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Abstract: The origin of quantum behaviour (or equivalently, wave-particle duality) is an 

important problem for physics; moreover, Euclidean geometry and Riemannian geometry may be 

invalid if the small scales of real universe exhibit fractal structure. With this purpose, we attempt 

to develop a mathematical framework -call it the "non-local geometry"- and meanwhile propose a 

set of non-local calculus theory for analytically describing fractal (Euclidean geometry and 

Riemannian geometry are two special cases of fractal whenever the dimension equals an integer). 

Our study shows that the "Heisenberg Uncertainly Principle" and "non-local entanglement" would 

naturally emerge in the theoretical framework of non-local geometry. More interestingly, using the 

non-local geometry we show that if the dimension of time axis is slightly less than 1, then we can 

directly derive Planck's formula of energy quantum. This means that non-zero Planck's constant 

itself requires that the dimension of space-time is slightly less than 4; thus, our theory presents a 

natural explanation for the dimensional regularization of quantum field theory. Our further study 

shows that all computing results obtained by quantum field theory can be reproduced in the 

theoretical framework of non-local geometry. To discriminate our theory from current quantum 

field theory, we suggest a method of measuring the dimension of time axis. 
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1. Introduction  

 

   The quantum field theory is one of the oldest fundamental and most widely used tools in 

physics. It is spectacularly successful that the value of theoretical calculation is precisely in 

agreement with experimental data, for example, the anomalous magnet moment of electron. The 

quantum field theory is established on the basis of the theoretical frameworks including special 

relativity and quantum mechanics. The starting point of special relativity is the principle of  

invariant light speed, while the starting point of quantum mechanics is Planck's hypothesis of 

energy quantum[1-2], i.e., 

     h             (1) 

   where, h  denotes the Planck's constant and   the frequency. 

                                                 
*
 Project supported by the Scholarship Award for Excellent Doctoral Student Granted by Ministry 

of Education of China (2012), (Grant No. 0903005109081-019). 
† Corresponding author.  

E-mail address: taoyingyong@yahoo.com 



 

 2 

   It is well known that the principle of invariant light speed is an intrinsic requirement for the 

symmetry of Maxwell electromagnetism equations. Nevertheless, the hypothesis of energy 

quantum (1), which differs from the principle of invariant light speed, is a result of Max Planck's 

attempts to provide a theoretical explanation for the empirically discovered laws of blackbody 

radiation. Although the quantum mechanics provides a powerful way to our understanding of 

microscopic structure of matter, so far there is still no consensus on the origin of the Planck's 

constant, for instance, whether the Planck's constant can be derived from a deeper principle or 

not? 

   More importantly, EPR paradox, presented by Einstein et al [3], indicates that the quantum 

entanglement would violate the principle of locality of field theory, for example, the locality of 

field would be violated within the Compton wavelength [4]. 

   In addition to violations of the principle of locality, there further exists ultraviolet divergence 

in quantum field theory, which need to be removed using the dimensional regularization [5]. 

Dimensional regularization requires that S matrix should be calculated in a non-integer 

dimensional space-time [5]. Later, Svozil developed the quantum field theory on fractal 

space-time (QFTFS), the main advantage of this approach is preservation of gauge invariance and 

covariance [6]. Svozil's work implies that the dimens ion of space-time should be  4D , 

where, 10   [6].    

   Interestingly, recently, the investigation for a consistent theory of quantum gravity strongly 

indicates that a power-counting renormalizable gravity model can be achieved in a fractional 

dimensional space-time, for example, the Horava-Lifshitz (HL) gravity model [7-8]. 

Unfortunately, HL gravity model is not Lorentz invariant. To maintain the Lorentz invariance, 

Calcagni [9-10] extended the theoretical framework of Svozil's QFTFS so as to contain the case of 

gravity. Calcagni's work shows that if the Haudorff dimension of space-time 2~Hd , then the 

ultraviolet divergence can be removed. 

   Above developments of quantum field theory and quantum gravity incarnate the popular  

notion that "the Universe is fractal" at quantum scales [9]. Unfortunately, there is still not a set of 

rigorous calculus theory for analytically describing fractal. In general, people use the fractional 

calculus to approximately describe fractal [11]. It is the purpose of this paper to propose a 

theoretical framework of "non-local geometry" for analytically describing self-similar fractal (e.g., 

self-correlation between local and global shapes). Our study shows that the non-locality of 

quantum entanglement can be understood within the framework of the non-local geometry. 

Interestingly, if we assume that the dimension of time axis is a fraction, then we can derive the 

formula (1) of energy quantum and the Planck's constant by making use of non-local geometry. 

Fortunately, fractional dimension is an intr insic requirement for the dimensional regularization 

[5-6]; therefore, our theory essentially provides a natural explanation for the dimensional 

regularization. Later, we shall develop the quantum field theory on the basis of the theoretical 

framework of non-local geometry, where we would note that Svozil's QFTFS can be reproduced in 

the theoretical framework of non-local geometry. This means that the non-local geometry will be 

an intrinsic way of describing quantum field, even for quantum gravity.  

   The organization of our paper is as follows. In section 2, we introduce the basic ideas of 

non-local geometry and the definition of non-local derivative. More detailed descriptions of 

non-local geometry will be introduced in Appendix A and Appendix B. In section 3, we attempt to 
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derive the Planck's formula of energy quantum using the non-local geometry. In section 4, we 

present a satisfactorily logical framework for quantum mechanics. In section 5, we develop the 

quantum field theory on non-local space-time. In section 6, our conclusion follows. 

 

2. Non-local geometry  

 

   We have developed the theoretical framework of non-local geometry in Appendix A and 

Appendix B. In this section, we only present a brief introduction for basic ideas of non-local 

geometry, and discuss the connection between quantum physics and non-local geometry. More 

mathematic details see Appendixes A and B.  

   In classical mathematics, the dimension of a geometric graph is determined by the number of 

independent variables (i.e., the number of degrees of freedom). For example, every point on a 

plane can be represented by 2-tuples real number  21, xx , then the dimension of the plane is 

denoted by 2. Nevertheless, Peano's curve, which is determined by an independent characteristic 

parameter, would fill up the entire plane [12]. This means that if the classical definition of  

dimension is taken into account, then the dimension of the plane must be denoted by 1. It is a clear 

contradiction.   

 

2.1. Shortcoming of Hausdorff measure 

 

   The existence of Peano's curve led mathematician to reconsider the definition of dimension, 

for example, the Hausdorff dimension, which later led to the development of fractal [13]. In 

general, the Hausdorff dimension is determined by the Hausdorff measure. Unfortunately, 

Hausdorff measure can determine the dimension of a fractal curve but not describe its analytic 

properties, for example, the self-similarity between local and global shapes of a fractal curve. To 

realize this fact, we attempt to check the case of the Cantor set, sees Fig.1. [11, 14]. 

