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Abstract As opposed to the classical logic of true and false, viewed as an ax-
iomatised theory, ordinary arithmetic conveys the three logical values: provable,
negatable and logically independent. This research proposes the hypothesis that
Axioms of Arithmetic are the fundamental foundation running arithmetical pro-
cesses in Nature, upon which physical processes rest. And goes on to show, in
detail, that under these axioms, quantum mathematics derives and initiates logical
independence, agreeing with indeterminacy in quantum experiments. Supporting
arguments begin by explaining logical independence in arithmetic, in particular,
independence of the square root of minus one. The method traces all sources of
information entering arithmetic, needed to write mathematics of the free parti-
cle. Wave packets, prior to measurement, are found to be the only part of theory
logically independent of axioms; the rest of theory is logically dependent. Ingress
of logical independence is via uncaused, unprevented self-reference, sustaining the
wave packet, but implying unitarity. Quantum mathematics based on axiomatised
arithmetic is established as foundation for the 3-valued logic of Hans Reichenbach,
which reconciles quantum theory with experimental anomalies such as the Einstein,
Podolsky & Rosen paradox.

1 Introduction

Coin-tossing and other experiments in classical statistical physics are deterministic,
in the sense that, a complete knowledge of the physical detail would render an
outcome perfectly predictable, and that randomness in outcome is attributable to
our degree of ignorance. Intuitively, this philosophy suggests that randomness in
quantum experiments also, lays similarly in physical detail of which we are ignorant.

But contradicting this intuitive viewpoint, theorems of Kocken and Specker [19],
the inequalities of John Bell [4], and the experiments of Alain Aspect and others [1,
2,31,24,26] all strongly support the view that, prior to measurement, identically-
prepared quantum systems are truly physically identical – ruling out physical detail
as the cause of variation in measured outcomes. A reasoned inference is that classical
concepts of cause and effect are inconsistent with quantum processes in Nature.

In a new approach, ordinary arithmetic – denoted arithmetic1 – is acknowl-
edged as foundation on which quantum theory rests. Arithmetic is then given
formal, logical treatment and a quantum theory results invoking a causeology, a
degree more complex than simple cause. Underpinning this is the fact, well-known
to Mathematical Logic, that arithmetic’s formula are incapable of simple classi-
fication, as either true or otherwise false, but require an additional category that
is neither.

The formal treatment, mentioned, consists of arithmetic as a theory of propo-
sitions. This is an approach referred to by Stabler as a ‘postulational approach’ [27]. Recommended reading An Introduction to

Mathematical Thought Stabler [27]Simply put, abandoned is the notion that arithmetic is a property of scalars: real,
complex or any other, all presumed to automatically exist. Instead, axioms listed
in Table 1 – denoted axioms2 – are adopted a priori. Then from these, all scalars
result as incidental objects. The thesis of this paper is that this formal arithmetic

Mail to: StevieFaulkner@googlemail.com
1 arithmetic denotes this particular arithmetic, as opposed to any other.
2 axioms denotes axioms for this particular arithmetic.
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AXIOMS of ARITHMETIC
Additive Group

A0 ∀β∀γ∃α : α = β + γ Closure
A1 ∃0∀α : α+ 0 = α Identity 0
A2 ∀α∃β : α+ β = 0 Inverse
A3 ∀α∀β∀γ : (α+ β) + γ = α+ (β + γ) Associativity
A4 ∀α∀β : α+ β = β + α Commutativity

Multiplicative Group
M0 ∀β∀γ∃α : α = β × γ Closure
M1 ∃1∀α : α× 1 = α Identity 1
M2 ∀α∃β : α× β = 1 ∧ α 6= 0 Inverse
M3 ∀α∀β∀γ : (α× β)× γ = α× (β × γ) Associativity
M4 ∀α∀β : α× β = β × α Commutativity

D ∀α∀β∀γ : α× (β + γ) = (α× β) + (α× γ) Distributivity

Exclusion of all modulo addition

1 6= 0 Modulo 1

1 + 1 6= 0 Modulo 2

1 + 1 + 1 6= 0 Modulo 3

...
...

...
...

1 + · · ·+ 1 6= 0 Modulo
...

Table 1 Axioms of arithmetic. These are written as sentences in first-order logic. They
comprise the field axioms with added axioms that exclude modulo addition. Variables:
α, β, γ, 0, 1 represent objects the axiom-set acts upon. Semantic interpretations of objects
complying with axioms are known as scalars. The fact arithmetic is intrinsically existential
is clearly seen in the general use of the ‘there exists’ quantifier: ∃.

is logically isomorphic to ‘arithmetical processes in Nature’ and is key to gaining
logical agreement between quantum theory and experiment.

The new approach elevates quantum theory from a theory of equations to a
theory of existence. This is so because, collectively, axioms assert existence of
arithmetical objects we call scalars, sets of which make up structures we call
fields. Crucially, two modes of existence arise, distinct in their logical qualities.In this paper, scalars and fields are concepts

from linear algebra. It would be misleading to
visualise scalars as zero rank tensors from rel-
ativity or fields from quantum field theory.

Both modes are invoked because each is sanctioned (differently) by axioms. To ex-
plain: the various fields of scalars fall under different existence modes: the rational
field being special amongst all others. Existence of every infinite-field is consistent
with axioms, but only in the special case of the rational field, do axioms alsoconsistent with = satisfied by
prove the field’s existence.

And so, along with the familiar quantitative information of quantum theory,
existential information is also conveyed. Interpretationally, consistent and provable
existences, in Theory, are seen respectively as permitted3 and caused existences, in
Nature: permitted existence being neither caused nor prevented. Permission and
cause together constitute the earlier mentioned causeology.

Key, are concepts of logical dependence and logical independence4, and then of
consistency and inconsistency5. Informally, these may be understood as concepts of
provability, and truth. Section 5 explains theorems, dictating relationships connect-
ing these. Briefly, taking any two mathematical formulae (in the same language),
precisely one of the following relates them.

1. Each implies the other; such formulae are dependent and consistent.
2. Each implies the negation of the other; these are dependent but inconsistent.
3. Neither implies the other, nor does either imply the other’s negation; these are

independent and consistent.

Importantly therefore, a consistent theory may comprise both dependent and in-
dependent formulae. Indeed, single formulae can contain individual variables, some
conveying logical dependence, others, logical independence, the mix relying ulti-
mately on the origins of information entering the theory. By way of this mix,
rather than the classical logic comprising values true6 and false, a 3-valued logic

3 Permitted and caused existence may be seen as possible and necessary values, in a modal
logic.

4 Synonymous with mathematical undecidability.
5 Two formulae are inconsistent when they contradict. If they do not, they are consistent.
6 ‘True’ is an informal term for ‘consistent with axioms’.
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of provable-true, nonprovable-true and provable-not-true is transmitted around the
theory, the middle one of these being identifiable with indeterminate.

In order to read this causeological information, in her consistent theory, the
quantum theorist needs a practical method of distinguishing provable elements
from non-provable ones. Model Theory, a branch of Mathematical Logic, furnishes
powerful tools that address exactly this problem. These are the Soundness The-
orem and its converse, the Completeness Theorem. These theorems apply to all
first-order theories7 of which group theories and field theories are examples. In
particular, Arithmetic is a field theory. Soundness ensures that any provable for-
mula is guaranteed true, whether variables are interpreted as complex scalars, real
scalars, rational scalars, or scalars of any other infinite field. In the converse sense,
completeness ensures that any formula, true in every infinite field, is guaranteed
provable. Soundness and completeness, together, exclude an excluded-middle of for-
mulae, neither provable nor negatable – these are the formulae having disagreeing
truth-tables. Section 5 provides the detail.

And so, what is the specific relationship between quantum theory and arith-
metic? Leaving aside orthogonality of 3-space, all information in quantum math-
ematics is wholly arithmetical. I am not suggesting arithmetic proves the
physics, only that information in physics is written down as formulae in arith-
metic. This includes operators: they are essentially, linear combinations of arith-
metical terms. Even orthogonality in spectral vector spaces is information within
arithmetic! Standard theory is always unitary. Through much of theory, this uni-
tarity is redundant information. When all this redundant information is removed,
much of quantum mathematics is arithmetic consisting of logically dependent
theorems, derivable from axioms – with the exception of formulae involving or-
thogonal vector spaces of dimension ≥ 3. There are just two circumstances for
this.

1. In symmetries, such as su (2). See Section 11.
2. In wave packets. See Section 16

In 1944, Hans Reichenbach published his book detailing a 3-valued logic that
resolves ‘causal anomalies’ of quantum experiments [22]. His findings were later ap-
praised in a paper by Hilary Putnam [21]. This non-classical logic has the feature
that ‘false’ is not the same as ‘not true’, and consists of values: true, false and
indeterminate. Reichenbach arrived at the qualities for his indeterminate middle
through detailed analysis and elimination, with the aim of designing a logic isomor-
phic to the epistemology of quantum experiments. His logic is an adaptation of the
3-valued logic of Jan Łukasiewicz, which Reichenbach gives certain truth tables,
conjunctions, disjunctions, tautology etc [13].

