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Abstract

In this work, we introduce the “effective iso-radius” for dynamic
iso-sphere Inopin holographic rings (IHR) as the iso-radius varies,
which facilitates a heightened characterization of these emerging,
cutting-edge iso-spheres as they vary in size and undergo “iso-transitions”
between “iso-states”. The initial results of this exploration fuel the
construction of a new “effective iso-state” platform with a poten-
tial for future scientific application, but this emerging dynamic iso-
architecture warrants further development, scrutiny, collaboration,
and hard work in order to advance it as such.

Keywords: Santilli iso-number; Inopin holographic ring; Santilli iso-
sphere; Dynamic iso-sphere; Iso-radius; Effective iso-state.
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1 Introduction
Santilli’s iso-mathematics [1, 2, 3, 4, 5] has sparked a revolution in uni-

versal number classification and topology. Recently, the triplex numbers
and Inopin’s dual 4D space-time IHR topology [6, 7] were iso-topically
lifted [1, 2, 3, 4, 5] to construct the iso-triplex numbers and the iso-dual
4D space-time IHR topology for iso-fractals [8]. Subsequently, these emerg-
ing developments [8] were deployed to propose a topological iso-string theory
[9] and assemble Mandelbrot iso-sets [10]. Furthermore, such implementa-
tions facilitated the dynamic iso-topic lifting of iso-spaces to install dynamic
iso-spaces [11], which built the foundation of dynamic iso-sphere IHRs with
exterior and interior iso-duality [12].

In this assignment, we focus on advancing the representation of dynamic
iso-sphere IHRs [12] by forging the effective iso-radius platform to launch
the encoding of their characteristic “iso-transitions” between “iso-states” as
they vary in size. The effective iso-radius concept introduced in this paper
was originally inspired by the “effective radius” from Corda’s new black hole
effective state framework [13, 14, 15, 16]. However, this paper is devoted to
iso-mathematics rather than physics; thus, the effective representation pro-
posed here targets spherically-symmetric iso-mathematical structures rather
than spherically-symmetric physical quantities. Hence, for now, we limit our
investigation to the realm of iso-mathematics [1, 2, 3, 4, 5] but recognize a
significant potential for scientific application in the near future. Thus, we
conduct our investigation with Section refsection:procedure by presenting
a step-by-step procedure that constructs the effective iso-radius for a dy-
namic iso-sphere IHR [12] with dynamic iso-topic lifting [11] in the iso-dual
4D space-time IHR topology [8]. Finally, we conclude our paper with Sec-
tion 3, where we recapitulate the results of Section 2 with a brief discussion
and suggest future modes of research.

2 Procedure
In the venture of this section, we assemble the effective iso-radius for a

dynamic iso-sphere IHR [12] and thereby introduce the notion of “effective
iso-state”.
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2.1 Initializing the dual 4D space-time IHR topology
Here, we instantiate the dual 4D space-time IHR topology via the fol-

lowing procedure:

1. First, from eq. (7) of [8], let X = C be the set of all complex num-
bers, the Euclidean complex space, and the dual 2D Cartesian-polar
coordinate-vector state space, where the complex number ~x ∈ X is a
dual 2D Cartesian-polar coordinate-vector state that is defined by eq.
(6) of [8] as

x = ~x = ~xR + ~xI = (~x) = (|~x|, 〈~x〉)P = (~xR, ~xI)C , ∀~x ∈ X. (1)

In eq. (1), (~xR, ~xI)C is a 2D Cartesian coordinate-vector state in the
2D Cartesian coordinate-vector state space XC so (~xR, ~xI)C ∈ XC ,
while (|~x|, 〈~x〉)P is a 2D polar coordinate-vector state in the 2D polar
coordinate-vector state space XP so (|~x|, 〈~x〉)P ∈ XP , where XC and
XP are iso-morphic, dual, synchronized, and interlocking in X [8].
Thus, eq. (1) complies with the constraints imposed by eqs. (8–13)
of [8]—see Figure 1.

2. Second, from eq. (16) of [8] we have

T 1 = {~x ∈ X : |~x| = r}, (2)

where T 1 ⊂ X is the 1-sphere IHR of amplitude-radius r > 0 (with
corresponding curvature κ = 1

r
) that is centered on the origin O ∈

X; T 1 is the multiplicative group of all non-zero complex numbers
with amplitude-radius r, which is iso-metrically embedded in X and
is simultaneously dual to the two complex sub-spaces X− and X+

[8, 6, 7]—see Figure 2.