   As shown by Fig.1, the Cantor set is a fractal. Using the Hausdorff measure (A.7) (sees 

Appendix A) we can compute the dimension of the Cantor set as [14] 

    ...6309.0
3ln

2ln
D  

   Nevertheless, for the Cantor set, we does not realize any correlation between its local and 

global segments (i.e., self-similarity) through the Hausdorff measure. For instance, the Hausdorff 

distance between points 
 3

2x  and 
 3

1x  is denoted by  

    
         D

D xxxxH 3

1

3

2

3

1

3

2 ,  .                (2) 

   Obviously, Hausdorff distance (2) is independent of the values of points 
 3

ix , where i  runs 

from 3 to 8. Nevertheless, because of the self-similarity between parts of the Cantor set, any 

displacement of point 
 3

ix   8,...,4,3i  should influence the distance between 
 3

2x  and 
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 3

1x . This is undoubtedly a non-local property. Unfortunately, Hausdorff distance (2) fails to show 

this property. 

   In fact, the Hausdorff distance (sees equation (2)), similar to the Euclidean distance, is also a 

local measure using which the distance between two neighboring points on a curve depends only 

on the positions of these two points. This means, if we want to describe the non-local property of 

some curves (e.g. fractal curve), we need to construct a non-local measure using which the 

distance between any two neighboring points on a curve may depend on the positions of many 

points of this curve. Therefore, the geometry, which is on the basis of the non-local measure, will 

be a more general one compared to Euclidean geometry, Riemannian geometry and Hausdorff 

geometry. In this paper, we guess that Euclidean geometry and Riemannian geometry may be 

invalid in the case of describing small scale structure of real universe, which perhaps need to be 

dealt with using non-local measure.  
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                                                          

         
 n

nx
2

·                       …                        ·
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 FIG.1. The Cantor ternary set is defined by repeatedly removing the middle thirds of line 

segments [11,14]: (a). One starts by removing the middle third from the interval 
    1

1

1

2 , xx , 

leaving 
    2

3

2

4 , xx  and 
    2

1

2

2 , xx . (b). Next, the "middle third" of all remaining intervals is 

removed. (c). This process is continued ad infinitum. Finally, the Cantor ternary set consists of all 

points in the interval 
    1

1

1

2 , xx  that are not removed at any step in this infinite process. 
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2.2. Non-local measure and non-local derivative 

 

   To construct a non-local measure, we attempt to check a m -dimensional volume  

        mlmlx   

   where  m  is a constant factor that depends only on the dimension m , and m  may be a 

fraction. 

   The fractional derivatives of order m  of  lx  gives [11] 

         mmm dldlmlxd ~1  

   Obviously,  mdl , as a m -dimensional volume, is a m -dimensional Hausdorff measure; 

therefore, the above formula implies that the differences  lxd m
 of order m  can be also 

thought of as a measure for describing the length of a m -dimensional fractal curve. In this case, 

the order of differences  lxd m
 represents the Hausdorff dimension m .   

   Using the differences of order m , we define a new distance-call it the "non-local distance"- in 

the form (sees equation (A.18) in Appendix A): 

        
    

 








0 !

11. . .1
,

j

j

m ljlx
j

jmmm
llxlx ,         (3) 

   where     llxlxm  ,  denotes the non-local distance between points  lx  and 

 llx  . 

   It is carefully noted that every  ljlx   represents a point on a m -dimensional fractal 

curve, where, ,...2,1,0j   

   Clearly, according to the equation (3), the distance between points  lx  and  llx   

would depend on all points  ljlx  , where, ,...2,1,0j      

   Moreover, it is easy to check that         llxlxllxlxm   ,1 . This means that 

the Euclidean distance is a special case of non-local distance whenever the dimension m  of the 

fractal curve equals 1. 

   If we use the non-local distance (3) to measure the distance between points 
 3

2x  and 
 3

1x  

(sees Fig. 1), then we shall surprisingly find that the non-local distance 
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           








8

1

33

1

3

2
!

11. . .1
,

j

j

j

Dm x
j

jDDD
xx ,  

   which remarkably differs from the Hausdorff distance (2), would depend on the values of 

points 
 3

ix   8,...,4,3i . This means that any displacement of point 
 3

ix   8,...,4,3i  

would change the non-local distance between points 
 3

2x  and 
 3

1x . Consequently, non-local 

distance (3) is indeed an intr insic way of describing self-similar fractal, since it not only 

determines the dimension of a fractal curve (e.g., Cantor ternary set) but also reflects the 

correlation between its parts. 

   Using the non-local distance we have given a definition for non-local measure in Appendix A 

(sees equation (A.21)), and we call the corresponding geometry the "non-local geometry". Clearly, 

fractal is a case of the non-local geometry.  

   To study the analytic properties of non-local geometry, we define the non-local derivative
1
 

(sees equation (A. 23) in Appendix A) in the form: 

    
      

    llxlx

llflf

xD

xfD

l
l

l






 ,

,
lim

0






 ,             (4) 

   where     lxflf   is a differentiable function with respect to coordinate l , l  is a 

parameter (e.g., the single parameter of Peano's curve) which completely determines the 

generation of a  -dimensional fractal curve, and  lx  denotes the length of the corresponding 

fractal curve. 

   In particular, non-local derivative (4) is well known the Newton-Leibniz derivative whenever 

1 .  

   Using the formula of fractional derivative, the non-local derivative can be rewritten as (see 

equations (A.24)-(A.26) in Appendix A)  

    
 

 

 












dl

lxd

dl

lfd

xD

xfD

l

l  .            (5) 

                                                 
1
 We introduce a simple way of understanding the non-local derivative. For the case of Newton-Leibniz derivative 

of  xfy  , x  is a 1-dimensional coordinate axis and hence can be measured by a Euclidean scale (ruler).  

Thus, the differential element of x  is a 1-dimensional Euclidean length dx , which gives rise to the 

Newton-Leibniz derivative 
 

dx

xdf
. Nevertheless, if x  is a  -dimensional fractal curve, then it can not be 

measured by the Euclidean scale (ruler). In this case, the differential element of x  should be a  -dimensional 

volume xDl  , which gives rive to the non-local derivative 
 
xD

xfD

l

l




. Details see Appendix A and Fig. 3.  
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   Through the formula (5) we can easily compute the non-local derivative of any differentiable 

function using the fractional derivative, concrete examples see Appendix B. 

 

2.3. Connection between non-local geometry and quantum behaviour  

 

   Now we investigate the connection between quantum mechanics and non-local geometry. For 

simplicity, we still consider the Cantor set in Fig. 1, where the non-local distance between points 

 nx2
 and 

 nx1
 is equal to  

    
                








n

j

n

j

j

nn

Dm

nn x
j

jDDD
xxxx

2

1

1212
!

11. . .1
,, .             (6) 

   Clearly, the output value of non-local distance (6) depends on the value of each element in the 

set 
  n

ix  , where i  runs from 1 to 
n2 . If n , we will have 

     0, 12  nn xx ; 

however, then the number of elements in the set 
  n

ix  would tend to infinity, too. This means 

that if we want to precisely measure the distance of smaller scale (e.g., 
    nn

n
xx 12

1
,lim 


), 

correspondingly we shall need to collect the more points 
  n

ix . As a result, if we want to 

precisely measure the non-local distance between points 
 n

n
x2lim


 and 

 n

n
x1lim


, we shall need to 

collect a set of infinite points, i.e., 
  





1iix . Unfortunately, we must fail to arrive at this purpose 

on an actual measurement. In other words, we can not precisely measure the distance of 

microscopic scale, this fact is consistent with the "Heisenberg Uncertainly Principle"
2
. 