From his 3-valued logic, Reichenbach derived a consistent epistemology for pre-
pared and measured states – typically the question of what we may know about the
state of a photon immediately before measurement. From his 3-valued logic, he suc-
cessfully derived complimentary propositions – if statement A is either true or false,
statement B is indeterminate, and vice verse, as is the case with measurements of
complimentary pairs such as momentum and position. And his logic also resolves
the problem of action at a distance, a paradox identified by Einstein, Podolsky &
Rosen [10,17].

Nevertheless, Reichenbach was not generally taken up. His logic is a construction
designed to fit experiment. It had no basis in physical first principles. Furthermore,
Reichenbach is not in alignment with the mainstream quantum logics, originat-
ing with Birkhoff and von Neumann [5] and based on the quantum postulates in Private thought: if Birkhoff and von Neu-

mann’s logic models conventional theory, is
validity of their logic not questionable, since
theory, their basic premise, contradicts exper-
iment?

Hilbert space quantum theory. Acceptance of these mainstream logics has tended
to discount Reichenbach’s. That said, Hardegree argues that these logics are not
in opposition: while Birkhoff and von Neumann’s logic reflects current theory, Re-
ichenbach’s reflects an alternative formulation, awaiting discovery [16]. The work
of this paper provides Reichenbach with foundation in arithmetic and unitarity.

The research of this present paper stems originally from a thought-experiment,
posed by the author, contemplating the problem of making a machine that would
simulate the Universe! Ignoring the small matter of immense complexity, this idea
throws up restrictions constraining the logical-form of Physical Law in Nature.
Regarding Physical Law as information in a program of instructions that operates
the machine, in order to truly replicate the Universe, a seminal factor is the topology

7 First-order is a term in logic not to be confused with the term describing approximation.
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of logical connections linking Physical Law with the Universe. This involves how
and where this information originates. I identify three broad possibilities:

1. Physical Law is simply ‘THERE’, pre-Universe;
2. Physical law has foundation in even deeper information, which in turn has

foundation in yet deeper – and so on...;
3. The Universe is the generating source of information, that then governs the

Universe.

Favouring 3, I took the view that, within Nature, we should expect to find circularity
or self-reference. That is, conditions in Nature where flow of information is cyclic.
For example, where the outcome of A has dependency on B and the outcome of B
has dependency on A. Symbolically:

∃A : A = f (B) AND ∃B : B = F (A) . (1)

This conclusion prompted an enquiry into theorems of Kurt Gödel, where self-
reference plays an instrumental part and led to a search for logical independence in
quantum theory. Interestingly, although a presence of self-reference is not a premise
of this research, the original idea is born out by its discovery, when in Section
17, occurrence of self-reference is confirmed, revealing that textbook physics, as it
stands today, unwittingly relies on self-reference of the type in (1).

In the first two decades of the twentieth century, mathematical logicians, no-
tably Whitehead and Russell, were working to set pure mathematics on a consistent
logical foundation [32], but their endeavours led to paradoxes they could not resolve.
Attempting to recover the situation, in 1920, David Hilbert announced his Hilbert’s
Programme [33]. But Hilbert’s hopes were wrecked by publication of Gödel’s First
Incompleteness Theorem in 1931, proving that no such foundation is possible and
that arithmetic is incomplete, unavoidably incorporating formulae that are mathe-
matically undecidable (logically independent) [12,14].

In 1936, Alan Turing took concepts of undecidability into the domain of the
physical world by showing computational machines, including mechanical ones,
unavoidably suffer the ‘Halting Problem’: that no algorithm can decide whether
a given program will ever halt [30]. In his 1982 paper, Gregory Chaitin gives a
proof that Gödel’s Theorem may be deduced from Turing’s [9]. More recently, by
extension of Turing, Svozil argued that undecidability is in physics [28]. In 2009,
Elemér Rosinger published his paper: "Self-Referential Definition of Orthogonality"
[23]. In recent work by Tomasz Paterek et. al., logical independence is formalised
algebraically, in orthogonal pairs of Pauli operators, and a link is demonstrated,
connecting this independence with quantum randomness in experiments, measuring
polarisation of photons, previously prepared, orthogonal to the measurement [20].
More recently still, Gergely Székely has shown that faster-than-light particles are
consistent with, but logically independent of special relativity [29].

2 Language

The material of this paper spans both formal arithmetic and mathematical
physics. These do not share the same language; indeed the language of the for-
mer is far smaller. For example, there is no definition for the symbol: 4. And so
extension of the former into the latter needs all manner of statements typified by:
4 = 1+1+1+1. In the interest of accessibility, these ‘higher’ definitions are omitted
and left to the intuition of the reader. Definitions for some high level expressions,
such as: expx = 1 + x+ · · · are given in Section 8.

In places, formulae use logical connectives: not (¬), and (∧) , or (∨), implies
(⇒), if-and-only-if (⇔): the quantifiers: there-exists (∃), for-all (∀): and turnstile
symbols: derives (`) and models (|=).



How arithmetic generates the logic of quantum experiments 5

Part I: Pure ARITHMETIC

3 Foundations of ARITHMETIC

Before there can be hope of logical isomorphism linking quantum theory with Na-
ture, we must first view arithmetic as Nature views it. That is, as arithmetic
works automatically as a machine of its own accord, without interference from the
mathematician. Its foundation must be that of Nature’s.

Alternative foundations for arithmetic are known. In the definitional ap-
proach, scalars and their properties exist, a priori. This is the familiar everyday
approach, assumed and taken for granted, as a matter of course, in Applied Math-
ematics and Mathematical Physics. But once aware of an alternative, this defini-
tional approach must be seen as an arbitrary choice. A different foundation, known
to Mathematical Logicians, is the postulational approach [27]. In this, axioms are
adopted, a priori. Quantitatively, definitional and postulational approaches amount
to the same, but their logical forms are radically distinct.

In formulating the definitional approach, firstly, the natural numbers and their
properties are assumed. From there, their rules of addition and multiplication, Asso-
ciativity, commutativity and distributivity, are extended to new objects by defining:
negative, rational, irrational, then complex numbers [11, Vol 1, Chap 22]. These
rules are perceived as properties belonging to numbers: significance, meaning and
‘reality’ are placed on numbers, with rules perceived as subordinate and incidental.
The reverse is the case in the postulational approach; apriority is switched from
arithmetical objects to arithmetical rules. These rules are listed as axioms:
those in Table 1 [27, Chap. 6]. A scalar (number) is then any mathematical object
whose existence is consistent with these axioms. In the postulational approach
axioms are the foundation and scalars are incidental.

In place of the conventional concept, where arithmetic is a machine of compu-
tation, in the postulational approach, arithmetic is a theory asserting existence,
of scalars obeying particular equalities: some, logically dependent of axioms, all
others logically independent. With this postulational arithmetic in place, the
mathematician is not at liberty to interfere by declaring that certain scalars are
real and others complex; such a declaration would corrupt information in the theory.

Axioms (of Table 1) are a collection of propositions prescribing arithmetic.
Each conveys exclusive information, logically independent of the others [27]. Es-
sentially, they are the field axioms appended with additional axioms that exclude
modulo addition. The field axioms themselves are a union of axioms for the Additive
Group and Multiplicative Group, with a single axiom for distributivity.

Mathematical structures consistent with axioms are the infinite-fields. They
satisfy axioms collectively, and by doing so, are said to model them. There may be
many such fields, three of which are the complex plane C, the real line R and the
rational field Q. A scalar is a particular element of a field. These are numbers we
typically add and multiply and use as entries in arrays such as vectors or matrices.

4 Modes of existence in ARITHMETIC

The following five formulae are examples illustrating the different logical standings,
possible under axioms. Each is a proposition asserting the existence of some in-
stance of a variable α, complying with an equality specifying a particular numerical
value. Note: these formulae do not assert equality, they assert existence.

∃α : α = 3 (2)
∃α : α2 = 4 (3)
∃α : α2 = 2 (4)
∃α : α2 = −1 (5)
∃α : α−1 = 0 (6)

Of these, axioms prove only (2) and (3) (see below). Also, they prove the negation
of only (6); in point of fact (6) is inconsistent with axiom FM2. Consequently, the
remaining formulae, (4) and (5), are neither proved nor negated, but are logically
independent of axioms and both these, as well as their negations, are consistent
with axioms.
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Accordingly, instances of α in (2) and (3) are accepted as scalars, consistent
with axioms, proved to necessarily exist. The instance of α in (6) is inconsistent
with axioms and rejected as necessarily non-existent. And instances of α in (4)
and (5) are consistent with axioms and accepted as scalars whose existences are
possible.

