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Abstract

We give detailed computations and results of the application of our divergence-
free framework for quantum field theory to a scalar field model with quartic
coupling. Computations up to two loops are illustrated, and expressions for the
renormalized mass and coupling parameters are obtained. It is shown how it is
possible to obtain a divergence-free effective action. Moreover, the ambiguous
logarithmic mass contributions of conventional renormalization theory are fixed
perturbatively in favour of a well-defined vacuum that is consistent with flat-
space perturbative quantization.

1 Introduction

Let us consider the scalar field system with the Lagrangian density

1 1 A
5(09)" = gm*¢” — 56" (1)
The corresponding action in momentum space gives:
A
87+ 5) 3O IBS)AE) — 5lr + 5+ 4+ ) T H(r)D)6(1)O() @)

where we suppress integrations over momenta r, s, t, u, the ¢ functions are 4-dimensional,
and we have A(p) = —p? + m?.

We shall compute contributions in the effective action to two loops and vacuum contri-
butions to three loops. We shall follow our divergence-free schemel). To that end, the
functional derivatives are:

W(r) = 50 + s)0(s)Ar) — 6(r + 5+ -+ u) 5. 0(s)6(1)6(w) g
Wi(r,s) =—=6(r+s)A(r) —d(r + s+t+u)%¢(t)¢(u) (4)
Wir,s,t) = =6(r + s+t +u)rp(u) (5)

W(r,s,t,u) = —0(r+s+t+u)A (6)
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2 One-Loop Contributions

One-loop contributions are described by the expression
1

where W;; denotes the bilinear kernel in momentum space; we shall write W = A4V,
where Y is the field dependent part. In our case, we have in momentum space,

A(r,s) =0(r + s)A(p) Y(r,s)=0(r+s+t+ u)g<b(t)<b(u) (8)

Notice that an overall minus in the definition of both A and Y is insignificant.

According to our scheme, the corresponding regularized (or divergence-free) one-loop
contribution takes the form

i ; 1 1 (9)
2% M (At Y)
where € is a limiting parameter and p. denotes the operator (%)e. In our approach,
this operator is applied and the limit ¢ — 0 is taken after the integration over loop

momentum is performed.

We must expand the above expression with respect to the field insertions represented
by Y to obtain the formal series:

( 1 1 )
11 1 1 T(2+¢)
cae —mwY tarag AV 7Y
—_—
7 2+4€
- 50 tr (10)

111
1TB+e) ~ v~y &
it A A AT T

_—

\ 3+e Y,

This formal series must be combined with a rule of combining the momentum space
propagators (shown underbraced and indicating combining exponent) using Feynman
parameters.!!] The above series corresponds to a virtual scalar field loop with successive
numbers of external (effective) field insertions. With mini diagrams shown these are:

1 11
tribution: — =0 tr{ —— 11
vacuum contribution 50 b { ; Ae} (11)
N © SR
bilinear contribution: ¢ tr AHEY (12)
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)
O ' 11°(2 1,1
quartic contribution: — %QE tr 5% ZYZ Y (13)
—
2+€ )
O |
. o i ITB+e 1,1 1
hezilinear contribution: S0 tr 3T 16 ZYAYA Y (14)
3+
€ J

In the followings, we shall show how to utilize the above expressions for our scalar field
model by translating to momentum space.

2.1 Vacuum Contribution

The expression for the one-loop vacuum contribution is
o

In momentum space this gives

1 dip 1
2%¢ ) Gy (=P + )
Transforming to a Euclidean momentum integral p, — ip,, we have!
1 1 d*p 1
99 / 4 (2 2 (17)
27 e ) (2m)* (p* + m?)e
which integrates to give
1 I'(—2+¢)

2\2—¢
e 18
2% Tt ) (18)
Simplifying the gamma functions, and applying o., we obtain:

LI (m?)~ 1,3 )
2 C (-l (24 64r {rln(m >} (19)