   On the other hand, the non-local distance (6) between points 
 nx2  and 

 nx1  depends clearly 

on the position of 
 n

ix  ni 2,...,2,1 , for example, any displacement of point 
 n

nx
2

 would 

influence the output value of non-local distance (6). It is a clearly non-local correlation 

(correlations span arbitrarily distances) and similar to quantum entanglement.  

The above two facts show that the non-local geometry is indeed an intr insic way of describing 

quantum behaviour
3
. In the next section, we attempt to derive the formula (1) of energy quantum 

and Planck's constant using the non-local derivative (4). 

 

3. Energy quantum and Planck's constant    

    

                                                 
2
 In fact, the connection between quantum mechanics and fractal has been noticed in some earlier papers [15-18]. 

 
3
 In references [19-20], we have shown that the local description is not a way of completely describing physical 

reality. 
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   Before proceeding to derive the formula (1) of energy quantum, we need to introduce two 

axioms as follows. 

 

   Axiom (i). The total energy of the universe  tE  is independent of time variable t , that is, 

the total energy of the universe is conserved, i.e.,   constEtE   

   Axiom (ii). The dimension of time axis   is less than 1, i.e., 10   . 

 

   For the axiom (i), we need to clarify that the total energy of the universe denotes the sum of all 

types of energies which exist in the universe, including contributions of dark matters, dark 

energies and so on.   

   Now we show how the axioms (i) and (ii) naturally lead to the formula (1) of energy quantum. 

To arrive at this purpose, we attempt to compute the non-local derivative of  tE  with respect to 

coordinate t , that is  

    
 

tD

ED

tD

tED

l

l

l

l







   

Axioms (ii) implies that the time axis is a fractal curve. For simplicity, we let t  be the 

characteristic parameter (fill parameter) of the fractal time axis, i.e., tl  ; thus, we only need to 

compute the following non-local derivative, 

    
 

tD

ED

tD

tED

t

t

t

t







  . 

   Using the formula (B.4) in Appendix B, we obtain
4
  

 
t

E
tD

ED

t

t 1
1  



 .                (7) 

Equation (7) represents the rate of change of total energy (RCTE) of a fractal universe at a 

given time t . 

   In particular, whenever 1 , equation (7) gives the Newton-Leibniz derivative  

    0
1

1 




dt

dE

tD

ED

t

t



 .              (8) 

   Equation (8) represents the conservation of total energy in an integer dimensional space-time. 

   Let us order 

                                                 
4
 To arrive at equation (7), we need to require t  to be the fill parameter of a  -dimensional fractal curve; 

nevertheless, it is only a special case. In fact, we may require that t  satisfies the general formula of 

 -dimensional volume, that is, 
lt ~ . Thus, using the formula (B.1) in Appendix B we can arrive at 

    t

E

tD

ED

l

l 1

11








, which is equal to 

tD

ED

t

t




 up to a constant factor      12 . 

However,     112lim
1







, so we still arrive at equation (7) up to a constant factor which tends to 

1. 
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      TEh  1 ,             (9) 

    
t

1
 ,                        (10) 

T
tD

ED

t

t 


 ,               (11) 

   where, T  denotes the least time interval ( i.e., characteristic size), which depends on the 

limit of natural measure. Henceforth, we call T  the critical time scale. 

   The physical meaning of T  is clear: We can only observe the physics above critical time 

scale T . Notably, it does not mean that there is no physics below T . Conversely, there exists 

physics below T , and it is still described by non-local geometry. However, we can not observe 

it because of the restriction of measuring instrument
5
. This is consistent with the spirit of 

Copenhagen interpretation. 

   Interestingly, from the viewpoint of effective field theory, the existence of such a critical time 

scale T  is very necessary, for example, then we will have a natural momentum cutoff 

parameter 
Tc

h


 . As a result, in the framework of non-local geometry, two important 

properties of renormalization theory will be satisfied naturally; they are respectively: (a). The 

cutoff parameter   exists; (b). Dimension of spacetime 4D (since  3D  and 

10   ). 

   The equation (7) shows a curious fractal effect, and however it does not occur in an integer 

dimensional space-time. Intuitively, RCTE (i.e., 
tD

ED

t

t



 ) at time t  looks like "f luctuation of 

total energy" at time t . In particular, the equation (7) can be rewritten as a non-local integral 

equation (Sees definition (B.10) in Appendix B): 

       











  dt

dt

td

t
EtD

tD

ED
EDE t

t

t
t

1
1 ,             (12) 

   where, we have used the formula of fractional integral [11], 

     
 

   


 


 
 1

1

0

1t

dzzztdtt ,    10   

   and the formula of fractional derivative [11] 

    
 












2

1t

dt

td
. 

   Equation (12) undoubtedly implies that the total energy of a fractal universe is invariant. Not 

only that, it even indicate that the total energy of a fractal universe is composed of all RCTEs at 

different time  aTt ,0 , where aT  denotes the age of universe. This means that the RCTE at 

                                                 
5 This is because we are a part of universe, and so we can only use the measuring instrument of corresponding 

scale to observe a limited scale part of universe, and T  is a limit. In other words, the scale of ours (or 

measuring instrument) itself restricts our ability of observing nature.  
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every time  aTt ,0  will exist for ever. Also, consider that 
tD

ED

t

t



  is not a function of space 

variable  zyx ,, , the RCTE will randomly appear at any position of universe. Thus, the RCTE 

looks like a "physical effect", and thereby should be observed in the space-time. Because we can 

only observe the physical effect above critical time scale T , so we can (at most) observe the 

RCTE on time interval T  which is denoted by T
tD

ED

t

t 


 . We can call   the Planck's 

energy quantum, and   TE 1  the Planck constant. 

As such, substituting equations (9)-(11) into equation (7) we get Planck's formula (1) of 

energy quantum, i.e.,  h . 

   Moreover, let us insert 10    into equation (9), then it yields 

   hTE  ,               (13) 

   which is consistent with the "Heisenberg Uncertainly Principle". 

Inequality (13) implies that non-commutativity may be an intrinsic property of the non-local 

geometry. 

   Undoubtedly, in order to guarantee the value of Planck's constant enough small, we need to 

require 11   (Sees equation (9)). When   is very close to 1, we can regard the 

dimension of time axis as 1 in the macroscopic scale. However, 1  would emerge as 

quantum effect in the microscopic scale. That is to say, the quantum effect arises because the 

dimension of time axis is less than 1. On the other hand, from the Fig. 1 we can note that the 

Cantor set is discrete
6
. In fact, for any geometric graph, if its dimension is less than 1, then it 

would be discrete. The closer its dimension tends to 1, the closer it approaches continuum, sees 

Appendix D. From this meaning, the time axis should be discrete (since 1 ). This fact can be 

regarded as a natural explanation for quantization. 