Substitution between propositions
For substitution to be valid, an existential
quantifier of one proposition must be matched
with a universal quantifier of the other: In this
example these are highlighted by underlining:

∀β∀γ∃α : α = β + γ

∀β∃γ : γ = β + β

This is the technique used in this paper.

4.1 Proof of (2): ∃α (α = 3)

∀β∀γ∃α : α = β + γ Axiom A0 (7)
∀β∀ε∃γ : γ = β + ε Axiom A0 (8)
∀β∃γ : γ = β + β contraction of (8) (9)
∀β∃α : α = β + β + β Substitute (9), (7)) (10)
∃β : β = 1 by Axiom M1 (11)
∃α : α = 1 + 1 + 1 Substitute (11), (10)). (12)

4.2 Proof of (3): ∃α
(
α2 = 4

)
∀α : α× α = α× α identity rule (13)
∀β∃α : α = β + β Axiom A0 (14)
∀β∃α : α× α = (β + β)× (β + β) Substitute (14), (13)
∀β∃α : α× α = β × (β + β) + β × (β + β) Axiom D
∀β∃α : α× α = (β × β) + (β × β) + (β × β) + (β × β) Axiom D (15)
∃β : β = 1 Axiom M1 (16)
∃α : α× α = (1× 1) + (1× 1) + (1× 1) + (1× 1) Substitute (16), (15)
∃α : α× α = 1 + 1 + 1 + 1 Axioms M0, M1

In the cases of propositions (2) and (3), logical dependence is proved by their direct
derivation from axioms and likewise for the negation of (6). However, logical inde-
pendence of (4) and (5) is not provable by any direct derivation because axioms
are devoid of such information; in essence, this is the whole point of the discussion.
What does identify a logically independent proposition is its consistency table eval-
uated against individual fields. Enter the Soundness and Completeness Theorems.

5 Model Theory

Model theory is a branch of Mathematical Logic applying to all first-order theories
and therefore, to arithmetic [7,8]. Our interest is in two standard theorems:
the Soundness Theorem and its converse, the Completeness Theorem. Each, in
the converse sense of the other, these theorems guarantee a correspondence binding
provability with consistency in arithmetic. Together, the combined action of both,
excepts an excluded middle, isolating the set of all non-provable, non-negotiable
propositions – logically independent of axioms.

Briefly: any given (first-order) axiom-set is modelled by particular mathemati-
cal structures. That is to say, there are certain structures, consistent with each and
every axiom of that axiom-set. In the case of arithmetic, these modelling struc-
tures are the various infinite fields, consisting of scalars. The logically independent
propositions are identified by proving disagreement between axiom’s models.

5.1 Standard Theorems

Theorem 1 The Soundness Theorem:

Σ ` S ⇒ ∀MΣ
(
MΣ |= S

)
. (17)

If structure MΣ models axiom-set Σ and Σ derives sentence S, then every struc-A sentence is formula, such as:

∀α∀β (α+ β = β + α)

where there is no occurrence of any variable
not bound by a quantifier.

ture MΣmodels S.
Alternatively: If a sentence is a theorem, provable under an axiom-set, then that
sentence is true for every model of that axiom-set.
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Theorem 2 The Completeness Theorem:

Σ ` S ⇐ ∀MΣ
(
MΣ |= S

)
. (18)

If structure MΣ models axiom-set Σ and every structure MΣ models sentence S,
then Σ derives sentence S.
Alternatively: If a sentence is true for every model of an axiom-set, then that sen-
tence is a theorem, provable under that axiom-set.

Jointly, (17) and (18) result in the 2-way implication:

Theorem 3 The set of all provable sentences:

Σ ` S ⇔ ∀MΣ
(
MΣ |= S

)
. (19)

If structure MΣ models axiom-set Σ, then axiom-set Σ derives sentence S , if-
and-only-if, all structures MΣ model sentence S.
Alternatively: A sentence is provable under an axiom-set, if-and-only-if, that sen-
tence is true for all models of that axiom-set.

Also, for every sentence S there is a sentence ¬S; hence, in addition to (19), jointly,
(17) and (18) also guarantee a second 2-way implication:

Theorem 4 The set of all negatable sentences:

Σ ` ¬S ⇔ ∀MΣ
(
MΣ |= ¬S

)
. (20)

If structure MΣ models axiom-set Σ, then axiom-set Σ derives the negation of
sentence S, if-and-only-if, all structures MΣ model the negation of S.
Alternatively: A sentence is disprovable under an axiom-set, if-and-only-if, that
sentence is false for all models of that axiom-set.

In summary, while (19) isolates all sentences provable from axiom–set Σ, (20) iso-
lates all sentences negatable by this axiom-set. Significantly, together they except
sentences excluded by both. In the left hand sides of (19) and (20), there is no in-
dication of any excluded set of sentences that are neither provable, nor disprovable.
And so, it is of particular interest that the right hand sides of (19) and (20) together
imply the existence of sentences that correspond precisely to this condition. These
are those remaining sentences, excluded by the right hand sides of both (19) and
(20) defined by this conditionality:

¬∀MΣ
(
MΣ |= S

)
∧ ¬∀MΣ

(
MΣ |= ¬S

)
. (21)

The aim now is to match this with its corresponding left side. We firstly deduce
(22) and (23), the negations of (19) and (20):

¬ (Σ ` S)⇔ ¬∀MΣ
(
MΣ |= S

)
; (22)

¬ (Σ ` ¬S)⇔ ¬∀MΣ
(
MΣ |= ¬S

)
; (23)

and combine these, so as to construct:

¬ (Σ ` S) ∧ ¬ (Σ ` ¬S)⇔ ¬∀MΣ
(
MΣ |= S

)
∧ ¬∀MΣ

(
MΣ |= ¬S

)
. (24)

This limits sentences that are neither provable nor negatable, to those that are
neither true nor false across all structures that model the Axioms. For theories
whose axioms are modelled by more than one single structure, whereMΣ

1 andMΣ
2

are distinct, we deduce (25):

Theorem 5 Logical independence:

¬ (Σ ` S) ∧ ¬ (Σ ` ¬S)⇔ ∃MΣ
1
(
MΣ

1 |= S
)
∧ ∃MΣ

2
(
MΣ

2 |= ¬S
)
. (25)

Axiom-set Σ derives neither sentence S nor its negation, if-and-only-if, there exist
structures MΣ

1 andMΣ
2 which each model axiom-set Σ, such that MΣ

1 models S,
andMΣ

2 models the negation of S.
Alternatively: A sentence is true for some but not all models of an axiom-set,
if-and-only-if, that sentence is undecidable under that axiom-set.

This is covered in the section on logical independence by Edward Stabler, in his
1948 book. [27].
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Figure 1 Truth-space under AXIOMS of ARITHMETIC, for all propositions (small
circles) asserting existence of particular numbers. The innermost nesting is of propositions
true (consistent with axioms) in all fields. The Completeness Theorem guarantees these
are logically dependent theorems. The exterior set comprises propositions false (inconsistent
with axioms) in all fields; these are the only propositions inconsistent with axioms. The
Completeness Theorem guarantees these are logically dependent negations. Soundness plus
Completeness Theorems guarantee the excluded middle consists of logically independent,
mathematically undecidable propositions.

6 Model Theory acting on ARITHMETIC

This section introduces two, tests by inspection, confirming whether a proposition
asserting existence is logically dependent, or otherwise, logically independent of
axioms. In the Independence Test, Theorem 5 is applied in the context of arith-
metic. The structures that model axioms are the infinite-fields, but there are
potentially very many of these. Fortunately, in order to prove a proposition’s inde-
pendence, finding disagreement between only two suffices. The two fields of critical
interest in quantum theory are the complex field C and the rational field Q. And
for the sake of extending insight, the real field R is included in the discussion.

Independence Test For any given sentence S, whose variables are interpreted as
scalars of the complex plane C, the real line R, and the rational field Q:
S is confirmed independent of axioms if S is true in some field and
false in another.
This reduces to a check for disagreement within a truth-table.

Dependence Test Any proposition asserting existence is a logical consequence of
axioms, if-and-only-if, that existence is true in the rational field Q.

axioms ` S ⇐⇒ Q � S. (26)

Proof

Existence of any given rational is provable from axioms, by direct derivation.
By axiom M1, existence of the number is provable.
It follows, by axiom A0, existence of all positive integers Z+ is provable.
It follows, by axiom A2, existence of all negative integers Z− is probable.
It follows, by axiom M1, existence of reciprocals of all integers is provable.
It follows, by axiom A0, existence of all sums of reciprocals is provable.
Also, by axiom A1, existence of the number 0 is provable.

Hence:
Q � S ⇒ axioms ` S (27)

And by Soundness, for any infinite field F:

axioms ` S ⇒ F � S

implying
axioms ` S ⇒ Q � S. (28)

Together, (27) and (28) imply (27).