2.2 Bilinear Contribution

Our expression for the one-loop contribution which is bilinear in the effective fields is

given by
O S
50 tr {A1+€Y} (20)

11t should be wellknown that the transformation from Minkowskian momenta to Euclidean counterparts is equivalent
to Feynman’s ie prescription for propagators.
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Comparing with our scalar field bilinear kernel, we have in momentum space a con-
tribution of the form $¢*{---}, where the momentum-independent coefficient is given

by
A d*p 1
—1 21
10¢ / (27T)4 (_p2 + m2)1+6 ( )

2
For the corresponding Euclidean loop integral, we have

A / (d4p ! (22)

2 2m)* (p? + m?)1+te

Integrating and simplifying, we get

A [(—1+¢) (m?)i=c = —

_ 0 A, (m?)e
32m27° T'(1+€)

3272 Y (C1te)  32n2

m?{1—In(m*)} (23)

2.3 Quartic Contribution

The expression for the one-loop contribution which is quartic in the external fields is

given by
O i JTet 11 o)
1\ Ta+oA A
2+e

Correspondingly, we have in momentum space the contribution §¢*(r)¢?(—r){---},
where the brackets contain

N T(2+e) 1
B 1 + 6 / / 1 — x)(—p2 + m2) + x[—(p + 7“)2 4 m2]}2+e (25)

where according to our operator expansion rule, the momentum-space propagators are
combined using a Feynman parameter z, with an exponent (2 + ¢€). The argument of
the combined propagator simplifies to

—p? —2xp-r —ar+m? = —(p+ar)* — 21l —2)r* + m?

Making a shift in the integration momentum p — p — xr, and going to Euclidean loop
momentum, obtain

7 iiz / / )4 {p? — z(1 — ;)TQ + m2}2+e (26)

Integrating over p, we obtain

A2 1 / 9 9
3920 E/ dz{m* —z(1 —x)r*}° (27)

0
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Executing p., we obtain

)\2
3272

/ dz In{m? — z(1 — 2)r*} (28)

We may expand this with respect to 72, and evaluate the parametric integral. For
instance, to order r2, we have

A2 , r? A N
—327T2/d.91:{ln(m)—31:(1—35)ﬁ—|----}2—327T2 {ln(m)—6ﬁ+---} (29)
0

It is the first term which corrects the coupling constant in one loop.

Alternatively, doing the parametric integral, we get the expression
A2 VAaAm? — rZtan~1(vV/r2/\/4m2 — 1?)
1672 Vr?

{1 — %ln(mQ) ) (30)

2.4 Hexilinear Contribution

We now compute the one-loop contribution to the effective ¢® term. This comes from

@)

In momentum space this gives a term of the form

11 2 2 2
PR (- =)o)

where the brackets are given by

i I3+e) 1.1 1

Totrd =29y y -y 1

6" YT+ A A A (31)
3+e

3. T(3+¢) / / d* 1
A r(1+e>0/ dxo/ dy/ 2 (000D Ted0 T derrrape &2

The argument of the combined propagator simplifies as follows:
(1—y)(=p° = 2zp-r —ar’ +m*) + y{—(p+ 7+ )" + m’} =
' =2z +y—ayp-r—(x+y—ay)r’ —2yp-s—ys’ +m’ =
~{pt+@+y—ayr+ys} —@+y—ay)(l—z—y+ayr’ —y(l—y)s’ —2y(1l —z —y+ay)r s +m’
Suppose we are interested with the ¢ contribution without momentum dependence.
Making the shift p — p — (x + y — xy)r — ys, we are left with the Euclidean integral

NG d4 1 A3

oD [ - - (33)
LC(1+4¢€) ) (2m)* (p? + m?)3+e 1672m?

Notice that the above integral does not need regularization. We can dispense with g,

put € = 0, and evaluate the Euclidean integral normally, for it is convergent. However,
it does not hurt to leave the universal prescription in place, for it gives the same answer.
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3 Two-Loop Contributions

The two loop contributions to the effective action are described by the expressions:?