   In particular, if we assume that the dimension of space is 3, then the dimension of space-time 

would be   43D , where 10  . This is consistent with the requirement of 

QFTFS [6]. However, we does not require the dimension of space must be 3 (e.g., the case of 

quantum gravity [10]). 

 

4. Klein-Gordon equation 

    

   In section 3, we have derived the formula (1) of energy quantum using the non-local 

derivative. Our derivation shows that the quantum behaviour (or equivalently, wave-particle 

duality) arises because the dimension of time axis is less than 1. 

   To derive the centre equation of quantum mechanics (i.e., dynamical equation of matter wave), 

we need to introduce the third axiom as follow. 

 

                                                 
6
 It is carefully noted that the Cantor set, as a subset of the interval  1,0 , is discrete, but is still uncountable. 

Sees Appendix C. 
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Axiom (iii). The energy and momentum satisfy the relativistic relation,  

    
222 cPE  ,             (14) 

   where, E  denotes the energy, P  denotes the momentum and c  the light speed. 

 

   In the equation (14), we have assumed that the rest mass is equal to zero
7
. In other words, the 

rest mass, which differs from the energy and momentum, is not the most fundamental physical 

entity. The existence of rest mass depends on the Higgs mechanism [21-22], which is a foundation 

of the standard model of particle physics [23]. 

   Substitution of equation (14) into equation (1) leads to the de Broglie relation  

    


h
P  ,               (15) 

   where,   is the wave length of matter wave. 

   Using equation (1) and (15), we can obtain the function of matter wave 

      







 

 xP
i

Cx


e x p ,             (16) 

   where, P  denotes 4-dimensional momentum, 
x  denotes 4-dimensional coordinates and 

2

h
  . 

   The non-local derivatives of order 2 of equation (16) with respect to coordinate 
x  gives

8
  

    



 PP 2 .             (17) 

   Equation (14) shows 0
PP , so the equation (17) can be rewritten as  

    02  
 ,               (18) 

   which is the Klein-Gordon equation with zero mass. 

   If we take into account the principle of gauge invariance [24], then using equation (18) we can 

arrive at the wave equation coupled with gauge fields, 

    02  
DD ,              (19) 

                                                 
7
 The complete relativistic relation is 

22cmPP 


, where P  denotes 4-dimensional momentum. We can 

arrive at equation (14) by ordering 0m . 

8
 Consider that 

dt

d

tD

D

t

t 






 1
lim  and 1  is enough small, we can use the Newton-Leibniz derivative 

dt

d
 to replace the non-local derivative 

tD

D

t

t




. 
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   where D  denotes the covariant derivative 
 A

q
iD


  and 
A  the gauge fields. 

   Clearly, using equation (18) or (19) we can derive the Weyle equation; however, to derive the 

Dirac equation, we need to obtain the rest mass using Higgs mechanism [21-22]. 

   So far, we have reproduced the quantum mechanics using axioms (i)-(iii). Here, it is 

emphasized that the properties (1) and (15) of matter are no longer two hypotheses presented by 

de Broglie [25], but are the conclusions of axioms (i)-(iii). 

   In the next section, we shall develop the quantum field theory on non-local space-time. 

 

5. Quantum field theory on non-local space-time 

    

   In previous sections, we focus only on the non-local derivative and integral referring to a 

single variable. Now we turn to investigate the multi-variable integral. For convenience, we take 

1 c . 

   The theorem 2 in Appendix B shows as follow: 

   For a D -dimensional ball   and a spherically symmetric function    321 ,, rrrfrf  , 

the non-local multi-variable integration of  rf  over   equals
9
 

     
   

   














R

D

D

i

iDr
r r r

drrrf
D

xDrrrf
ii

D D D 0

1
23

1

321

2

2
,,

11 22 33


  

,         (20) 

where, 321 DDDD  , i

i

D

i

i

D

i r
D

x













1
2

2
 and      321 321

rrr DDD   , 

details see Appendix B. 

   In the other direction, Svozil has proved that [6] the Lebesgue-Stieltjes integral of 

   rfxf   over   equals 

         















R

D

D

H drrrf
D

xdxf
0

1
2

2

2
 ,                (21) 

                                                 
9
 Through equation (20) and theorem 1 in Appendix B, now we can understand the profound meaning of Peano's 

curve. For example, equation (20) shows that a 3-dimensional ball   may be a Cartesian product of three 

1-dimensional curves  iD r
i 1 , where, 3,2,1i . Not only that, the theorem 1 in Appendix B even implies  

that this 3-dimensional ball   can be filled up by a 3-dimensional Peano's curve  rD 3 , the latter is 

completely determined by an independent parameter r .  



 

 13 

   where,   xd H  denotes the Lebesgue-Stieltjes integral and  xH  denotes the 

Hausdorff measure.  

   Comparing equation (20) and equation (21), we have  

         xdxfxDxf HDr  
 ,              (22)   

   where, 
i

iDrDr xDxD
ii

. 

   Equation (22) shows that, for the case of spherically symmetric function, D -dimensional 

Lebesgue-Stieltjes integral is equivalent to non-local integral. Notably, the equation (21) is the 

starting point of QFTFS [6]. This means that the computing results obtained by QFTFS shall be all 

reproduced in the theoretical framework of non-local geometry. 

   For example, to compute the Feynman diagrams in momentum space, we can still use the 

Fourier-Stieltjes transformation since there have: 

           
 

     pdi p xpgpDi p xpgDCxg H
XDX

Dr 


e xp
2

1
e xp ~~

~~

  , 

               xdi p xxgxDi p xxgpg H
XX

Dr   e x pe x p
~

, 

   where, X  denotes the coordinate space and 
~

X  the momentum space. 

   Using equations (20) and (22), the vacuum-vacuum amplitude (partition function) in non-local 

space-time can be written in the form:  

              JLxdidJZ D  ,e x p ,           (23) 

   where, J  is a source and we have already integrated out momenta. 

   Because 10   , and also because the dimension of space-time  3D , we shall 

have 4D , which is consistent with the requirement of dimensional regularization [5-6]. This 

means that there is no divergence in the theoretical framework of quantum field theory on 

non-local space-time, and that the dimensional regularization is an intrinsic requirement of 

non-zero Planck's constant. Interestingly, Svozil [6] suggested a way of measuring the dimension 

of space-time D  using the difference between experimental and theoretical values of ea , where 

ea  is the form factor of the electromagnetic current proportional to magnetic moment. The 

suggested difference equals [6] 

           DDaDa ee  4l o g
8

4 



. 

   Go a step further, consider that, in the framework of non-local geometry, Planck's constant is 

completely determined by the critical time scale T , the dimension of time axis   and total 

energy of universe E , we also attempt to propose some method of measuring independently 

T ,   and E , details see Appendix E. Thus, our formula (9) can be tested in principle. Not 

only that, the formula (9) is essentially a new result which can not be predicted by quantum 

mechanics or quantum field theory.  
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   In addition, the starting point of quantum gravity [9-10] suggested by Calcagni is the 

theoretical framework of QFTFS [6]; therefore, Calcagni's quantum gravity should be also 

reproduced in the theoretical framework of non-local geometry.  