How arithmetic generates the logic of quantum experiments 9

7 Test by inspection for dependent or independent existence

7.1 Existence of particular scalars

All the truth-tables below concern propositions asserting existence of particular
scalars. Each table consists of a formula and values T or F denoting the formula’s
truth or falsity as its variables are interpreted as members of C, R, and Q. The
technique then is inspection for two of the possible outcomes:

� true in the rational field, indicating the formula is a theorem,
� disagreement, indicating the formula is logically independent of axioms.

Table 2 deals with the simplest illustrations: formulae (3), (4), (5) and (6) from
page 5.

α ∈ C α ∈ R α ∈ Q

∃α : α = 3 T T T

∃α : α× α = 4 T T T

∃α : α× α = 2 T T F

∃α : α× α = −1 T F F

∃α : α−1 = 0 F F F

Table 2 Truth-tables for simple existential propositions. In these T and F denote true and
false. Disagreement confirms independence; true in Q confirms dependence.

α ∈ C α ∈ R α ∈ Q

∃α : α = ξQ T T T

∃α : α = ζR T T F

∃α : α = ηC T F F

Table 3 Examples that are more general. Truth values showing dependence of an arbitrary,
particular, rational scalar ξQ, independence of the real scalar ζR and independence of the
complex scalar ηC.

7.2 Existence of functions

This next example illustrates logical ambiguity of formulae in applied mathemat-
ics. A function in applied mathematics can spurn different first-order propositions,
some of which might be theorems and others independent. This results by inter-
changing quantifiers. Note the crucial difference in validity between ∀x∃y

(
y = x2)

and ∀y∃x
(
y = x2). The first of these, quantified by ∀x∃y, is true for the ratio-

nal field and therefore is a theorem of axioms. The second, quantified by ∀y∃x is
independent of axioms, as confirmed by its disagreeing truth-table.

x, y ∈ C x, y ∈ R x, y ∈ Q

∀x∃y : y = x2 T T T

∀y∃x : y = x2 T F F

Table 4 Truth-tables concerning existence of x and y in the function y = x2. When reading
truth-tables, variables of the same sort are interpreted as members of the same model: in this
case, the same field.
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7.3 Existence of finite polynomials versus transcendental functions

Table 5 compares a finite polynomial p
(
xQ
)
with a transcendental function exp

(
xQ
)
,

both with rational, and therefore, logically dependent arguments. The polynomial,
a finite sum of rationals, is itself necessarily rational, but in contrast, the exponen-
tial:

exp
(
xQ
)
≡ lim
n→∞

[
1 + xQ +

(
xQ
)2

2 + · · ·+
(
xQ
)n

n!

]
,

is a never-ending sum that maps the rational argument to a generally irrational
value. By the Dependence Test, p

(
xQ
)
exists by theorem, but by the Independence

Test exp
(
xQ
)
exists independent of axioms. The exponential function, therefore,

introduces information not present in the axioms.

y ∈ C y ∈ R y ∈ Q

∃y : y = p
(
xQ
)

T T T

∃y : y = exp
(
xQ
)

T T F

Table 5 Truth-table for finite polynomial: ∃y
(
y = p

(
xQ
))

and the transcendental function:
∃y
(
y = exp

(
xQ
))

.

7.4 Dependence via Independence

Some scalars, existing independent of axioms, can combine arithmetically to
yield new scalars having dependent existence. To illustrate, consider the proposi-
tions: ∃α (α = 3 + 4i) and ∃β (β = 3− 4i). Both these are independent of axioms,
but the product of these scalars is the rational scalar 25, which exists by theo-
rem. The multiplication of conjugates, therefore, annihilates information held in
the individuals of the pair.

α ∈ C α ∈ R α ∈ Q

∃α : α = 3 + 4i T F F

β ∈ C β ∈ R β ∈ Q

∃β : β = 3− 4i T F F

β ∈ C β ∈ R β ∈ Q

∃γ : γ = αβ T T T

Table 6 Truth-tables showing the independent existence of a complex-conjugate pair and
dependent existence of their arithmetical product.

This next example throws up a rather peculiar concept. The proposition ∃y
(
y2 = −

(
xQ
)2
)

is independent of axioms. Nonetheless, its limiting case tends toward a theorem.
There is the suggestion here that possibly in the real world of Heisenberg’s uncer-
tainty, which is a finite discrepancy, propositions could conceivably become theo-
rems before the limit is reached, in the perfect mathematical sense.

y ∈ C y ∈ R y ∈ Q

∃y : y2 = −
(
xQ
)2 T F F

∃y : limx→0

[
y2 = −

(
xQ
)2
]

T F→ T F→ T

Table 7 A proposition approaching theorem status.
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8 Analysis and limits in ARITHMETIC

In later sections, when considering arithmetic infected with unitarity, we shall be
very interested in identifying certain logically independent formulae from amongst
a general environment of theorems. It will be helpful to avoid distractions of logical
independence, having nothing to do with the argument. To that end, this section
prepares a logically clean environment of theorems.

Any first-order proposition is a theorem if-and-only-if there exists a proof that
terminates [7, Unit 5, p17][6, p183]. And so no formula in arithmetic, requiring
a never-ending derivation of infinitely many steps, can be a theorem. From the
viewpoint of provability in arithmetic, this means certain definitions in analysis
need special consideration. Of particular interest are the exponential function, the
derivative and the integral: all constructs entailing limiting processes that never
‘halt’. Hence, through these constructs, quantum mathematics inherits a muddied
logical environment.

Here, alternative definitions are given, relying on constructs that do terminate.
The general idea is truncation of infinite series to ‘long’ series that are finite,
specifically designed to spawn errors, only when they are physically imperceptible.
Along with these definitions, insistence that polynomial coefficients be rational
ensures all functions are finite polynomials, derivable purely from axioms of Table
1. Conveniently, the theory’s notation reads unchanged.

Combined application of axioms M0 and A0 derives the sequence of theorems

The αi in (29) are logical objects. They
are valueless, bound (dummy) variables.
In contrast, the αQ

i , in (30), are particular
values. As an illustration of bound variables:
in writing the equation: α + β = β + α, an
algebraic property is implied and the informal
use of bound variables is invoked. The formal
version explicitly shows use of the ∀ quantifier,
thus:

∀α∀β (α+ β = β + α) .

Quantifiers ∀α and ∀β apply to every occur-
rence of α and β within the brackets. A for-
mula where every variable is bound is known
as a sentence. An example of a formula that is
not a sentence is:

∀β∃α (α = β + ϑ) .

In this, ϑ is not bound but is a free variable. It
is free to be substituted by a particular value.

∀α0, . . . ,∀αn∀x∃Pn : Pn (x) = α0 + α1x+ α2x
2 + . . .+ αnx

n (29)

asserting existence for all finite polynomials of every degree n = 1, 2, . . .. Now
the fact that (29) is a theorem should not be understood to imply, for example,
that: ∀x∃P (P (x) = 2 + ix) is automatically proved. This would need additional
theorems stating existence for numbers 2 and i. Existence of 2 can be proved,
but there is no theorem for existence of i. To be certain that some particular
polynomial exists by theorem, we must firstly be sure that all its coefficients exist by
theorem. So, because every rational scalar exists in logical consequence of axioms,
assignment of particular rationals αQ

0 , α
Q
1 , . . ., to variables α0, α1, . . . results in

all finite polynomials with rational coefficients, existing in logical consequence of
axioms:

∀x∃Pn : Pn (x) = αQ
0 + αQ

1 x+ αQ
2 x

2 + . . .+ αQ
nx

n (30)

8.1 The transcendental function

Through the above stratagem of employing sequences of theorems, partial sums
P0, P1, . . ., can be constructed, converging on any given transcendental function
Φ whose coefficients are known rationals: αQ

0 , α
Q
1 , . . .. With no limitation on ac-

curacy, by choosing partial sum PN of conveniently large degree N , this method
approximates any given transcendental function, to a logically dependent finite
polynomial.

Definition 1 The transcendental function:

Φ (x) = PN (x) = αQ
0 + αQ

1 x+ αQ
2 x

2 + . . .+ αQ
Nx

N

where N is sufficiently large that the discrepancy: PN+1 (x)−PN (x) = αQ
N+1x

N+1

becomes physically imperceptible for all x.

8.2 The exponential

Choice of rational values: αQ
0 = 1, αQ

1 = 1, αQ
2 = 1/2, . . ., αn = 1/n! specifies the

sequence of theorems asserting existence of partial sums E0, E1, . . ., exemplified
by:

∀x∃En : En (x) = 1 + x+ x2

2 + . . .+ xn

n! .
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Definition 2 The exponential function:

exp (x) = EN (x) = 1 + x+ x2

2 + . . .+ xN

N ! (31)

where N is sufficiently large that the discrepancy: EN+1 (x) − EN (x) = xN+1

(N+1)!
becomes physically imperceptible for all x.

