Exploring Prime Numbers and Modular Functions Il:

On the Prime Number via Elliptic Integral Function
Edigles Guedes
November 16, 2013
In the beginning was the Word, and the Word was with God, and the Word was God.
John 1:1

ABSTRACT. The main goal this paper is to develop an asymptotic formula for the prime number, using
elliptic integral function.

1. INTRODUCTION

As consequence of the prime number theorem, I put the asymptotic formula for the nth prime

number, denoted by p,:

¢y pp~nlnn.

In this paper, I prove that

) K(256n—4) In2 can + 1 Inn
Po~2nK e a) ~ g Gt D -
9. THEOREM
THEOREM 1. 7 have
) K(256n—4) In2 64n + 1 Inn
Po~2nK e va) ~ g Gt D -

where p,, denotes the nth prime number and K (x) denotes the complete elliptic integral of first kind.

Proof. In [1], we encounter the identity
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In [2], we encounter an alternative for extremely high precision calculation is the formula
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where agm denotes the arithmetic-geometric mean of 1 and 4/s, and
s=mn-2m>2P/2,

with m chosen so that p bits of precision is attained. Now, the value of 8 for m is sufficient. Hence,
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Substituting (2) into (3), I get around
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Wherefore,
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I take (b)) in (1), and achieve
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This completes the proof. O
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