   So far, we have reproduced the quantum field theory in the theoretical framework of non-local 

geometry. Nevertheless, a natural question is whether there were an intrinsic and deeper physical 

theory where the quantum field theory is only a special case? We shall discuss this question in 

future work.    

 

6. Conclusion  

 

   Quantum behaviour (equivalently, wave-particle duality) arises because the time axis is a 

fractal curve. To describe the analytic properties of fractal, we develop a theoretical framework of 

"non-local geometry" and meanwhile propose the definitions of non-local derivative and integral. 

Using the non-local derivative we can directly derive Planck's formula of energy quantum, and 

thereby naturally present a theoretical foundation for quantum mechanics. Thereafter, we attempt 

to develop the quantum field theory using the way of non-local geometry. Our study shows that all 

computing results obtained by quantum field theory can be reproduced in the theoretical 

framework of non-local geometry. Therefore we conclude that the non-local geometry is an 

intrins ic way of describing quantum behaviour. Moreover, to discriminate our theory from current 

quantum field theory, we suggest to test our formula   TEh  1  by measuring three 

important constant, that is, the critical time scale T , the dimension of time axis   and total 

energy of universe E .  
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Appendix A 

    

   In Euclidean geometry, the dimension of a geometric graph is determined by the number of 

independent variables (i.e., the number of degrees of freedom). For example, every point on a 

plane can be represented by 2-tuples real number  21, xx , then the dimension of the plane is 

denoted by 2. Nevertheless, the existence of Peano's curve powerfully refutes this viewpoint. 

Peano's curve, which is determined by an independent characteristic parameter (i.e., fill 

parameter), would fill up the entire plane [12]. Therefore, mathematicians have to reconsider the 

definition of dimension. The most famous one of all definitions of dimension is the Hausdorff 

dimension, which is defined through the Hausdorff measure [11]. 

 

A.a. Hausdorff measure and Hausdorff dimension 

    

   In order to bring the definition of Hausdorff dimension, we firstly introduce the Hausdorff 

measure. [11] 

   Let W  be a non-empty subset of n -dimensional Euclidean space 
nR , the diameter of W  

is defined as 

        WyxyxdWd i a m  ,,,s u p ,        (A.1) 

   where,  yxd , , which is the distance between points x  and y , is a real-valued function 

on WW , such that the following four conditions are satisfied. 

      0, yxd  for all Wyx , ;       (A.2) 

      0, yxd  if and only if yx  ;       (A.3) 

       xydyxd ,,   for all Wyx , ;         (A.4) 

         zydyxdzxd ,,,   for all Wzyx ,, .      (A.5) 

   For example, the distance of n -dimensional Euclidean space 
nR  can be defined as 

     
2

1

1

2
, 








 



n

i

iiE yxyxyxd         (A.6) 

   Then, it is easy to check that equation (A.6) satisfies conditions (A.2)-(A.5). 

   Now, let us consider a countable set  iE  of subsets of diameter at most   that covers W , 

i.e., 

    





1i

iEW ,   iEdiam  for all i . 
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   For a positive D  and each 0 , we consider covers of W  by countable families  iE  

of (arbitrary) sets iE  with diameter less than  , and takes the infimum of the sum of 

  DiEdiam . Then we have 

          








 








 i

i i

i

D

i

D Ed i a mEWEd i a mWH ,:i n f
1 1

 .          (A.7) 

   If the following limit exists 

        f i n i t eWHWH DD 



 0
lim , 

   then the value  WH D
 is called the D -dimensional Hausdorff measure. 

    

A.b. Shortcoming of Hausdorff measure 

  

   In general, D  may be a fraction. In 1967, Mandelbrot realized that [13] the length of 

coastline can be measured using Hausdorff measure (A.7) rather than Euclidean measure (A.6), 

and then the dimension of coastline is a fraction. Mandelbrot calls such geometric graph the 

"fractal".  

The fractal is self-similar between its local and global shapes. Unfortunately, Hausdorff 

measure can determine the dimension of fractal but not reflect the connection (e.g., self-similarity)  

among the parts of the corresponding fractal. To see this, we consider the Koch's curve in Fig. 2. 

 

 

 

                                            5x  

 

                       2x              3x     

  

                                  1x  

 

        4x              6x  

 

FIG.2. The Koch's curve, which is similar to the generation of Cantor ternary set (sees Fig.1), is 

defined by repeatedly adding the middle thirds of line segments [13]. 
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   Clearly, the congruent triangle 321 xxx  is similar to 654 xxx . If we use the Hausdorff 

measure (A.7) to measure the local distance of Koch's curve (e.g., the distance between points 
1x  

and 3x ), then we have 

      DDD xxxxxxH 322131,  ,              (A.8) 

   where, D  is the dimension of Koch curve. 

   Equation (A.8) shows that the Hausdorff distance between points 
1x  and 3x  depends only 

on the positions of points ix   3,2,1i , and is thereby independent of the positions of points 

jx   6,5,4j . Nevertheless, because of the self-similarity of Koch's curve, any displacements 

of points 
jx   6,5,4j  would influence the positions of ix   3,2,1i  and hence change 

the distance between points 1x  and 3x . That is to say, the local shape  321.,. xxxge   is 

closely related to the global shape  654.,. xxxge  . Unfortunately, the Hausdorff distance (A.8) 

undoubtedly fails to reflect this fact. Therefore, we need to find a new measure of describing the 

analytic properties of fractal. 

 

A.c. Definition of non-local measure 

 

   Hausdorff measure (A.7) does not reflect the self-similarity of fractal, so we can not establish 

the calculus theory of fractal using the Hausdorff measure. In general, people often use the 

fractional calculus to approximately describe the analytic properties of fractal [11, 26]. 

   The fractional calculus is a theory of integrals and derivatives of any arbitrary real order. For 

example, the fractional derivatives of order m  of the function   nclly   equals [11] 

    
   

 
mn

m

m

l
mn

n
c

dl

lyd 






1

1
,         (A.9) 

   where,  x  denotes the Gamma function and m  is an arbitrary real number. 

   Now, let us consider a m -dimensional volume 

        mlmlx  ,           (A.10)   

   where,  m  is a constant which depends only on the dimension m . 

   Using formula (A.9), the fractional derivatives of order m  of equation (A.10) equals 
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 

   mm
dl

lxd
m

m

1 .            (A.11) 

   Equation (A.11) can be written as  

             mmm lolmmlx  1 ,             (A.12) 

   where,  lxm  denotes the differences of order m , and   m
lo   denotes the infinitesimal 

terms of higher order compared to  ml . 

   Equation (A.12) implies that 

       mm llx  ~ ,          (A.13) 

   and thereby 

       



N

i

m
N

i

i

m llx
11

~ .        (A.14) 

   Obviously,  ml  is a m -dimensional Hausdorff measure, which can describe the length of 

a m -dimensional fractal curve. Consequently, equations (A.13) and (A.14) together imply that 

 lxm  can be also thought of as a m -dimensional measure. In this case, the order of 

differences  lxm  represents the Hausdorff dimension m . Because of this fact, we next 

attempt to use the differences of order m  to define a new measure. 