8.3 The derivative

For a transcendental Φ from Definition 1, the sequence of theorems asserting exis-
tence of ratios Dx

0 [Φ (x)] , Dx
1 [Φ (x)] , . . ., exemplified in:

∀x∀Φ∃Dx
n : Dx

n [Φ (x)] = Φ (x+ εn)− Φ (x)
εn

converges on the derivative, for εn > εn+1 > 0.

Definition 3 The derivative DN :

d

dx
Φ (x) = Dx

N [Φ (x)] = Φ (x+ εN )− Φ (x)
εN

with εN = (1/2)N and N sufficiently large that the discrepancy: Dx
N+1 [Φ (x)] −

Dx
N [Φ (x)] becomes physically imperceptible for all x.

8.4 The Integral

Definition 4 The integral
If

∀x : f (x) = d

dx
Φ (x)

then
x2∫

x1

f (x) dx = Φ (x2)− Φ (x1)

where x is the bound variable on the integral and x1 and x2 are particular values.
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Part II: ARITHMETIC infected with unitarity

9 How ARITHMETIC accommodates quantum theory

I have been discussing arithmetic as a mathematical system whose informational
content is precisely that of axioms in Table 1, free of any ingress of information
originating in other areas of mathematics, physics or elsewhere. Moving away from
this situation of isolation, I now consider arithmetic as an environment altered
by quantum theory. I shall demonstrate that quantum theory carries information,
materialising in arithmetic as structures conveying the middle, indeterminate
value of arithmetic’s 3-valued logic, carried in the factor i =

√
−1.

To demonstrate this, an experiment is conducted in derivability, tracing sources
of information that must enter arithmetic before the various formulae of quan-
tum mathematics may be written. The scenario for the experiment is as follows.
Postulates of quantum theory are dismissed and play no part whatever. Instead,
to begin, arithmetic is initialised by positing axioms. Adoption of these axioms
represents the emplacement of a definite set of information asserting a definite set of
theorems. The line pursued then, aims to replicate quantum mathematics, written
as theorems, derived purely from axioms, but with the expectation that a point
will be discovered, revealing ingress of an extra item of information, that raises Evidence of gain and loss of information may

be of interest to entropy theorists.arithmetic’s informational content to a state exceeding that of axioms.
Results of this experiment show that only a single item of extra information is

needed and its ingress, as it enters arithmetic, goes unopposed, as no contradiction
with axioms ensues. The extra item of information concerns superpositions in a
wave packet. In the pure, isolated arithmetic, axioms cause a pair of superposi- Cause – Where I speak of axioms either caus-

ing or preventing a condition, my meaning is
that axioms prove or negate it.

tions to exist for a pair of complimentary variables, such as momentum–position.
But these are not the wave-like superpositions familiar in quantum mechanics; ax-
ioms cannot cause those. The ones caused are very general in character; they are
general linear combinations of ‘somewhat general’ basis vectors. This general form
is the condition of the caused superpositions, viewed as two non-interacting in-
dividuals. But acting as a coexistent pair, cross-substitution between one and
the other is unpreventable, though not caused. And through this mechanism, exis-
tence of definite, wave-like, quantum superpositions occurs without cause – at the
expense of a spontaneously born, implied, unitary ontology. The fact that information can enter a the-

ory ‘inadvertantly’ and then impose implica-
tions on that theory is strange, but that is the
essence of the discovery.

The cross-substitution constitutes a logical circularity or self-reference. The fact
of this self-reference is new information, manifesting in arithmetic as unitary
structures, and more visibly, as the square-root of minus one – the three then:
self-reference, unitarity and the square root, all logically independent of axioms.

The whole mechanism swings around the scalar product, as I now explain.
The scalar product is axiomatised not in axioms of arithmetic, but in Linear
Algebra. And yet, profoundly, the scalar product is free to form inadvertantly, in
arithmetic, without axiomatisation from Linear Algebra. To see this, it is helpful
to notice a weakness in thinking of function vector-spaces, using extrapolated ideas
of classical vector spaces, such as 3-space; the logical form of 3-space is different and
unrepresentative. In the case of 3-space, unit vectors are assumed to exist, a priori;
mathematically, they are non-existent without definition (or axiom). But in the
case of function spaces, basis vectors exist already as combinations in arithmetic.
And so, a theory of 3-space has informational content of axioms plus definitions of
the unit vectors x,y, z, whereas function spaces require information from axioms
only. When scalar products form in theories of 3-space, orthogonality is axiomatic
in definitions of x,y, z. But in scalar products forming between function spaces,
orthogonality is possible through accident.

And so, concisely, the overall scenario is thus. Information enters quantum the-
ory as two items. Firstly, there is the package of information constituting the ax-
ioms. This causes existence of function vector spaces, free of a scalar product; we
know these as Banach spaces. Independently, the second item enters: the fact of Note: non-unitary Banach spaces adequately

and faithfully represent quantum eigenspaces.
Hilbert space is not needed for computation of
quantum eigenvalues.

circularity. This allows Banach spaces to couple into pairs and cross-substitute. In
successful instances, pairs skew into ‘dual-spaces’, as a result of implicit unitary
scalings – these are the Hilbert spaces. The Banach spaces are essentially rational,
whereas the Hilbert spaces are essentially imaginary. As we have seen in previous
sections, rational and imaginary structures are logically distinct. Expression of both
enables a quantum theory to convey its full logic.
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In the region of the theory where the scalar product exists, (inadvertantly!),
arithmetic guarantees the whole unitary package: orthogonality, preserved prob-
ability amplitude, self-adjoint operators, Hilbert space and complex scalars. To
mark its containment within an otherwise rational theory, I call this the unitary
fragment.

10 The evidence

In order to prove my claim, that arithmetic generates the logic of quantum exper-
iments, I show that arithmetic, essential to quantum mathematics, is responsible
for a 3-valued logic, agreeing with the 3-valued logic of Reichenbach.

Evidence shows this logic is present in standard quantum theory, but hidden;
that the indeterminate value of Reichenbach’s logic is there, but obscured. In deriv-
ing the quantum-arithmetic, evidence shows that actually unitarity arises freely,
as component part of the logical mechanism. But believing it necessary, the quan-
tum theorist has imposed blanket unitarity, covering the whole theory, that oblit-
erates the logic.

Whilst there is no argument in favour of imposing unitarity, there is conclu-
sive evidence against. Sections below consider derivation for the free-particle. From
first principles, assuming Homogeneity of Space, working through the Canonical
Commutation Relation, representation by operators, eigensolutions, their superpo-
sitions, finally wave packets are derived. Through the whole of this, unitarity is
found to be redundant except in the wave packet, where it arises unpreventably,
without cause, as part of arithmetic. The fact wave packets existence prior to
measurement shows agreement between this ‘unitary-logic’ and Reichenbach.

The following list is an outline of the evidence.

1. Sections 5 and 6 confirm existence of imaginary-i in arithmetic, as logically
independent of axioms.
� Soundness and Completeness Theorems, in combined action, exclude its

logical dependence.
2. Section 11 shows that imaginary-i originates outside arithmetic, in Linear

Algebra.
� Generally, for 3+ dimensions, orthogonality implies existence of imaginary-i.

3. Section 12 confirms that Homogeneity of Space is non-unitary.
� Specifically, the (unitary) Canonical Commutation Relation is shown incor-

rect algebra if the whole information of homogeneity is to be conveyed.
� Instead a non-unitary super-algebra of the Canonical Relation, not requiring

existence of imaginary-i, is established as the genuine commutator.
4. Section 12. Deposing complex arithmetic, arithmetic under axioms is con-

firmed correct foundation for wave mechanics.
� Specifically, assuming the most general homogeneity as foundation for wave

mechanics, there is no demand for any existence of imaginary-i.
� Hence, Proposition (5) is not an axiom.

5. Section 13 shows wave packets, written as formulae in arithmetic under
axioms, are consistent with general homogeneity.

6. Sections 16 and 17 show that a wave packet is a purely arithmetical object
and profoundly, comprises information of two logical qualities. Specifically:
� superpositions, caused and implied by axioms,
� unitarity, neither causable nor preventable by axioms, inadvertantly arising

out of self-reference, consistent with axioms.

11 How imaginary-i originates in Linear Algebra

The following is a proof adapted from the work of W E Baylis, J Huschilt and Jiansu
Wei [3]. It shows that the square-root of minus one arises in logical consequence of
orthogonality in any vector space of 3+ dimensions8.