3. Third, from eq. (18) of [8], let Y ≡ T be the set of all triplex num-
bers, the Euclidean triplex space, and the dual 3D Cartesian-spherical
coordinate-vector state space, where the triplex number ~y ∈ Y is a dual
3D Cartesian-spherical coordinate-vector state that is defined by eq.
(17) of [8] as

y = ~y = ~yR + ~yI + ~yZ = (~y) = (|~y|, 〈~y〉, [~y])S = (~yR, ~yI, ~yZ)C , ∀~y ∈ Y.
(3)
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Fig. 1: Complex components for the dual 2D Cartesian-polar coordinate-vector state

~x in the dual 2D Cartesian-polar coordinate-vector state space (and Euclidean complex

space) X, such that ~x ∈ X, where ~x is simultaneously treated as a complex number, 2D

polar coordinate-vector, and 2D Cartesian coordinate-vector [8]. Specifically, (~xR, ~xI)C

is a 2D Cartesian coordinate-vector state in the 2D Cartesian coordinate-vector state

space XC so (~xR, ~xI)C ∈ XC , while (|~x|, 〈~x〉)P is a 2D polar coordinate-vector state in

the 2D polar coordinate-vector state space XP so (|~x|, 〈~x〉)P ∈ XP , where XC and XP

are iso-morphic, dual, synchronized, and interlocking in X [8]. Note that ~xR and ~xI are

treated as vectors (with axis-dependent magnitude and direction) so the vector sum is

~x = ~xR + ~xI with amplitude |~x| and direction 〈~x〉 [8].
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Fig. 2: The dual 3D space-time 1-sphere IHR topology for the dual 2D Cartesian-polar

coordinate-vector state space (and Euclidean complex space) X, where the topological

1-sphere IHR T 1 ⊂ X is simultaneously dual to two spatial 2-branes [8, 6]: the “2D

micro sub-space zone” X− ⊂ X and the “2D macro sub-space zone” X+ ⊂ X for interior

and exterior dynamical systems, respectively [8].
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In eq. (3), (~yR, ~yI, ~yZ)C is a 3D Cartesian coordinate-vector state in the
3D Cartesian coordinate-vector state space YC so (~yR, ~yI, ~yZ)C ∈ YC ,
while (|~y|, 〈~y〉, [~y])S is a 3D spherical coordinate-vector state in the
3D spherical coordinate-vector state space YS so (|~y|, 〈~y〉, [~y])S ∈ YS,
where YC and YS are iso-morphic, dual, synchronized, and interlocking
in Y [8]. Thus, eq. (3) complies with the constraints imposed by eqs.
(19–28) of [8]—see Figures 3 and 4.

4. Fourth, from eq. (33) of [8] we have

T 2 = {~y ∈ Y : |~y| = r}, (4)

where T 2 ⊂ Y is the 2-sphere IHR of amplitude-radius r > 0 (the same
as T 1) that is centered on the origin O ∈ X, Y ; T 2 is the multiplicative
group of all non-zero triplex numbers with amplitude-radius r, which
is iso-metrically embedded in Y and is simultaneously dual to the
two triplex sub-spaces Y− and Y+ [8, 6, 7]. Here, given X ⊂ Y ,
T 1 ⊂ T 2, X, Y is the great circle of T 2, such that T 1 = X ∩ T 2

[8, 6, 7]—see Figure 5.

At this point, we’ve initialized the dual 4D space-time IHR topology
[8, 6, 7]. Therefore, we are ready to explore the proposed the effective
iso-radius encoding platform of Section 2.2.

2.2 Constructing the effective iso-radius for the iso-dual 4D space-
time IHR topology

Here, we assemble the effective iso-radius encoding platform for repre-
senting iso-sphere IHR [12] iso-states and iso-transitions in the iso-dual 4D
space-time topology [8] via the following procedure:

1. First, in conventional mathematics, the number 1 is the multiplicative
identity that satisfies the original number field axioms [18]. Thus, the
number 1 plays important and diverse roles throughout mathematics
in general such as, for example, normalization in statistics. Therefore,
we start by setting the amplitude-radius r = 1 for T 1 and T 2.

