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Abstract: If a low density electromagnetic wave hits an electron, it does not only perform the well-
known transverse movement, but also a longitudinal movement with double frequency. This leads to 
an energy loss of the original electromagnetic wave without change of direction which was previ-
ously unknown and is no elastic or inelastic collision. The "lost" energy is radiated in two different 
frequency ranges and the relative energy loss increases with decreasing frequency of the primary 
wave. An experimental confirmation of this phenomenon could influence the debate about “tired 
light”. The derivation is based solely on classical electrodynamics and therefore contains no ad hoc 
hypothesis. The only adjustable parameters are the duration and the envelope of the wave packet.
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1 Introduction

J. J. Thomson assumed that the scattering of light by electrons is a linear process. Under the then 
possible measurement accuracy the wavelength remained constant. Thomson dismissed the idea that 
light's magnetic field was strong enough to influence electron motion. Now, a century later, the usual 
explanation of the Thomson scattering is still: "The electric field of the incident electromagnetic 
wave accelerates an unbound electron, causing it, in turn, to emit radiation at the same frequency. 
The magnetic field of the original waveform can be neglected." This may not be the whole truth, be-
cause the effect of the Lorentz force is ignored, even though the electron moves in the variable mag-
netic field of the wave. One consequence is a tiny energy loss of the primary wave, after an electron 
comes into its influence. In the following work, this effect is closely examined.

2 Modelling the Thomson Scattering

Far away from the source, the wave fronts of each electromagnetic wave are planes, which 
(theoretically) infinitely extend transverse to the propagation direction. The two electric field 
quantities E and B are described by the equations E=E max e i(ω t− k z ) and B=Bmax ei (ω t−k z ) , the z-
axis indicates then propagation direction. Only the real components can be measured. Since all 
sources emit only a finite amount of energy, they can neither generate an infinite number nor 
infinitely extended wave fronts. It follows that 

• the number of wave fronts is limited. In z-direction, a wave packet must have a beginning 
and an end. In the following formulas, the factor C(t) limits the total duration, its properties 
are defined below.

• the area of each wave front (parallel to the x-y-plane) is limited. This problem is discussed 
in a subsequent paper.

Hits a linear polarized wave a free, unpaired electron, this is caused to vibrate with the same 
frequency (the response to a circular polarized wave is also discussed in a subsequent paper). 
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For the mathematical description of a real wave packet the following coordinates and functions are 
defined: 

• The wave vector k of an electromagnetic wave is parallel to the z-axis and is oriented 
towards the observer. The wavefronts are parallel to the x-y-plane, the wave is linear 
polarized.

• The vector spaces e⃗ x×e⃗ y=e⃗ z and E⃗×B⃗= k⃗ are right-handed.
• The origin (x = y = z = 0) of the coordinate system is the position of the electron before the 

arrival of the wave fronts. Then, the electron oscillates around this average coordinate and 
comes to rest again after the final wavefront (proof see below). 

• The x-axis points to the right and because of z = 0, the magnetic field at the position of the 
electron is Bx=−C (t)⋅Bmax⋅cos(ωt)=ℜ(−C (t)⋅Bmax⋅ei ωt)

• The y-axis points upwards, the electric field at the position of the electron is
E y=C ( t)⋅Emax⋅cos(ωt)=ℜ(C (t )⋅Emax⋅e i ω t)

The picture shows a short section of the wave train. Rightmost is a snapshot of the vectors E and B at 
time t = 0. The wave vector k points to the observer.

The dimensions of the wave packet define the volume of a contiguous range in which the main part 
of the energy is transmitted. Subsequently, only the consequences of finite length in the z-direction 
are investigated. This also determines the period of time during which the electromagnetic wave 
influences the electron. If the energy of the wave is small enough that the maximum deflection of the 
electron in the y-direction is negligible compared to the expansion of the wavefront, the condition

v y≪c is satisfied and all calculations can be performed nonrelativistic. 