   Let us consider the left-shift operator with step l  and the identity operator as follows: 

       llxlxL l  ,              (A.15) 

       lxlxL 0 .            (A.16) 

   Using the Left-shift operator lL  and the identity operator 0L , we can define the difference 

operator of order m  in the form: 

     
    











0

0
!

11. . .1

j

lj

j
m

l L
j

jmmm
LL .             (A.17) 

   Using equation (A.17), we define a new distance between points  lx  and  llx   in the 

form: 

        
    

 








0 !

11. . .1
,

j

j

m ljlx
j

jmmm
llxlx .         (A.18) 

   We call the equation (A.18) the "non-local distance", which describes the length of a 

m -dimensional fractal curve. 
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   Whenever 1m , the non-local distance (A.18) returns to the Euclidean distance, i.e. , 

            llxlxllxlxm   ,1
.         (A.19) 

   In general, the non-local distance (A.18) does not satisfies the general properties
10

 (A.4)-(A.5) 

of distance but reflects the connection between local and global segments of fractal. To understand 

the latter, we need to realize that the output value of equation (A.18) would depend on the values 

of all points  ljlx    ...2,1,0j  rather than only on points  lx  and  llx  . 

   For instance, in Fig.2, the non-local distance  35 , xxD  between points 3x  and 5x  

would depend on the positions of points ix   5,4,3,2,1i  rather than only on points 3x  and 

5x . Therefore, the non-local distance (A.18) is indeed an intrins ic way of describing fractal, since 

it not only determines the dimension but also reflects the connection between local and global 

segments of fractal. 

   Using the non-local distance (A.18), we can propose a definition for non-local measure. 

   Let W  be a non-empty subset of n -dimensional Euclidean space 
nR . We consider a 

countable set  iF  of subsets of diameter at most   that covers W , i.e., 

    





1i

iFW ,   i

D Fdiam  for all i . 

   where,  i
D Fdiam  defined by using the non-local distance (A.18) denotes the diameter of 

iF , i.e., 

        iDi

D FyxyxFd i a m  ,,,s u p .            (A.20) 

 

Non-local measure: For a positive D  and each 0 , we consider covers of W  by 

countable families  iF  of (arbitrary) sets iF  with diameter less than  , and takes the 

infimum of the sum of  i
D Fdiam . Then we have 

                                                 

10
 For example, the non-local distance between points  lx  and  llx  , i.e.,     llxlxm  , , 

need to be defined using the Right-shift operator lR  which leads to    llxlxR l  . The 

corresponding difference operator reads  ml RR 0 . Then, the non-local distance would not satisfies condition 

(A.4). 
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         








 








 i

D

i i

ii

DD Fd i a mFWFd i a mW ,:i n f
1 1

 .      (A.21) 

   If the following limit exists 

        f i n i t eWW DD 



 0
lim , 

   then the value  WD  is called the D -dimensional non-local measure; meanwhile, the 

dimension of W  equals D . 

 

   Henceforth we call these geometric graphs, which are described by non-local measure 

 WD , the "non-local geometry". 

 

A.d. Definition of non-local derivative 

 

   Fractal is a case of non-local geometry (e.g., there exists a non-local self-similarity between 

local and global segments of fractal) and can be therefore described by the non-local measure 

 WD . To describe the analytic properties of non-local geometry (e.g., fractal), we need to 

introduce non-local derivative. 

   Before proceeding to introduce the definition of non-local derivative, let us consider a 

 -dimensional fractal curve  l  (sees Fig. 3), which is determined by an independent 

characteristic parameter l  (e.g., the fill parameter of Peano's curve), filling up a  -dimensional 

region. Assume that the length of the fractal curve is determined by a  -dimensional volume 

 lx , then the (non-local) length between points  0la   and  nlb   in Fig.3 should 

be denoted by 

           








 





n

i

ii
l

D lxlxba
1

1
0

,i n flim,  ,                (A.22) 

   where, we have used the non-local measure (A.21). 

   It is carefully noted that the length between points  0la   and  nlb   can not be 

measured by Euclidean scale, sees Fig. 3.  

   As such, we can present a definition for non-local derivative as follow.  

 

   Non-local derivative: For any differentiable function  xfy  , if  lxx  , which is a 

 -dimensional volume, describes the length of a  -dimensional fractal curve  l , then the 

non-local derivative of  xfy   with respect to the fractal curve  l  is defined as  
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      

    llxlx

llflf

xD

xfD

l
l

l






 ,

,
lim

0






 ,           (A.23) 

   where,     lxflf  . 

 

   Clearly, if 1 , then (A.23) will return to the Newton-Leibniz derivative, and meanwhile 

 l1  is restored to a 1-dimensional coordinate axis. 

   In general, the fractional derivatives of order   of any differentiable function  lf  is 

defined in the form [27]: 

    
 

    
 

 





l

ljlf
j

j

dl

lfd j

j

l 













0

0

!

11...1

lim .           (A.24) 

   Comparing (A.18) and (A.24), we have 

    
      

 






l

llflf

dl

lfd

l 






,
lim

0
.                   (A.25) 

   Using formula (A.25), the formula (A.23) can be rewritten as  

    

      
    

 

 

    
 
    
 

 

 


























dl

lxd

dl

lfd

l

lxxlx

l

llflf

l

l

llxlx

llflf

xD

xfD

l

l

ll
l

l



























 ,
lim

,
lim

1

1

lim
,

,
lim

0

0

00

.       

(A.26) 

 

   Formula (A.26) indicates that we can compute the non-local derivative using the fractional 

derivative.  
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         1l       3l   nlb   

 

 

  0la       2l         4l …   il        2il  …   1nl              

  

                                             1il  

 Fractal curve  l  

 

    00 lx   1lx       2lx    3lx    …    3nlx     2nlx    1nlx    nlx  

   …  

Non-local scale  lx            

      

 

   00 l    1l      2l        3l    …        3ml    2ml         1ml   ml  

                                … 

 Euclidean scale l  

 

 

 

FIG.3. The fractal curve  l  consists of the union     
n

i

ii ll
1

1 ,


   , where  mnn  . 

The dimension of fractal curve  l  equals 
 
m

mn

m ln

ln
lim


 . Since  l  is a fractal 

curve, the distance between points  0l  and  nl  can not be measured using the 

Euclidean scale (ruler) l ; otherwise, we shall have        



 m

ll
mnlld m

m
n

0
0 lim,    

or 0 . However, the fractal curve  l  can be measured using the non-local scale (ruler) 

 lx , the way of measure sees the formula (A.22).   
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Appendix B 

   

   In Appendix A, we have noted that the non-local derivative can be computed using the formula 

(A.26). In this appendix, we compute two useful non-local derivatives and introduce the definition 

of non-local integral.  

 

B.a. Computing examples of non-local derivative  

 

Example 1. If     mlmlx   describes the length of a m -dimensional fractal curve, then the 

non-local derivative of the constant function   Cxf   with respect to x  equals 

    
    xmm

C

xD

CD

ml

ml 1

11



 ,           (B.1) 

   where  m  is a constant that depends only on m . 