1 e 1 rr—lvrr—

3 Wi W'+ EWiJ‘lemnWiz Wi Wi (34)
Here, Wi i, and Wi are the trilinear and the quadrilinear effective vertices, while VVZ;1
is the effective propagator. Our regularization here consists of replacing each effective
propagator by a limiting counterpart:

-1 —(1+e€)
Wi;w = 0 Wy (35)

Hence the regularized (divergence-free) counterpart of the above two-loop expression
iglt]
is
—(14a —(1+b
—50a Ob WijleVij( oy, U
(36)
500 00 0e Wi Wi Wy W, U0 040

Notice that each effective propagator has its own limiting parameter and procedure.
These limits would be applied after all loop integrals are done with. We can now
expand the above expressions to any desired order in the implicit effective fields. We
write for the bilinear kernel W;; = (A+Y);;, where A is field independent and Y is the
field dependent counterpart. In our scalar field theory, the trilinear kernel W;;;, is field
dependent and the quadrilinear kernel Wjji; is field independent. Notice that while Y
is of order 2 in the scalar field, W;;;, is only of order 1.

The regularized effective propagator expands likel”

1 1 T@+d 1.1 1B+ 111
Biv)= AF TU+gA A ararga aat G
7—:—/ T

where, again, the meaning associated with the above terms is that the momentum-
space propagators are understood to be combined using Feynman parameters with a
total power equal to their number plus € (argument of the associated upper gamma
function). Hence our 2-loop contributions expand as follows (mini diagrams shown):

1 by
vacuum contribution: CD — gl WijklAij(H )Akl(Hb) (38)

—(+a)re+y | 11
OCx Lowo WiV RER [ Sy |+

.7 . . . N——
bilinear contribution: RO (39)

S 000 Wi Wi AT AT AL

n
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¢ X ) 1 reda) [ 11 ress) | 11
_ gQa Ob Wijklm KYZ T(1+0) ZYK
N—— —
2+a ij 2+4b ki
—(14a 1,11
quartic contribution: O@ — éga ob mjklAij(1+ )Eﬁ’l?i KYEYK (40)
%’_/
3+b ki
i 1 A= (Fa) A—(1+b) L(2+¢) 1 1
— 4Qa 0b Oc WijkVVlmn il §m T(11o) K}/Z
~——
2+4c kn

In the followings, we shall adapt the above contributions to our scalar field system,
translate them to momentum space integrals, and compute them. The 2-loop quartic
contribution is of order A3, hence would be irrelevant for our present purposes.

3.1 Vacuum Contribution

In our scalar field system, the 2-loop vacuum contribution

¢ X ) 1 —(14a) A —
- gga Ob I/I/vijklAij(lJr )Akl(ler) (41)

translates to the momentum space expression

A d*p 1 dq 1
gla @ 4(_ 2 2)1+a 402 2)1+b (42)
8 (2m)* (=p? +m2)tte [ (2m)* (=p? +m?)t*

This gives the expression with Euclidean momentum space expression

A d*p 1 2
_ A 4
e o) (43)
Now we have

dp 1 A
€ = e — 1 _ l 2 44
¢ / (2m)* (p? +m?)1+e 1672 e e(—1+e) 16772{ n(m”)} (44)

which leads to the following two-loop vacuum contribution

SpU (16;)2 {1~ In(m?)y? (45)
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3.2 Bilinear Contribution

The first bilinear contribution

1 ~(1+a
OO 7 Qa Ob VV’L'jklAZ'j(l+ )

4

re+b (1,1
Fa+b) |A A
2+b kl

gives, for the coefficient of %gzﬁz, the momentum space expression

—%2{9“/ <§7§ (=7 +1m2>1+a}{9” g (;ﬁf (e +1m2>2*”}

Transforming to Euclidean loop momenta, we get

e armrme ot | dree)

