredictable but after the selection, the state is fixed instead of quantum-superposition
state. The concept of these states is identical with mixed state rather than quantum-
superposition state formed by pure states, which suggests there is no concept of quantum-
superposition state.

As for Heisenberg’s uncertainty principle, we should recognize it as trade-offs derived from

Fourier transform non-related to measurement, which correspond to the canonical commu-
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tation relation.

B. zero-point energy

If we calculate the equation (12) under vacuum instead of single photon, (¢|a'al¢) = —3 can

eliminate zero-point energy as follows.

(o1 + ¢ (a'a+ 3 ) (10p+ I

= % + % ((0[¢) + (¢]0) + (¢[¢)) + (0la’al¢) + (¢|ataloy + (¢|atal¢)
1 i 1 1
=§+<ClaTalC>=§—§:0 20)

where a|0) = ((0\&*)T = 0 and normalization of probability, i.e.,

({0 + {¢1) (10) +1¢)) = (0]0) + {0I¢) + (<0} + {CI¢)
=14 {0[¢) + (¢[0) + (¢I¢) =1

then (0[¢) + (¢]0) + (¢|¢) = 0, are used.

C. spontaneous symmetry breaking

Traditional treatment of the spontaneous symmetry breaking, which explores the possibility
of Q|0) # 0 or generally ”|0) is not an eigenstate of Q”, introduces an artificial intricate
boson field such as Goldstone boson or Higgs boson.? Where |0) is vacuum state.

However, the non-localized potentials populate the whole of space in any situation as
mentioned above and there are no electron at pinhole 2. Therefore the state of pinhole
2, €72|¢hy), can be identified as vacuum instead of |0). From the relation (is|) = 0
as described above, if €72[1),) is an eigenstate of Q, i.e., QeM2|ty) = ae?[1hy), then
(1hole™™ Qe |1hy) = atho|the) = 0 # —3q, where « is an eigenvalue. Therefore the vacuum
e"2|1hy) is not an eigenstate of Q, which expresses the spontaneous symmetry breaking.

The traditional intricate bosons may correspond to the non-localized potentials.

VI. CONCLUSION

There are some unresolved paradoxes in quantum theory.
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If we take advantage of the indefinite metric vectors as described in this report, the para-
doxes can be removed. In addition, it can explain the uncertainty principle independently
of measurements, eliminate zero-point energy and cause spontaneous symmetry breaking
without complexity.

We should always introduce indefinite metric vectors because Maxwell equations are wave
equations in Minkowski space. When we introduce state vectors in Minkowski space, indef-
inite metric vectors are absolutely required. The required vector should be recognized not
only as an auxiliary field but also as a real physical field which has the phase difference for
single photon and electron interferences.

The results insist the vacuum space is filled with the non-localized potentials which can exist
as waves in any situation and correspond to gauge fields introduced by gauge transformation
of the second kind.

This idea provides exactly the same calculation and experimental results by using quantum-
superposition state because the phase difference between the photon or electron and the
non-localized potentials provide the interferences as if the quantum-superposition state is
formed, which may correspond to quantum entanglements. In addition, the concept is based
on an analogy from the expression of substantial localize electromagnetic fields or electron
flow and non-localized potentials instead of curious quantum-superposition state that forces
us to imagine a photon or an electron passes through the both arms or pinholes despite a
photon or an electron can not be split off.

The superposition states are valid in case of mixed states of which probability is statisti-
cal sense. However, the quantum-superposition states are not valid even in case of pure
states of which probability is fundamental sense. Therefor, there is no concept of quantum-
superposition states in nature, which insists Quantum theory is a kind of statistical physics.
I hope that the results will be greatly debated and encourage a reconsideration of the para-

doxes.
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