In the far field, an electromagnetic wave is defined by the direction of propagation, surface power 
density S, energy density w and frequency ω=2 π f . The values of the periodical electric and mag-
netic fields of the wave can be calculated with the Poynting formulae E=√Z 0⋅S , B=μ0√ S / Z 0

and S=c⋅w , where Z0 = 377 Ω is the characteristic impedance of free space. The maximum 
values are obtained by multiplying by a factor √2 .

If unbound, quiescent electrons are in the area of these fields, they are stimulated to oscillate and 
radiate energy. In the following two cases are discussed:

1. The electrons are part of an extended, thin plasma, wherein the mutual distance is consid-
erably greater than the wavelength and collisions occur rarely. The movement of the positive 
ions, which are also present, can be neglected because of their much bigger mass. However, 
they also cause a resetting force on the electrons, so that they tend to oscillate at the plasma 
frequency. In the interstellar medium, ωP is very low with only a few kilohertz and is 
therefore neglected below. 

2. The wave can excite the electron shells of densely packed atoms causing them to vibrate 
around their equilibrium positions. Even in transparent materials there are resonance effects 



which mostly lie in the UV region and are subsequently neglected. In solids, the distances 
between the "electron clouds" are significantly smaller than the wavelength, resulting in 
interference effects, these direct the radiation in certain directions. Those effects are well 
known in antenna technology.

3 Model of a wave packet

Every electromagnetic wave is limited in time, that is, it has a beginning and an end. First, an en-
velope is modeled, which is zero beyond a certain interval (Slowly varying envelope approximation). 
Some continuous functions C(t), such as a Gaussian wave packet with cut slopes have discontinuities 
and are therefore less suitable. The frequently expressed assumption, the envelope is a decaying ex-
ponential function (damped wave), as one can hear after striking a bell, lacks any basis in the field of 
light. In no atomic model can one find evidence for a harmonic oscillator to produce a damped wave.

Technically, the envelope function C(t) is formed by the amplitude modulation of a carrier with a 
frequency mixture, in the simplest case with a single modulation frequency W , where W ≪ω is 
presumed. Each modulation generates so-called side band frequencies in the vicinity of ω whose 
amplitudes typically decrease with increasing frequency separation. The side-band frequencies 
occupy a frequency range which is called natural line width. 

Numerical verifications show that modi-
fications to the shape of the envelope have 
little effect, they change the results of this 
work only marginally. Therefore, the well-
known Hann-Window C=(1−cos (W⋅t ))/2
with the acceptable range 0≤W⋅t=2 π is 
chosen as the envelope of E and B . Outside 
this range is C = 0. With this choice, the 
FWHM-bandwidth is Δω≈2W and the line 

width is Δλ≈ 4π W c
ω2 = λ2W

c π . Only those 

wave trains will be considered, which include 
at least 100 oscillations, so it is assumed

W ≪ω . This assumption is likely to be 
met for most spectral lines. For example, the 
natural line width of the sodium D-line 
amounts to about 10 MHz and therefore the 
length of a wave packet is approximately 107 

oscillation periods. The limiting case W →0 describes an non-physical wave of constant amplitude 
and infinite extent and is not covered here. 

When a free, unbound electron enters the sphere of influence of a wave packet, it is affected during 
the period of time 0≤W⋅t<2 π . Before and after the electron is at rest. The biggest part of the 
energy, about 92.44 %, is transported through the central region of the envelope between the time 

points W t1=π /2 and W t2=3 π /2 . This interval is called the coherence length L≈ π c
W with 

the above definitions. The extensions are energetically negligible. If the wave moves in the disper-
sion-free space, the coherence length is unchanged and there is no wave packet spreading. 

The C(t) function describes only the dimension of the wave packet in parallel to the wave vector k. 



The extent transversely thereto, that is the three-dimensional structure and the volume are treated in a 
separate paper in relation to the Fresnel zones. 