8 The notion of dimensionality is complicated by, for instance, the fact that the su2 Lie
algebra is 3-dimensional but has for its basis, 2-dimensional matrices.
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Assume existence of a vector space with independent basis e1, e2, e3, e4, . . .
and further assume orthogonality embodied in their products, thus:

e1e2 + e2e1 = 0 (32)
e2e3 + e3e2 = 0 (33)
e3e1 + e1e3 = 0 (34)

e1e1 = e2e2 = e3e3 = 1 (35)

where 0 and 1 are linear operators such that ei + 0 = ei and ei1 = ei.
By (32) and (35):

e1e2 = −e2e1

⇒ e1e3e3e2 = −e2e1

⇒ e1e3 = −e2e1e2e3 . (36)

And similarly, by (33) and (35),

e3e2 = −e2e3

⇒ e3e1e1e2 = −e2e3

⇒ e3e1 = −e2e3e2e1 . (37)

Adding (36) and (37) gives:

e3e1 + e1e3 = − (e2e3e2e1 + e2e1e2e3) .

And substituting (34) results in:

0 = e2e3e2e1 + e2e1e2e3

⇒ e2e3e2e1 = −e2e1e2e3

⇒ e3e2e1 = −e1e2e3

⇒ e3e2e1e3e2e1 = −1
⇒ (e3e2e1)2 = (−1) 1 (38)

⇒ e3e2e1 = ±i1 . (39)

Remark 1 Introduction of e4, e5, e6, . . . , adds nothing more of interest.

Remark 2 In this proof, there is no reliance on non-commutativity. Though less
obvious, its validity for the commuting case can be visualised through the limiting
case, as eiej − ejei → 0

12 Tracing the origins of unitarity – eliminating homogeneity of space

The Canonical Commutation Relation (55) embodies core algebra at the heart of
wave mechanics. It’s purported significance is representation of the homogeneity of
space, and this is accepted by quantum theorists as unitary. In the section here, I re-
examine the Canonical Relation’s derivation to provide evidence that, contrary to
this accepted view, homogeneity is not generally unitary. And in consequence show
that the Canonical Commutation Relation does not simply and exactly represent
homogeneity but contains other information also.

Imposing homogeneity on a system is identical to imposing null effect under ar-
bitrary translation of reference frame. The principle we invoke is form invariance:
this is the the concept from relativity that a symmetry transformation leaves for-
mulae fixed in form, though values may alter [25]. In the case at hand, the relevant
formula whose form is held fixed is the eigenvalue equation for position:

x |fx〉 = x |fx〉 . (40)

With form held fixed as the reference system is displaced, variation in the position
operator x determines a group relation representing the homogeneity symmetry.
Under arbitrarily small displacements, this group relation corresponds to homo-
geneity’s Lie algebra.
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Figure 2 Passive translation of a function Two reference systems, Ox and Ox′ , arbi-
trarily displaced by ε, act individually as reference for position of a function f . If space along
x is homogeneous, physics concerning this function is described by formulae, of the same
form, both for Ox and Ox′ . Note: The function and reference frames are not epistemic; f
is non-observable and Ox and Ox′ are not observers.

To maintain the form of (40), under translation, the basis |fx〉 is cleverly man-
aged. While translation transforms the basis from |fx〉 to |fx−ε〉, a similarity trans-
formation is applied also, chosen to revert |fx−ε〉 back to |fx〉. This works only
for real ε, due to the nature of the similarity transform, and if conceived as ra-
tional, existence of ε is attributable to axioms. Then happily, for a continuum of
translations there exists a corresponding continuum of similarity transformations.
Acting together, they hold |fx〉 static, with translation and similarity transforma-
tion, both, very nicely, parameterised by the same single parameter ε. The scheme
of transformations is depicted in (41). The bottom left hand formula is the resulting
group relation.

x |fx〉 = x |fx〉

��

Ox→Ox′

translation // x |fx−ε〉 = (x+ ε) |fx−ε〉

|fx−ε〉→|fx〉 similarity

��(
SxS−1 − ε1

)
|fx〉 = x |fx〉

(
SxS−1 − ε1

)
|fx〉 = x |fx〉oo

(41)

Now, in textbook theory, S is understood to be necessarily unitary, for the rea-
son that any theory must preserve invariance of the scalar product [17,18]. And
so, because it is needed for probabilistic reasons, unitarity is imposed, axiomati-
cally, at this point in theory, as additional information, restricting the similarity
transformation and the homogeneity symmetry.

As an experiment, we proceed in this paper, by treating unitarity as a purelyUse of quantifiers: Quantifier notation elim-
inates ambiguity suffered in ordinary equa-
tions. To illustrate: the equation y = x2

doesn’t express which of ∀y∃x
(
y = x2) or

∀x∃y
(
y = x2) is intended. Quantified bound

variables express algebraic information and
may not be substituted by particular values;
if they were, information specifying algebra
would be lost.

separate issue from homogeneity and allow S it’s widest generality so that homo-
geneity’s whole information is genuinely conveyed through the theory. The experi-
ment begins with the eigen-equation for position (40) being rewritten, in notation
of first-order logic, as the eigenformula in proposition (42). Where x is a rational
linear operator: that is, a linear combination of rational variables, and f and x as
rational numbers, (42) can be accepted as a provable theorem of axioms.

All informal assumptions are to be shed; the Dirac notation is dropped to
avoid any inference that vectors are intended as orthogonal, in Hilbert space, or
forming scalar products; none of these is implied. The only information present is
the homogeneity symmetry and the set of axioms listed in Table 1. Information
held in the fact that the eigenformula is an eigenformula is a filter accepting only
persistent information from axioms.Significance of eigenformulae A possible

interpretation for eigenformulae is they are
propositions that support stable, persistent ex-
istence for certain functions. (42) can be con-
sidered as the mapping:

x
x
f (x) 7→ f (x) .

Action of the operator x/x on f (x) returns
f (x) itself.

Consider the eigenformula for position x of function f , corresponding to refer-
ence frame Ox

∃x∃x∃f : xf (x) = xf (x) (42)

Translation: Homogeneity demands existence of an equally relevant, further refer-
ence frame Ox′ displaced arbitrarily through ε. This includes complex displace-
ments. Under this displacement the principle of relativity guarantees a formula for
Ox′ of the same form as that for Ox, in (42), thus:

∃x∃x′∃f ′ : xf ′ (x′) = x′f ′ (x′) (43)
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The translation transforms position, thus:

∀ε∀x∃x′ : x 7→ x′ = x+ ε (44)

and the function, so:

∀ε∀x∀f∃f ′∃x′ : f (x) 7→ f ′ (x′) = f (x− ε) (45)

Substituting these into (43):

∃ε∃x∃x∃f : xf (x− ε) = (x+ ε) f (x− ε) . (46)

Similarity: The similarity transformation is now applied. Operator S is a member
of the general linear group GL (n). For vector space, dimension n, there exists an
operator S ∈ GL (n), transforming the set of basis vectors. Members of the one-
parameter subgroup S(ε) ⊂ S ∈ GL (n) perform all transformations that correspond-
ingly match the full set of translations. We may write:

∀f∀x∃ε∃S : S−1
(ε)f (x) = f (x− ε) . (47)

Substituting this into (46) the similarity transformation is thus formed:

∃ε∃x∃x∃f∃S : S(ε)xS−1
(ε)f (x) = (x+ ε) f (x) .

Introducing the trivial eigenvalue equation: ∀f∀x : ε1f (x) = εf (x) and subtract-
ing:

∃ε∃x∃x∃f∃S :
(

S(ε)xS−1
(ε) − ε1

)
f (x) = xf (x) . (48)

Now comparing the original position eigenvalue equation (42) against (48), we de- There may seem apparent risk that ∃f in (42)
might not match (equal) the ∃f in (48), but
note: the translation and similarity were de-
signed for the purpose of matching one f with
the other
.

duce the group relation for homogeneity:

∃ε∃x∃x∃f∃S : xf (x) =
(

S(ε)xS−1
(ε) − ε1

)
f (x) . (49)

From this group relation, the commutator for the Lie algebra is now computed.
Because S(ε) is a one-parameter subgroup of GL (n), there exists a unique linear
operator g [15, p 37. but see footnote]9 such that:

∀S∃ε∃g : S(ε) = eεg (50)

Noting that homogeneity is totally independent of scale, an arbitrary scale factor
η is extracted, thus: ∀g∀η∃k : g = ηk, implying:

∀η∀S∃ε∃k : S(ε) = eηεk (51)
∀η∀S∃ε∃k : S−1

(ε) = S(−ε) = e−ηεk (52)

Substitution of (51) and (52) into (49) gives:

∀η∃ε∃x∃f∃x∃k : exp (+ηεk) x exp (−ηεk) f (x) = [x + ε1] f (x)
⇒ ∀η∃ε∃x∃f∃x∃k :

[
1 + ηεk +O

(
ε2
)]

x
[
1− ηεk +O

(
ε2
)]
f (x) = [x + ε1] f (x)

⇒ ∀η∃ε∃x∃f∃x∃k :
[
x + ηεkx +O

(
ε2
)] [

1− ηεk +O
(
ε2
)]
f (x) = [x + ε1] f (x)

⇒ ∀η∃ε∃x∃f∃x∃k :
[
x + ηεkx− ηεxk +O

(
ε2
)]
f (x) = [x + ε1] f (x)

⇒ ∀η∃ε∃x∃f∃x∃k : [kx− xk] f (x) =
[
η−11−O (ε)

]
f (x)

After freeing ε from its ∃ε quantifier, at the limit, as ε→ 0, we have:

∀η∃x∃f∃x∃k : [k,x] f (x) = η−11f (x) (53)

And by a similar, symmetric proof for the same commutator, but with eigenfunc-
tions g (k), of k:

∀η∃x∃f∃x∃k : [k,x] g (k) = η−11g (k) . (54)

Importantly, we see (53) and (54) is ∀η, rather than the special case of η−1 = −i,
in sub-algebra we know as the Canonical Commutation Relation:

[k,x] = −i1 or [p,x] = −i~1 (55)

And in conclusion, the above establishes that the homogeneity symmetry, of itself,
is not unitary.