Now we have the followings:

d*p 1 m2 (Tn2)—a m2
= o — 1 1 2
o / (2m)4 (p? + m?2)1+e 167T2Q a(—1+a) 1672 { n(m )}
) / L ! _ (m2)_b _ 1 ln(m2)
Qbrxl‘+l0 (2ﬂ)4(q2—k7n2)2+b'_ 16ﬂ29b b 1672

Hence we have the following result for the first 2-loop bilinear contribution:

5 () 00 o) o

1672

The second bilinear contribution

1 — a - b - c
@_ Ega Ob Oc VVZ]ICVVlmnAZl (+ )Ajrgpr )Akrgl+ )

gives, for the coefficient of 1¢(r)¢(—r), the momentum space expression

S / d*p / dq 1 1 1
6 %% | @nt ] @o)t (2 +m2) e (=2 + m2) 0 —(p+q +1)? + m?

(46)

(52)

(53)

The third limiting parameter ¢ and associated procedure g. are eliminated because in
a 2-loop Feynman integral computation, just two parameters are enough to guarantee

freedom from divergences; the third one is dummy.

We first perform the ¢ integral. For that purpose, we combine the involved propagators
using a Feynman parameter x. The argument of the resulting propagator becomes

1—2)(=+m?) +a{-(p+q+r)?+m’} =
—¢* = 2xq-(p+r) —x(p+r)?+m? =
—{a+tap+r)}? -zl —2)(p+r)*+m’
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The q integral becomes

2—|—b 1
I'(1+0) /d / 2m)4 {—[qg+z(p+1)]? —z(1 —z)(p+7)% + m2}2+b (54)

Making the shift ¢ — ¢ — z(q + r), and going to Euclidean loop momentum we have

. I'(2+0) , [ dig 1
o F<1+b>0/ wi- | e

Integrating over g we obtain
1

J R R (R R R Y

0

i ()
1672 T(1 + b)

Incorporating this in our full expresion, we have

X I'(b) y [ d? 1 1
T r(1+b)0/d"”(1x) /(%)4 P rm (=t +mp O

Before performing the integration over p, we must combine the two propagators using
a Feynman parameter y, where the argument of the resulting propagator becomes

( L=y (=p*+m?) +y{—z(l —2)(p+7)" +m?} =

—{1—y+yz(1—2)}p* —2yx(1 —2)p-r —yx(l —x)r* + m? =

|-y} e ) - S
Making the shift
yr(l —x)
=y tya(l—a)
then rescaling p — p/ \/ 1 —y+yx(l— 2z, and going to Euclidean momentum p, we
obtain

p—p—

( )\2( 1 I'(14a+b)

6 167r2) 9a O FTra)r(1+b) <

1 1 a,b—
Jo de(1=2) [) dy (1 = 9)y" ! rmomyye X (58)

1
f (27r)4 p2_2=2)y(=v) 54 o FeF
1—y+yz(l— z) +m }

Now integrating over p, we obtam

(X2 (1 \2 [(—1+a+b)
% (6:2) " 00 00t 7T ) ¢
1 1 o b
Jo de (=) [y dy (1 =)y mprmarayp (59)

l1—a—b
2 z(l-z)y(l-y) 2
L {m - 17y+y:1:(17x)r }
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The above may be expanded with respect to the external momentum r. Such expansion

corresponds to the order of derivatives in the coordinate-space effective action. To order

r?, we have

(A2 (1 I'(—14a+b) 2\1—a—b
6 (167r2) Qa Ob T a)T(1+b) (m?) X

1 1 o b
¢ Jo de(=2)" [§ dy (1 =) g (60)

z(l—z)y(1— r2
{1-0-e- gt

This gives for the momentum-independent term,

\

A2m? 1 T'(—1+a+bd) —a—b
6 (167r2) Qa Ob TATQIT(1+b) (m?) X
(61)