4 Movement of the electron in the y-direction

The fields of an electromagnetic wave exert a force on each charged particle. A negatively charged 
electron is accelerated parallel to the y-axis and the speed follows from the formula a y=qe E y /me

by integration: 

v y=
qe E max

2me ω(ω2−W 2)
(ei ω t (ωW sin (W t)+i ω2cos (W t)−i ω2+i W 2)−iW 2) (1)

The integration constant is chosen such that at the start of the electromagnetic wave at the time
W⋅t=0 the condition vy = 0 is satisfied. The picture gives an idea of the time course of vy. 

After a further integration, the real component gives the y-coordinate of the electron 

y=
qe Emax

2me ω2 (cos (ωt )(cos(W t)−1)) (2)

This solution in the y-direction does not contain physical news, if the effects of the surrounding 
plasma and the movement of the electron in the z-direction are ignored. This is discussed further 
below. 



5 Radiation due to y-acceleration

The electron is accelerated by the incoming wave packet (primary wave)

a y=
qe Emax

me

1−cos (W⋅t)
2

cos(ω t) (3)

and emits energy. The value is obtained by calculating the power (Larmor formula) and subsequent 
integration over time during the duration of the wave packet 0≤W⋅t<2π . 

P y=
qe

4 Emax
2

24π ε0 c3 me
2 (1−cos(W⋅t))2(cos(ωt))2 (4)

∫P y dt=
qe

4 Emax
2

24π ε0 c3 me
2

3W t−4sin(W t)+cos(W t)sin(W t )
4W (5)

A y=
qe

4 Emax
2

24π ε 0c3 me
2

3π
2W

=
qe

4 µ0 c S y

24π ε0 c3 me
2

3π
2W

=
qe

4 µ0
2⋅S y

8me
2 W

(6)

Sy is the surface power density of the primary wave. This classical approximation is not valid for big 
power densities.

6 The cross section of the electron

The incident wave packet with the surface power density Sy is limited to the time period
0≤W⋅t<2π . Since the envelopes of the electric and magnetic components are modelled with the 

function C=
1−cos(W⋅t )

2 , one gets S y (t)=S 0
(1−cos (W⋅t))2

4
. The integration over the period 

of the wave packet results in the energy Q, which is distributed over the total cross-sectional area of 
the electron. 

Q= ∫
0

2π/W

S0
(1−cos(W⋅t ))2

4
dt=

3π S y

4W
(7)

A free electron can not store energy and has to re-radiate the amount it has previously absorbed from 
the wave packet. Thus its actual absorption cross section σ can be calculated:

σ Elektron=
A y

Q
=

qe
4 µ0

2⋅S y

8me
2W

4W
3π S y

=
qe

4 µ0
2

6π me
2 =6.625⋅10−29m2

This result is identical with the classically calculated cross section of the electron.



7 Motion of the electron in the z-direction

The previously described motion of the electron is in the y-direction. The magnetic field of the wave 
is oriented antiparallel to the x-axis. The Lorentz force F z=qe v y×B x ties together both and 
provides for the fact that the electron is accelerated in the direction of the positive z-axis, so in paral-
lel with k. When using formula (1) results for 

a z=
qe

2 Emax Bmax (1−cos(W⋅t ))ei ω t

−4me
2 ω(ω2−W 2)

(e i ω t( i ω2 cos(W t)−i ω2+ωW sin (W t )+i W 2)− iW 2)  (8)

When compared to the preceding image, it can be seen that there is a temporal compression and 
doubling of the frequency. The cause is not inherent "non-linearity" of the electron, but the fact that 
in the far field of every electromagnetic wave the electric and magnetic fields reverse polarity at the 
same time. The integration of equation (8) provides the speed, whose real part is

v z=
qe

2 µ0 S y

me
2

R1⋅R2

4ω6
with (9)

R1=cos (ωt )cos (W t)ω2−W 2−cos(ωt)(sin(W t)W +ω)ω

R2=cos(ωt)cos(W t )ω2−W 2+cos (ω t )(sin(W t)W −ω)ω

The integration constant has been chosen so that at time t = 0 the initial condition vz = 0 is satisfied. 
The following figure shows that the velocity vz is never negative, and therefore the unbound electron 
will only move away from the light source. The same result is reached by elementary numerical 
integration (see Appendix). It is noteworthy that the initial and final velocities are equal, so that the 
electron is not permanently accelerated. Therefore, this displacement of the electron consumes no 
energy and is not a consequence of the radiation pressure. 