9 This assertion requires further argument; the citation asserts finite dimensional S only.
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13 Tracing the origins of unitarity – eliminating representationNote: Exponentials, derivatives and
integrals take definition from Section 8.

From here, theory moves away from the purely abstract objects, k and x, by intro-
ducing explicit operators, satisfying the commutator, and furnishing an algebra we
know as a ‘representation’. The operators are linear operators and are essentially
arithmetical objects. Crucially however, there exists more than one representation
and the different representations convey different information-sets extracted from
the original information of the homogeneity symmetry.

In standard theory, the commutator that operators satisfy is the Canonical
Relation (55). This has two unitary representations, each a sub-algebra of homo-
geneity, whose operators are self-adjoint. They are known as the position-space
representation and wavenumber-space representation. Respectively:

kf (x) = −i ddxf (x) xf (x) = xf (x) 1f (x) = dx
dxf (x) ;

xg (k) = i ddk g (k) kg (k) = kg (k) 1g (k) = dk
dk g (k)

(56)

The new theory parallels this standard approach, but conveys the whole information
of the homogeneity symmetry by employing operators satisfying the commutators
(53) and (54). These new operators are not self-adjoint and furnish a non-unitary
algebra. They are deduced as follows. The identity for the derivative of a product,
(uv)′ ≡ uv′ + u′v, is invoked, in turn for each of the products: xf (x) and kg (k).
Written out formally they form the pair of theorems, deriving purely from axioms:

∀η∀x∀f∃ d
dx

: η
d

dx
[xf (x)] = η

dx

dx
f (x) + ηx

d

dx
f (x) (57)

∀η∀k∀g∃ d
dk

: −η d
dk

([kg (k)]) = −η dk
dk
g (k)− ηk d

dk
g (k)

Rearranged and written as commutators, these become:

∀η∀x∀f∃ d
dx

:
[
η
d

dx
, x

]
f (x) = η

dx

dx
f (x) (58)

∀η∀k∀g∃ d
dk

:
[
k, η

d

dk

]
g (k) = −η dk

dk
g (k) (59)

These prove (53) and (54); providing the two non-unitary representations:

∀η∀f∀x∃ ddx : kf (x) = +η−1 d
dxf (x) xf (x) = xf (x) 1f (x) = dx

dxf (x)

∀η∀g∀k∃ ddk : xg (k) = −η−1 d
dk g (k) kg (k) = kg (k) 1g (k) = dk

dk g (k)
(60)

14 Eigenformulae and persistent functions

Assume existence of particular functions f (x) and g (k), that survive under the
action of these operators:

∀η∀x∃f : +η−1 d
dxf (x) 7→ f (x) xf (x) 7→ xf (x) dx

dxf (x) 7→ f (x) (61)
∀η∀k∃g : −η−1 d

dk g (k) 7→ g (k) kg (k) 7→ kg (k) dk
dk g (k) 7→ g (k) (62)

Then under sustained, repeated action of these operators, existence of f (x) and
g (k) is stable and persistent. The fact of any such stability is expressed in the pair
of eigenformulae:

∀η∀x∃f : + 1
η

d

dx
f (x) = f (x) (63)

∀η∀k∃g : −1
η

d

dk
g (k) = g (k) (64)

The reason there are just two eigenformulae, rather than six, is that only the first
pair of mappings in (61) and (62), restrict f (x) and g (k); the second and third
pairs carry no additional information, that is not redundant.



How arithmetic generates the logic of quantum experiments 19

15 Tracing the origins of unitarity – eliminating persistent functions

The line of argument now moves to the objective aim of the paper – tracing the logic
connecting axioms with stable functions, consistent with homogeneity. I now start
afresh, with axioms as the only rules in force. I shall derive information caused by
axioms, that is coincidentally, stably consistent with homogeneity. To start the
process, in the manner of Section 8, through repeated application of axioms of
Table 1, I derive existence of the finite polynomial:

∀y∃EN : EN (y) = 1 + y + y2

2 + . . .+ yN

N ! (65)

where N is sufficiently large that the discrepancy: EN+1 (y) − EN (y) = yN+1

(N+1)!
becomes physically imperceptible for all y. Then using axiom M0, I may write:

∀η∀k∀x∃y : y = +ηkx
∀η∀k∀x∃y : y = −ηkx

Substituting these in turn, into (65):

∀η∀k∀x∃EN : EN (+ηkx) = 1 + ηkx+ (ηkx)2

2 + . . .+ (ηkx)N

N !

∀η∀k∀x∃EN : EN (−ηkx) = 1 + (−η) k + (−ηkx)2

2 + . . .+ (−ηkx)N

N !

Simply relabelling EN (+ηkx)→ f (x) and EN (−ηkx)→ g (k):

∀η∀k∀x∃f : f (x) = 1 + ηkx+ (ηkx)2

2 + . . .+ (ηkx)N

N !

∀η∀k∀x∃g : g (k) = 1 + (−η) k + (−ηkx)2

2 + . . .+ (−ηkx)N

N !
And utilising Definition 2 of Section 8:

∀η∀k∀x∃f : f (x) = exp (+ηkx) (66)
∀η∀k∀x∃g : g (k) = exp (−ηkx) (67)

Now utilising Definition 3 of Section 8, for the derivative:

∀η∀k∀x∃f : + 1
η

d

dx
f (x) = + 1

η

d

dx
exp (+ηkx) (68)

∀η∀k∀x∃g : −1
η

d

dk
g (k) = −1

η

d

dk
exp (−ηkx) (69)

∀η∀k∀x∃f : + 1
η

d

dx
f (x) = exp (+ηkx) (70)

∀η∀k∀x∃g : −1
η

d

dk
g (k) = exp (−ηkx) (71)

∀η∀k∀x∃f : + 1
η

d

dx
f (x) = f (x) (72)

∀η∀k∀x∃g : −1
η

d

dk
g (k) = f (x) (73)

Thus proving (63) and (64) are derivable as theorems of axioms.
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16 Tracing the origins of unitarity – eliminating superpositions

Freeing the bound variable k of its quantifier ∀k in (72), and x of its quantifier ∀xRational scalars
From here onward, unbound, particular,
scalars emerge, notated using sanserif font,
thus: k, k′, k1k2, x, x′, x1, x2, . . .
In Section 8, the same variables are denoted:
kQ, xQ etc., but that notation is inconvenient
here. All these scalars are rational, and there-
fore exist by theorem, introducing no logically
independent information. A further point is
that the Riemann integral does exist on a ra-
tional domain.

in (73); then writing these as particular rational scalars, k and x, notated in sanserif
font, we have the two theorems:

∀η∀x∃fk : + 1
ηk

d

dx
fk (x) = exp (+ηkx) (74)

∀η∀k∃gx : − 1
ηx

d

dk
gx (k) = exp (−ηkx) (75)

Introducing particular rational scalars k1,k2,k3 . . . and x1,x2,x3 . . . , then invoking
axioms, linear combinations of may be constructed which also exist by theorem.
Writing the illustrative example where only 2 dimensions are non-zero:

∀η∀x∀ak1∀ak2∃fk1∃fk2 : 1
η

d

dx

[
+ak1

k1
fk1 (x) + ak2

k2
fk2 (x)

]
= ak1 exp (+ηk1x) + ak2 exp (+ηk2x) (76)

∀η∀k∀bx1∀bx2∃gx1∃gx2 : 1
η

d

dk

[
−bx1

x1
gx1 (k)− bx2

x2
gx2 (k)

]
= bx1 exp (−ηkx1) + bx2 exp (−ηkx2) (77)

And for J non-zero dimensions:

∀η∀x∀ak1 , . . . ,∀akJ∃fk1 , . . . ,∃fkJ : 1
η

d

dx

[
J∑
j=1

akn
kn

fkn (x)

]
=

J∑
j=1

akn exp (+ηknx)

