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Put all your hope in God, not looking to your reason for support.

Proverbs 3:5

ABSTRACT. We use the contradiction method for prove, again, that the Catalan’s constant is irrational.

1. INTRODUCTION

In Mathematics, the Catalan’s constant [1] is defined by
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(1.1) G = ZOW.

The Catalan’s constant was named after Eugéne Charles Catalan (30 May 1814 — 14
February 1894), a French and Belgian mathematician.

In previous paper [2], we prove that the constant G is irrational. In this paper, we damos
outra prova de que the constant G is irrational.

2. THE PROOF

LEMMA. The Catalan’s constant have the following representation in series
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Proof. We developed the power series formula from the definition of Catalan’s constant as follows
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THEOREM. The Catalan’s constant is irrational.
Proof. We will use the reductio ad absurdum.

By hypothesis, we suppose that G is a rational number. Of course, there exist two positive
integers a and b, such that G = a/b, where, clearly, b > 1. Firstly, we define the number
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If G is rational, then x is an integer. We substitute G = a/b into this definition to find
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It is obvious that the first term is an integer; because, for b > 1, then 42 (b!)? <
(2b + 1)!2. The second term is an integer; because, for b > 1, then (2n + 1)24?b((b —
1)1)? < (2b + 1)!%. Hence x is an integer.

We, now, demonstrate that 0 < x < 1.

First, we demonstrate that x is strictly positive, we insert the series representation of G
into the definition of x and we find
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> 0.

On the other hand, for all terms with 2n +1 = 2b + 2, i.e., 2n = 2b + 1, we have the
upper estimate
(2b+1)! _ 1
(2n+ 1)! = (2b + 2)2n-2b
This inequality is strict for every 2n+1>2b+ 3, i.e,, n = b + 1. Thereof, we
substitute (1.1) and (2.4) in (2.1)
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Since there is no integer strictly between 0 and 1, we have get in a contradiction, and so
G must be irrational. O
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