Evidently, the waveform shown in the image below is the superposition of a cosine pulse and a wave 
packet with the frequency 2ω. Accordingly, the Fourier analysis of vz provides two well-defined 
frequency ranges: A very broad band with a focus on W and a narrow band with the centre frequency 
2ω. In both of these frequency bands energy is emitted at the expense of the primary wave.



By integration over the period 0≤W⋅t<2 π , the distance travelled by the electron is calculated 
during the passage of the wave packet 

z=
qe

2 µ0 S y

me
2

π W 3

2ω6 (10)

This displacement in the z-direction can be observed only in unbound electrons, because their mass is 
sufficiently small. If the primary wave hits atoms and stimulates their electron shells to vibrate, the 
far higher total mass of the atom must be inserted into the formula. Therefore, z is reduced by at least 

a factor of ( mproton

melectron)
2

=18362≈3.4⋅106 and is thus negligible. 

The average velocity component of the electron in parallel with the wave vector k and the z-axis is

v z(mean)=
qe

2 µ0 S y

me
2

W 4

4ω6

The wave packet loses no net energy by the displacement of the electron, because the electron sub-
sequently is at rest. In the period 0≤W⋅t<π radiation energy is temporarily converted into kinetic 
energy and transforms back in the period π≤W⋅t<2 π . Overall, there is no momentum transfer 
from the wave packet to the electron. 

These two consecutive accelerated movements cause the low frequency radiation, which is discussed 
below. The z-velocity obviously includes two different frequency components, which are discussed 
separately. 

8 High-frequency emission due to the z-acceleration (2ω)

The incoming wave packet accelerates the electron by the interaction of electric and magnetic field 
components in the z-direction at the frequency 2ω, in parallel with the wave vector k. First, the 
power is calculated with the Larmor formula using equation (8) 



P z=
qe∣a z∣

2

6π ε0 c3 =
qe

6 µ0
3 S y

2

24 π cme
4
(sin(ωt))4(cos (W t )−1)4

ω2

The integration over the period 0≤W⋅t<2 π results in the value of the radiated energy:

A z( fast )=
qe

6 µ0
3 S y

2

24π cme
4 ω2

105π
32W

=
35 qe

6 µ0
3 S y

2

256c me
4ω2 W

(11)

It should be noted that the power Pz is generated and emitted during a very short interval. 
The radiation pattern of the secondary radiation 
of a single electron is a torus, as we know from a 
dipole antenna. The axis of which is the k-vector 
of the primary wave and whose maximum radi-
ation lies in the xy-plane (Θ ≈ π / 2). The intensity 
of the secondary wave in the z-direction (Θ = 0), 
that is parallel to the k-vector, is zero, because no 
longitudinal electromagnetic waves exist. Noth-
ing is changed when the primary wave is circu-
larly polarized. 

Because of the rotational symmetry of the torus, 
the radiation energy can not create a pulse component in the x-y-plane, and therefore also causes no 
change in the direction of the k-vector. This could reignite the discussion of the hypothesis "tired 
light". Although the wave packet loses energy, there is no scattering in the physical sense, which is 
of course always connected with a change in direction of the k-vector. The energy loss of the 
primary wave described above produces no image blur - for astronomical observations or during 
irradiation of compact transparent material such as lenses. If only a few electrons vibrate, the 
energy loss will be very small and difficult to detect. Whether it can be ignored in any case, is not 
the subject of this physical derivation and deserves a separate investigation. 

9 Radiation pattern with a small mutual spacing of the 
electrons

The torus is strongly distorted when the wave packet 
of the primary wave stimulates not only a single elec-
tron to oscillate, but many that are in close proximity. 
In solids, the mutual distance of the electrons and 
electron shells is much smaller than the wavelength, 
this simplifies the description. 