 

   Proof . The fractional derivatives of order m of the constant C  and the power function 

  nally   are respectively as follows [11]: 

    
 

m

m

m

l
m

C

dl

Cd 




1
,            (B.2) 

    
   

 
mn

m

m

l
mn

n
a

dl

lyd 






1

1
.            (B.3) 

   Using formulas (A.26), (B.2) and (B.3), the non-local derivative 
 
xD

xfD

ml

ml  can be computed 

as follow: 

    
  

 
        xmm

C

mm

l
m

C

dl

lmd

dl

Cd

xD

CD

m

m

mm

m

m

ml

ml 1

111

1













. 

   The proof is complete. □ 

 

 

Example 2. If x  is the characteristic parameter of a m -dimensional fractal curve, and 

meanwhile it also describes the length of this fractal curve, then the non-local derivative of the 

constant function   Cxf   with respect to x  equals 
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     
x

mC
xD

CD

mx

mx 1
1  .          (B.4) 

 

   Proof. Using formulas (A.26), (B.2) and (B.3) we have  

    
   

 
 

 
  xm

m
C

x
m

x
m

C

dx

xd

dx

Cd

xD

xfD

m

m

m

m

m

m

mx

mx 1

1

2

2

2

1

1


















.              (B.5) 

   Consider the property of Gamma function 

       xxx  1 ,              (B.6) 

   we have 

    
 
 m

m
m






1

2
1 .             (B.7) 

   Substituting equation (B.7) into equation (B.5) we arrive at 

      
x

mC
xD

CD

mx

mx 1
1  . 

   The proof is complete. □ 

 

   Comparing equations (B.1) and (B.5) we note that 
xD

CD

ml

ml  up to a constant factor is equal to 

xD

CD

mx

mx , that is, 

       
xD

CD
mm

xD

CD

ml

ml

mx

mx  12 .             (B.8) 

   However,    mm  12  tends to 1 whenever 1m ; that is, 

    
xD

CD

xD

CD

ml

ml

m
mx

mx

m 11
l i ml i m


 .          (B.9) 

    

B.b. Definition of non-local integral 

 

   Now we propose a definition for non-local integral as follow. 
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Non-local integral: If 
 

 xg
xD

xfD

ml

ml  , then the non-local integral of  xg  on a 

m -dimensional fractal curve  lm  is defined in the form:  

       
 

   m
m

m

Wl
mlml dl

dl

xd
xgxDxgxfD

m
 


,        (B.10) 

   where W  denotes the definitional domain of the characteristic parameter l ; also, the 

parameter l  completely determines the generation of the m -dimensional fractal curve  lm . 

    

   Using the definition of non-local integral we present two useful theorems as follows. 

 

Theorem 1: Let     mrmrx  , which describes the length of a m -dimensional fractal curve 

 rm , denote the volume of a m -dimensional sphere  , and let    rfxf   be a 

spherically symmetric function, then the non-local integration of  xf  on the m -dimensional 

fractal curve  rm  equals 

     
 

 













R

m

m

r
mr drrrf

m
xDxf

m 0

1
2

2

2


,              (B.11) 

   where,  












1
2

2

m
m

m


 . 

 

    Proof. The Riemann-Livouville fractional integrals of order m  of  lf  is defined in the 

form [11]:  

      
 

   






R

y

mm
dllfyl

m
dllf

11
.               (B.12) 

   Using equations (A.25) and (B.3)we have  

          mm

m

m

mr drmmdr
dr

xd
xD  1 .             (B.13) 

   Using equations (B.10) and (B.13) we arrive at 

     
 

      m
r

mr drmmrfxDxf
m

  
1


.            (B.14) 
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   Inserting equation (B.12) into equation (B.14) leads to 

     
 

 
 
 

   






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m
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drrfyr
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m
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


.               (B.15) 

   Using  












1
2

2

m
m

m


  and the formula (B.6), the equation (B.15) can be rewritten as  
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


.            (B.16) 

   For 0y , equation (B.16) yields 

     
 

 








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drrfr
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
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.             (B.17) 

   Using the formula (B.6) we have  

    







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






 1

222

mmm
.               (B.18) 

   Substitution of equation (B.18) into equation (B.17) leads to 

     
 

 













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r
mr drrrf

m
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2


. 

   The proof is complete. □ 

 

   Clearly, for   1xf , the formula (B.11) gives the volume of a m -dimensional sphere, 

m

m

R
m









 1

2

2
. 

   Finally, we present a theorem of non-local multi-variable integration as follow. 

 

Theorem 2: Let     im

iiii rmrx    3,2,1i , which describes the length of a im -dimensional 

fractal curve  im r
i

 , denote the volume of a im -dimensional sphere i , and let 

   321 ,, rrrfrf   be a spherically symmetric function, then the non-local integration of  rf  

on the fractal graph      321 321
rrr mmm    equals 
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     
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   where,  








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1
2
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i

m

i
m

m

i


 , 

2

3

2

2

2

1

2 rrrr   and 
321 mmmm  . 

 

Proof.  Reference [11] has proved that (sees the formula (1.85) in [11]) 
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.       (B.20) 

   Using equations (B.11) and (B.20) we easily arrive at equation (B.19) 

 

   The proof is complete. □ 

    

   From the theorem 2, we note that the constant (geometric) factor  im  is important. It 

would guarantee that the dimension m  of integral domain can be smoothly linked by the 

dimension im  of each variable. 
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Appendix C 

 

Theorem 3: The Cantor set is uncountable. 

 

   Proof . Suppose the Cantor set W  is countable, and list its elements as  

     , . . .,, 321 xxxW  . 

   Now look at the base 3 expansion of each of those numbers. 

   First, let us consider  

    

....0

....0

....0

321

2322212

1312111

kkkk aaax

aaax

aaax








,         (C.2) 

   where, 0ija  or 2  for all ji, .  

   Second, let  

    . . ..0 3211 bbby  ,             (C.3) 

   where, 









02

20

ii

ii

i
aif

aif
b . 

   Comparing (C.2) and (C.3), we note that 1xy   since 111 ab  , 2xy   since 222 ab  , 

and so on. This implies that Wy , but this is a contradiction since  2,0ib  for each i  and 

then Wy . Therefore, the cantor set is uncountable.   

   The proof is complete. □ 

 

   Notably, this proof implies that the fractal set with dimension  

1
ln2ln

2ln






m

m
mD  

 1m  is uncountable, where 3m  is the case of theorem 3. When 1m ,   01 mD  

is the dimension of a countable set; when m ,   1mD  is the dimension of an 

interval, e.g.,  1,0 . Go a step further, if we admit an axiom that the cardinal number of a set is 

always monotonically non-decreasing with respect to the dimension of this set, then we can 

conclude that there are only two cardinal numbers in the interval  1,0 , that is, countable cardinal 
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number a  and uncountable cardinal number c . There would be no any number lying between 

a  and c .  