∀η∀k∀bx1 , . . . ,∀bxJ∃gx1 , . . . ,∃gxJ : −1
η

d

dk

[
J∑
j=1

bxn
xn
gxn (k)

]
=

J∑
j=1

bxN exp (−ηkxn)

And so, for the entire continuous case:

Notation:
∫
dk f (k, x) ≡

∫
all Q

f (k, x) dk ∀η∀x∀a∃f : 1
η

d

dx

[∫
dk

a (k)
k f (k, x)

]
=
∫
dk
a (k) exp (+ηkx) (78)

∀η∀k∀b∃g : −1
η

d

dk

[∫
dx

b (x)
x g (k, x)

]
=
∫
dx
b (x) exp (−ηkx) (79)

But this continuous case is not so straightforward; (78) and (79) contradict axiom
M2. Specifically, existences of the sums (integrals) on the right require:

∀η∀x∀a∃Ψ : Ψ (x) =
∫
dk
a (k) exp (+ηkx) (80)

∀η∀k∀b∃Φ : Φ (k) =
∫
dx
b (x) exp (−ηkx) (81)

but examples exist that break the ∀a∃Ψ and ∀b∃Φ quantifier combinations. This
is because the integral is over an unbounded domain, and in the case of these
examples, there are only unbounded, non-converging sums. To illustrate, a (k) = 1
or b (x) = 1 furnish integrals that never converge, implying non-existence of Ψ or Φ.
Essentially, this type of integral sum, with ∀a or ∀b, cannot be defined in a way for
which there is a derivation that terminates. And with no prospect of derivability,
(80) and (81) are inconsistent with axioms.
� Result This inconsistency is fundamental for quantum theory; it prohibits all

wave functions unless square integrable. As a result, the well known principle
requiring square integrability is reducible to a result, implied by axioms.

We proceed with the pair of weaker, existential assertions, which are theorems:

∀η∀x∃a∃Ψ : Ψ (x) =
∫
dk
a (k) exp (+ηkx) (82)

∀η∀k∃b∃Φ : Φ (k) =
∫
dx
b (x) exp (−ηkx) (83)

In these, existential quantifiers ∃a and ∃b replace universal quantifiers ∀a and ∀b.
As both (82) and (83) are theorems, it follows they are mutually consistent, with
Φ (k) and Ψ (x) coexistent.
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17 Tracing the origins of unitarity – Self-reference Elemér E Rosinger and Gusti van Zyl also
connect self-reference, orthogonality and
independence [23].I now explore the possibility of theorems (82) and (83) accepting information,

circularly, from one another, through a mechanism where Φ (k) feeds a (k) and
Ψ (x) feeds b (x). There is no cause implying this self-reference; the idea is that
nothing prevents it.

To proceed, the strategy followed will be to posit a hypothesis that such self-
reference does occur, then investigate for conditionality implied. To properly doc-
ument this assumption, the hypothesis is formally declared, thus:

Circularity Hypothesis:

∀a∃Φ : a = Φ; (84)
∀b∃Ψ : b = Ψ. (85)

If these assumptions are substituted into (82) and (83) we get:

∀η∀x∃Φ∃Ψ : Ψ (x) =
∫
dk
Φ (k) exp (+ηkx) (86)

∀η∀k∃Ψ∃Φ : Φ (k) =
∫
dx
Ψ (x) exp (−ηkx) (87)

and that allows cross-substitution of Φ and Ψ , invoking a simultaneous pair of Simultaneous propositions
Illustrating. Taking the two propositions:

∀x : y = ax+ b
∀x : y = cx+ d

If these are to be solved simultaneously, the
repeated ∀x must lost, with instances of x from
each formulae, being particularised first. Their
joint solution then:

ax + b = cx + d

where x is the particular value variable.

propositions, which together, will force particular values on η. Before the pair can be
considered as simultaneous, in order to preserve validity, the repeated ∀η quantifier
must be lost, leaving the particularised (bold) η. Substituting (87) into (86) and
(86) into (87), we get:

∀x∃Ψ : Ψ (x) =
∫
dk

(∫
dx
Ψ (x) exp (−ηkx)

)
exp (+ηkx) (88)

∀k∃Φ : Φ (k) =
∫
dx

(∫
dk
Φ (k) exp (+ηkx)

)
exp (−ηkx) (89)

Tidying up, with reversed ordering of integrals:

∀x∃Ψ : Ψ (x) =
∫
dx
Ψ (x)

∫
dk

exp [η (x− x) k] (90)

∀k∃Φ : Φ (k) =
∫
dk
Φ (k)

∫
dx

exp [−η (k − k) x] (91)

The integrals over the exponentials, exist only when η is pure imaginary.

18 Unitarity

Currently, and up to this point, no imaginary scalars exist because there is no source
of such information in the theory. Existence of imaginary-i must be hypothesised,
logically independently of axioms.

Existence Hypothesis – for the square-root of minus one:

∃i : i2 = −1

Setting the particular number i =
√
−1 and also η = is, where s is rational, we

may write the following pair of formulae – consistent with axioms, but logically
independent of them:

∀x∃Ψ : Ψ (x) =
∫
dx
Ψ (x)

∫
dk

exp [+is (x− x) k] (92)

∀k∃Φ : Φ (k) =
∫
dk
Φ (k)

∫
dx

exp [−is (k − k) x] (93)
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Conclusions
This research set out to discover logical artefacts in mathematical physics that
derive and initiate indeterminacy, agreeing with quantum experiment. The main
finding tells how indeterminate information is constituted and where, in quantum
theory, it is present. But in arriving at these deductions, a hypothesis is proposed
concerning arithmetic’s place in Nature, demanding we regard arithmetic in physics
as a formal, axiomatised theory.

The original question inspiring this research asked whether logical circularity,
or self-reference, might possibly be present in Nature. And this speculation was
reinforced, knowing self-reference is a feature in the proof of Kurt Gödel’s Incom-
pleteness Theorems, which guarantee the existence of non-provable, but true state-
ments in arithmetic. In the language of Mathematical Logic, these statements are
logically independent of arithmetic’s axioms, being neither provable nor negatable.
One well-known example is the statement asserting existence of the square root of
minus one. And so, given the insistent presence of this number in quantum theory,
this statement was taken as entry-point for investigation.

This is the thesis. A hypothesis is posed assuming the proposition: Axioms of
arithmetic exist in Nature. This viewpoint is the reverse of the ordinary notion that
fields of scalars are fundamental in Nature, with arithmetic being an abstraction,
encoding their rules of combination. The difference is subtle but profound; instead,
axioms of arithmetic collectively assert existence for fields of scalars. Arithmetic
results, influencing physical processes, including logically independent statements.
And these we interpret as logical anomalies in experiments. To gain logical isomor-
phism between quantum theory and experiment, quantum mathematics must view
arithmetic as an axiomatised theory, also – as Nature views it.

Treating arithmetic as an axiomatised theory, this paper finds that formulae
representing wave packets (prior to measurement) are logically distinct from all
other formulae in quantum mathematics. Only these are essentially unitary; only
these require existence of imaginary-i; only these rely on self-reference and only
these are logically independent of axioms.

A wave packet consists of a pair of mutually consistent superpositions of compli-
mentary variables, such as wave-number and position. The wave packet is unitary,
but the superpositions, as individuals, are not. Considering an individual superposi-
tion as unitary makes no sense because both must coexist as a pair. To be unitary,
a superposition must feed off information offered by its complimentary partner.
From each superposition in the pair, there is a flow of information, satisfying a
void, deficient in the other. As a sustainable entity, existence of the whole wave
packet is dependent on self-reference. At first, the exchanging information might
be indefinite, but after repeated cycles of self-reference, information settles toward
something definite with square-integrability guaranteed. The self-reference does not
contradict axioms, but is consistent with them and therefore is not prevented. It is
possible through coincident coexistence of the superpositions.

This artefact of self-reference divides quantum mathematics into two logical
partitions: that part of theory, logically dependent on axioms, separate from wave
packets which are logically independent: on the one side, theory provable from
axioms, and on the other, theory consistent with axioms, but not provable – this
partitioned theory being interpretable as a causeology that causes observables,
but permits different spectral outcomes to result from identically prepared exper-
iments.

This theory posits axioms of arithmetic as profound and fundamental founda-
tion in Nature. It does not tell us the origins of these, but philosophical questions
reduce neatly to them. Axioms assert a theory of existence. They explain: persistent,
stable existence; caused, deterministic existence; uncaused, indeterminate existence.
The theory tells us observables are always real because provable existence is always
rational and it tells us that amplitudes are on the complex plane because wave
packets exist unprovably. It dispenses with all possible existence of unbounded su-
perpositions. And uncaused existence is suppressed in classical physics, because
there, no scalar product is invoked in arithmetic.

Finally it acts as foundation for the 3-valued logic of Hans Reichenbach which
he showed resolves the EPR paradox, the logic of complimentarity and the logic of
states, prior to measurement.
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