If the electrons form a circular area having a diameter 
2a significantly exceeding the wavelength and the 
polarization is parallel to the surface, the radiation 
focuses close to the surface normal (Θ = 0) and the 
intensity function is the known Airy disk, as shown in the image. The surface normal of the circle 
indicates the direction of maximum intensity. With increasing angular deviation from the normal, the 
intensity decreases rapidly and, in particular in the plane of the circular surface, the radiation dis-
appears due to destructive interference. 



Since the polarization of the secondary wave is parallel to the surface normal, any radiation in the 
direction of the normal is prohibited. Therefore, a compromise between the conflicting radiation 
patterns torus and Airy directivity pattern must be found. 

If a glass cylinder of radius a is illuminated 
with light in parallel to the axis of symmetry, 
the plane wave fronts of the primary electro-
magnetic wave are parallel to the x-y-plane of 
the radiation. All electrons in any x-y-plane are 
forced into synchronous oscillations. As shown 
above, the velocity in conjunction with the 
magnetic field of the primary wave generates a 
very small movement of all electron clouds in 
the z-direction. Destructive interference ensures 
that in the x-y-plane (Θ ≈ π / 2) no secondary 
wave is emitted. 

The compromise is possible, if the radiation 
patterns torus and Airy disc are mathematically 
formulated and multiplied together: 

a) Electrons oscillating in the z-direction do not radiate energy in the z-direction (Θ = 0) because 
longitudinal electromagnetic waves do not exist. For the radiated field strength, the formula is

E∼sin (Θ) .

b) For constructive interference applies E∼
2 J 1(k a sin (Θ))

k a sin(Θ)
as for the diffraction at a circular 

aperture, where J1 is the Bessel function of the first kind and a is the radius of the glass cylinder.

The intensity of the radiation generated by the synchronous movement of the electrons in the z-
direction, is the square of the product

I z∼(E z)
2∼(2 J 1(k a sin (Θ))

k a )
2

(12)

As the picture shows, the radiation power of the secondary 
radiation disappears for Θ = 0 and has a maximum for

1,842=k a sin(Θ) . After the light has passed through 
the glass cylinder, an analysis should show, that that the 
strong primary wave can be separated from the consider-
ably weaker secondary wave due to different polarization 
and angle of observation.

The primary wave does not change polarization and fre-
quency and, after a sufficient distance, the intensity profile 
corresponds to the well known Airy disk with a strong 
central peak, the angle of the first intensity minimum 
(innermost dark ring) can be calculated with the well-

known formula (sin Θ)Airy=1,22 λ
2a . In the image, the 

intensity of the primary wave is indicated by the area brightness. 



The highest intensity of the secondary wave (2ω) is observed on concentric circular rings. For half 

the opening angle of the innermost circle, the formula is (sin Θ)2 ω=0,586 λ
2a . In the picture 

orange lines indicate two annular areas in which the secondary radiation should be measurable. The 
main difference, however, is to be expected in terms of polarization. The orientation of the lines 
shows the position-dependent linear polarization of the secondary wave. This is independent of the 
polarization of the primary wave, and upon whether it is linear or circular. Illustratively stated, the 
orange lines are short sections of the z-axis - seen from the respective view. In this section, only the 
electron motion in parallel to the z-axis is discussed. 

An analysis in the opposite direction of the primary wave can facilitate the detection of the secondary 
wave, because there the intensity of the reflected primary wave can be significantly reduced by a 
suitable coating of both ends of the cylinder.