   The construction of fractal set with dimension  

1
ln2ln

2ln






m

m
mD   1m  sees Fig. 4 

in Appendix D. 
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FIG.4. The fractal set with dimensions  

1
ln2ln

2ln






m

m
mD     1m  is defined by 

repeatedly removing the middle 
m

1
 of line segments: (a). One starts by removing the middle 

m

1
 from the interval 

    1

1

1

2 , yy , leaving 
    2

3

2

4 , yy  and 
    2

1

2

2 , yy . (b). Next, the "middle 

m

1
" of all remaining intervals is removed. (c). This process is continued ad infinitum. Finally, the 

 mD -dimensional fractal consists of all points in the interval 
    1

1

1

2 , yy  that are not removed at 

any step in this infinite process. 
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   For simplicity, let the length of interval 
    1

1

1

2 , yy  equal 1 (sees Fig. 4). It is easy to see that 

the Euclidean length of the interval 
    nn yy 12 ,  equals 

1

2

1

2

1







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
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n

m
, and that the total number 

of remaining intervals equals 
12 n
. Therefore, the Hausdorff dimension of this fractal equals 
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   Clearly,   1lim 


mD
m

 and  mD  is monotonically increasing with respect to m . This 

means that the closer  mD  tends to 1, the closer the fractal curve shown by Fig.4 approaches 

continuum. Conversely, the more  mD  deviates 1, the closer the fractal curve approaches a set 

of discrete points.   

 

 

Appendix E 

 

   First, we consider how to measure the total energy of universe E .  

   As pointed out in section 3, E  denotes the sum of all types of energies which exist in the 

universe, including contributions of dark matters, dark energies and so on. In general, according to 

the Modern cosmology, E  is composed of three parts which are visible matter, dark matter and 

dark energy respectively. If we refer to a  as the mean density of the universe, and V  as the 

volume of the universe, then 
2VcE a , where c  denotes the light speed. 

   On the one hand, if we can measure the age of universe, then we can find the scale of universe 

using the Hubble formula, and thereby compute the volume V . 

   On the other hand, we can measure the mean density of some representational galaxy  , and 

thereafter estimate the contributions 
'  of dark matter and dark energy. Using   and 

' , we 

can find 
' a . 

   In fact, the measures of a  and V  are two main objectives of Modern cosmology. Once 

a  and V  are measured, then we can compute 
2VcE a . 

 

   Second, we restrict our attention to how to measure   and T . 
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   Consider that the time axis is a fractal curve, we shall propose the following three steps to 

measure the length of a time interval L . 

   (a). We use a standard clock to specify a time interval whose length is L  according to this 

standard clock. 

   (b). We find another clock i  whose step length is 

iN

L
 (and is less than the step length of 

standard clock), where 1iN . For example, the step length of a wrist watch is generally denoted 

by a step of second hand. 

   (c). Let the standard clock and the clock i  go simultaneously. When the standard clock arrive 

at L  from 0, then we count the number  iii NMM   of steps that the clock i  has gone. 

   If the dimension of time axis equals  , then according to the fractal theory we have: 

   




LM
N

L
i

i
Ni













l i m .                 (E.1) 

   Equation (E.1) shows that when we use the clock i  to measure " L ", then the value of " L " 

equals 
L , where 

i

i

N N

M

i ln

ln
lim


 . 

   In an actual measurement, we can use the clock with different step length to approach the limit 

iN . 

   ni NNNN  ......21 .                 (E.2) 

   Of course, consider that there exists a critical time scale T , the step length of clock can not 

approach zero, that is to say, the limit step length is denoted by: 

   TT
N

L

i
Ni


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










lim .                  (E.3) 

   Thus, thinking of the existence of T , the equation (E.1) must be rewritten as  

   




LMT
N

L
i

i











 .                  (E.4) 

   ni , . . . ,2,1  

   Using the equation (E.4) we arrive at    

   

ii MN

1
ln

1
ln 










 .                 (E.5) 

   where, 
L

T
 . 

   Consider that 1 , using the Taylor expansion 
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    i

ii

N
NN


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


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


1
ln

1
ln , 

   the equation (E.5) can be written as  

   

i

i

i

i

N

N

N

M lnln
  .                (E.6) 

   If we order 

i

i
i

N

M
y

ln
 , 

i

i
i

N

N
x

ln
 , and   , then the equation (E.6) can be written 

in the form: 

   
ii xy   .                   (E.7) 

   Obviously, using the measured value  ii NM , , we can compute  ii yx , , where 

ni ,...,2,1 . 

   So we have the following estimated values : 
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1 
 . 

   Now that   and   have been found, using the formulas 
L

T
  and   , we can 

obtain the estimated value of T . Here we suggest to make this measurement using the atomic 

clock.   

   Finally, using the estimated values of E ,  , and T , we can compute the theoretical value 

of Planck's constant. 

   Therefore, our formula   TEh  1  can be tested in principle. 

 

 

Reference: 

 

[1]. M. Planck, Ann. der Physik, 4, 553 (1901)  

[2]. A. Einstein, Ann. der Physik, 17, 132 (1905)  

[3]. A. Einstein et al, Phys. Rev. 47, 777 (1935) 

[4]. E. M. Henley and W. Thirring, Elementrary Quantum Field Theory, McGraw -Hill, 1962, 

Chapt. 5 

[5] G. 't Hooft and M. Veltman, Nucl. Phys. B, 44, 189 (1972) 



 

 33 

[6]. K. Svozil, J. Phys. A: Math. Gen. 20, 3861-3875 (1987) 

[7] P. Horava, Phys. Rev. D, 79, 084008 (2009) 

[8] P. Horava, Phys. Rev. Lett, 102, 161301 (2009) 

[9]. G. Calcagni, J. High Energy Phys. 03 (2010) 120. (arXiv:1001.0571) 

[10]. G. Calcagni, Phys. Rev. Lett, 104, 251301 (2010) 

[11]. V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of 

Particles, Field and Media, Higher Education Press, Beijing, China, 2010.  

[12]. H. Sagan, Space-Filling Curves, Springer-Verlag, 1994. 

[13]. B. Mandelbrot, Science, 156, 636-638, (1967) 

[14]. T. C. Halsey et al, Phys. Rev. A, 33, 1141 (1986) 

[15]. M.S.El Naschie, Chaos, Solitons and Fractals, 1, 485-487 (1991) 

[16]. M.S.El Naschie, Chaos, Solitons and Fractals, 2, 437-439 (1992) 

[17]. M.S.El Naschie, Chaos, Solitons and Fractals, 3, 89-98 (1993) 

[18]. L. Marek-Crnjac, Chaos, Solitons and Fractals 41, 2697-2705 (2009) 

[19]. Y. Tao, Communications in Theoretical Physics, 56, 648–654 (2011) (arXiv: 1010.0965) 

[20]. Y. Tao, Communications in Theoretical Physics, 57, 343-347 (2012) (arXiv: 1010.1326) 

[21]. P. W. Higgs, Phys. Lett. 12, 132 (1964) 

[22]. P. W. Higgs, Phys. Rev. Lett. 13, 508 (1964) 

[23]. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967) 

[24]. C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954) 

[25]. L. de Broglie, Nature, 112, 540 (1923) 

[26]. M. Giona, Chaos, Solitons & Fractals, 5, 987 (1995) 

[27]. I. Podlubny, Fractional differential equation, San Diego: Academic Press, 1999 

 

 

 

 

 

 

 

 

 

 

 

 

 