1 1 o b
Jo de (=2 Jy dy (1= 9)*y" " ey

The parametric integrals may be evaluated in the form of a series by expanding 1/{1 —
y+yz(1—x)}? with respect to yz(1—x)/(1—y). For instance we have for the parametric
integral:

( fol d.iE(l—-T)bel dy(l_y)a—be—l{l_M_{_...}%

1-y

fol dz (1 —x)° fol dy (1 —y)* 2yt -2 fol dor (1 — x)t+? fol dy (1 —y)* 3y’ =

POAHD(14a)0(B) _ 5 DR+HD(~24a)0(1+b)
\ T(2+b)T(—1+a+tb) T(4+b)T(—1+a+b)

(62)
Hence, we have the following (approximate) result for the momentum-independent 2-
loop bilinear contribution:

A2m?2 ( 1

6 W)Q 0q 0y (M?)7070 ['(—1+a+b)

Tta)r(1+h) <

(63)

{F(l—i—b) (=14+a)D(b) 2F(2+b) (=24a)0 (1+b)}
T(2+b)T (—1+a+b) T(4+b)(—1+a+b)

Simplifying and executing the limiting operations o, 0y, we obtain

P )

On the other hand, the momentum-dependent term of order 72 is

A (1 I'(atb) 2\—a—b,.2
6 (167r2) Qa O Firayrogy (M) X

1 1 a
Jo dza(l—a)™ [ dy (1 —y)™ ybm
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Here we can dispense with one of the limiting parameters, say b, and apply the limiting
operation o, to obtain immediately,

A_2< ! )2r20/1dxx(1x)0/1dy (1-y) (In(1 —y) —In(m2)} (66)

6 \ 1672 {1-y+yz(l—2)}3

The “approximated” numerical answer is

- % (1617T2) r?{0.8 + 0.5In(m?)} (67)

4 Two-Loop Renormalization

Collecting the above results for one- and two-loop contrubutions, and adding these to
the classical action, we obtain

(g {3 — n(m?) — 555 {1 — In(m?)}?}
{1 - 2 {08+ 05m(m?)}} (00

— {1 — {1 —In(m?)} — 51’\2%{1 - an(m2)}} im?¢?

[ — {1+ 5= n(m?)} 40

The 1st line corresponds to the vacuum contribution (cosmological term in gravitational
framework). The 2nd line corresponds to the corrected kinetic term. The 3rd line
corresponds to the corrected mass term. The 4th line corresponds to the corrected ¢*
coupling.

Notice that the constant vacuum contribution must be set equal to zero, since to be
consistent with our flat space quantization, any generated cosmological term must be
made to vanish; this would serve to fix the scale of In(m?), and render the theory
unambiguous.

Hence solving the series equation (iteratively in \)

3 2 A 2\12 _
3 In(m?) 32%2{1 In(m*)}*+---=0 (69)
for In(m?), we obtain
3 A
2 - —_— .« ..
In(m?) = 5t o5z T (70)

To the desired order in A, the effective action becomes independent of In(m?). The
coefficient of the kinetic term 1(9¢)? becomes

A2l 3
{1 - e (08 Z)} (71)
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Hence we must rescale ¢ such as

1A 1 3

The resulting coefficients of ¢? and ¢* would define the respective renormalized mass
and coupling constants in terms of their bare counterparts; inverting for m and A would
give the expressions that should be used in order to express any process in terms of the
physical mass and coupling constant.

5 Discussion

Whereas a preceding article!! has laid down the foundations of our effective action
scheme for divergence-free quantum field theory, the present article, dealing with a
standard scalar field theory, gives ample evidence that our techniques are easy to im-
plement in practice, and that the divergence-free framework simplifies the handling
of the renormalization program. Other articles would deal with the more interesting
applications, to quantum electrodynamics,’l gauge theories,* and quantum gravity.!”!
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