10 Low-frequency radiation as a result of z-acceleration
In the z-direction, the electron is accelerated with two different time constants. The previous section 
dealt with the radiation of frequency 2ω, subsequent the low-frequency component is discussed, 
which can be observed only in unbound electrons. A suitable low-pass filtering of equation (9) yields 
the mean velocity of the electrons: 

v z(slow )=
qe

2 µ0 S y

me
2

(1−cos(W t))2

8ω2
(13)

a z(slow)=
qe

2 µ0 S y

me
2

(1−cos(W t))sin (W t )
4ω

(14)

One first calculates the power with the Larmor formula

P z(slow)=
(qe⋅az (slow))2

6π ε 0c3 =
qe

6 µ0
3 S y

2

96π c me
4
((cos (W t )−1)sin(W t ))2

ω2

and then integrates over the period of the wave packet. The radiated energy is

A z(slow)=
qe

6 µ0
3 S y

2

96π c me
4 ω2

5π
4W

=
5qe

6 µ0
3 S y

2

384 cme
4 ω2W

(15)

Since the movement of the 
electrons is considered parallel to 
the k-vector, the energy is mainly 
emitted in the x-y-plane. 

The picture shows, that the low-
frequency radiation is not 
continuously emitted during the 
period 0≤W⋅t<2 π , it focuses 
around the two time points

t 1≈
2π
3W and t 2≈

4 π
3W , 



measured from the start of the primary wave. The difference depends on the contour of the envelope.

Since the electric field strength is proportional to a z(slow ) , the mean  radiated frequency corres-
ponds to the variable factor f (slow)≈(1−cos (W t))sin(W t ) . Because the period of oscillation 
differs only slightly from the duration of the wave packet, the frequency can only be imprecisely 
defined, the bandwidth of this secondary wave is very large and the signal is closer to that of a noise. 
For the polarization, the same considerations apply as for the high-frequency component. 

Example: From the wavelength λPrim=550 nm and line width Δλ=2nm follows
W =6,23⋅1012 Hz . If light passes through thin plasma, secondary radiation is a broadband spec-

trum in the frequency range f (slow)≈1.5⋅1012 Hz corresponding λ( slow)≈200 µm . Interest-
ingly, the cosmic background radiation is measured approximately the same range. This radiation 
should be detectable perpendicular to the direction of propagation of the primary wave.

11 Specific energy loss as a result of z-acceleration
It is not possible for a free electron to store energy and therefore radiates all of the energy which it 
receives from the primary wave. Every time a wave packet excites a free electron to oscillate, it loses 
a tiny fraction of its energy, and then continues running with slightly reduced frequency. This extends 
the wavelength of the primary wave by a tiny amount (redshift). For the three energy components, 
the following relationships apply: 

A y=
qe

4 µ0
2⋅S y

8 me
2W

(6)

Az( fast )
A z(slow )

=21
2  A z( fast )+Az(slow)=

115qe
6 µ0

3 S y
2

768c me
4 ω2 W

R=
Az( fast )+Az (slow)

Ay
=

115qe
2 µ0

96 cme
2 ⋅

S y

ω2 (16)

Of particular interest is the energy or power ratio R, when an electron is stimulated by the primary 
wave packet to execute short-term oscillations it radiates secondary waves. The relative energy loss 
does not depend on the modulation frequency W for the duration of the wave packet. Because the 
energy difference is emitted with no preferred direction, the initial wave packet undergoes no change 
of direction, there is no scattering in the classic sense. 

12 Concluding Remarks

The trigger for this investigation was a side note in http://en.wikipedia.org/wiki/Thomson_scattering 
(version October 25, 2013). This is ".. the main cause of the acceleration of the particle will be due  
to the electric field component of the incident wave, and the magnetic field can be neglected." 
Really? After only two hours programming work for a simulation using the Matlab program (see 
Appendix) amazing features of the electron motion in the z-direction showed up. They could not be 
removed by program changes (for example, better Integration procedures or smaller step size). The 
rest of the examination was - despite the use of symbolic algebra programs – the painstaking proof 
that the simulation is correct. Perhaps the side note will be adjusted to reality someday. 



Although the results of this work may contribute to the discussion about interesting aspects of tired 
light , this was neither starting point nor target of the investigation. 

13 Equipment: 
Eugene Hecht: Optics

John David Jackson: Classical Electrodynamics

The Software packets „Mathematica“ , „Reduce“ and „Matlab“

OpenOffice Writer

perseverance and the infinite patience of my wife

14 Links:
Szu-yuan Chen, Anatoly Maksimchuk & Donald Umstadter: Experimental observation of nonlinear 
Thomson scattering, http://arxiv.org/pdf/physics/9810036v3.pdf

15 Appendix

The following Matlab program is a simple simulation without any mathematical tricks. It generates 
some pictures to illustrate some results mentioned in this investigation. After copying in the Matlab 
editor window, it should be stopped after the selected rows (breakpoint) to look at the intermediate 
results carefully. A change from the Hann Window to the Blackman Window shows that the shape of 
the envelope has little effect. It would be a great pleasure if someone would discover the correct form 
of the envelope.

%Thomson scattering; Author: Herbert Weidner
qe=-1.6e-19; me=9.11e-31; c=3e8; %basic units
cc=100; %points per oscillation
lambda=1e-6; %Meter
T=lambda/c; dt=T/cc;
S=1e6; %W/m² surface power density (Poynting)
%wave propagation z direction
Ey0=sqrt(377*S); %linear polarzation; Z0=377 Ohm, points in y-direction
Bx0=12.566e-7*S/Ey0; %µ0, points in -x-direction
%z-direction to the observer, E x B = k (right-handed)
%a free electron is moved
c=30; %number of cycles
yz=zeros(2,c*cc); vyz=zeros(2,c*cc); %az=zeros(1,c*cc); 
n=1:c*cc; %ma(y)=qE
%in the far field E and B are in-phase
ay=(hann(c*cc))'.*sin(2*pi*n/cc)*qe*Ey0/me; %x-acceleration
Bx=-(hann(c*cc))'.*sin(2*pi*n/cc)*Bx0; %- because EBk is right-handed
for n=2:c*cc-1 %compute vy and y 
    vyz(1,n)=vyz(1,n-1)+dt*(ay(n-1)+ay(n))/2;
    yz(1,n)=yz(1,n-1)+dt*(vyz(1,n-1)+vyz(1,n))/2;
end
az=-qe*vyz(1,:).*Bx/me; %qv(y)B(x)=ma(z)
plot(vyz(1,:)); ylabel('y-velocity (m/s)');
title('wave packet, 30 oscillations'), xlabel('time')
%----Breakpoint in the following line ------
for n=2:c*cc-1 %compute vz and z
    vyz(2,n)=vyz(2,n-1)+dt*(az(1,n-1)+az(1,n))/2;

http://arxiv.org/pdf/physics/9810036v3.pdf


    yz(2,n)=yz(2,n-1)+dt*(vyz(2,n-1)+vyz(2,n))/2;
end
plot(vyz(2,:)); ylabel('z-velocity (m/s)');
title('velocity of the electron parallel to the k-Vektor')
xlabel('time (arbitrary units)')
n=1:size(vyz,2);
%----Breakpoint in the following line ------
plotyy(n,az,n,vyz(2,:)); 
ylabel('left: az, right: vz (m/s)');
title('a and v in z-direction'), xlabel('time')
%----Breakpoint in the following line ------
plotyy(n,vyz(1,:),n,vyz(2,:)); 
ylabel('left: vy, right: vz (m/s)');
title('velocity in y- and z-directions')
xlabel('time (arbitrary units)')
%----Breakpoint in the following line ------
plotyy(n,yz(1,:),n,yz(2,:)); 
ylabel('left: y, right: z in m');
title('coordinates of the electron in y- and z-direction')
xlabel('time (arbitrary units)')
%----Breakpoint in the following line ------
fprintf(1, 'vy/vz= %e\n',max(abs(vyz(2,:)))/max(vyz(1,:)))
%path of the electron in the y-z-plane
scatter(yz(1,:),yz(2,:),'.')
xlabel('deflection in y-direction (in m)')
ylabel('deflection in z-direction (in m)')
title('path of the electron in the y-z-plane')

Herbert Weidner, 11. December 2013
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