2. Second, in iso-mathematics [1, 2, 3, 4, 5, 8], Santilli demonstrated
that the multiplicative unit is not limited to the number 1 and can
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Fig. 3: Triplex components for the dual 3D Cartesian-spherical coordinate-vector

state ~y in the dual 3D Cartesian-polar coordinate-vector state space (and Euclidean

triplex space) Y , such that ~y ∈ Y , where ~y is simultaneously treated as a triplex num-

ber, 3D spherical coordinate-vector, and 3D Cartesian coordinate-vector [8]. Specif-

ically, (~yR, ~yI, ~yZ)C is a 3D Cartesian coordinate-vector state in the 3D Cartesian

coordinate-vector state space YC so (~yR, ~yI, ~yZ)C ∈ YC , while (|~y|, 〈~y〉, [~y])S is a 3D

spherical coordinate-vector state in the 3D spherical coordinate-vector state space YS

so (|~y|, 〈~y〉, [~y])S ∈ YS , where YC and YS are iso-morphic, dual, synchronized, and inter-

locking in Y [8]. Note that vecyR, ~yI, and ~yZ are treated as vectors (with axis-dependent

magnitude and direction) so the vector sum is ~y = ~yR + ~yI + ~yZ with amplitude |~y| and

two directions 〈~y〉 and [~y] [8].
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Fig. 4: Aligned perspectives of ~y ∈ Y from the RI-plane (top) and the RZ-plane

(bottom) [8].
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Fig. 5: The dual 4D space-time 2-sphere IHR topology in the dual 3D Cartesian-

spherical coordinate-vector state space (and Euclidean triplex space) Y , where the topo-

logical 2-sphere IHR T 2 ⊂ Y is simultaneously dual to two spatial 3-branes [8, 6]: the

“3D micro sub-space zone” Y− ⊂ Y and the “3D macro sub-space zone” Y+ ⊂ Y for

interior and exterior dynamical systems, respectively [8]. Here, T 2 is depicted as M. C.

Escher’s famous reflecting sphere [17].
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therefore be replaced with the positive-definite iso-multiplicative iso-
unit r̂ > 0 with corresponding inverse κ̂ = 1

r̂
> 0 for iso-numbers.

Hence, for some r̂, we employ Santilli’s iso-methodology [1, 2, 3, 4, 5]
to iso-topically lift T 2 via

~yr̂ ≡ ~y × r̂, ∀~y ∈ T 2 → ∀~yr̂ ∈ T 2
r̂ , (5)

for the transition and its inverse

f(r̂, T 2) : T 2 → T 2
r̂

f−1(r̂, T 2
r̂ ) : T 2

r̂ → T 2

(6)

to identify the iso-2-sphere IHR of iso-radius (or “iso-amplitude-radius”)
r̂ from [8], so T 2 and T 2

r̂ are locally iso-morphic and are both centered
on the origin O ∈ X, Y . Here, note that in addition to being the
iso-radius of T 1 and T 2, r̂ also serves as the iso-unit for Santilli’s iso-
multiplication [1, 2, 3, 4, 5, 8], where the iso-unit inverse κ̂ is also the
iso-curvature of T 1 and T 2.

3. Third, given the dynamic iso-topic lifting and dynamic iso-spheres of
[11, 12], we furthermore define T 2’s iso-radius as an iso-function in
the positive-definite form

T 2
r̂(m) : r̂ ≡ r̂(m) ≡ ma+ b ≡ 1

κ̂(m)
> 0, (7)

where r̂(m) is the dynamic iso-radius iso-function (or “dynamic iso-
unit iso-function”) with the parameter m and κ̂(m) is the correspond-
ing dynamic iso-curvature iso-function, such that m is some math-
ematical quantity while a and b are coefficients. Thus, eq. (5) is
rewritten as

~yr̂(m) ≡ ~y × r̂(m), ∀~y ∈ T 2 → ∀~yr̂(m) ∈ T 2
r̂(m) (8)

so eq. (6) becomes

f(r̂(m), T 2) : T 2 → T 2
r̂(m)

f−1(r̂(m), T 2
r̂(m)) : T 2

r̂(m) → T 2.
(9)
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4. Fourth, given that eq. (7) is a dynamic iso-unit iso-function, we wish
to show that r̂(m) is characterized by constant change as m varies
and takes on values from some positive-definite sequence M , such
that m ∈ M as m → ∞. In [11, 12], there are two distinct types of
dynamic iso-unit iso-functions:

• continuous dynamic iso-unit iso-functions, so M may be a con-
tinuous sequence of positive-definite values such as, for example,
the case of M ≡ MR+ for the positive-definite interval of real
numbers

MR+ = (0,∞R+), m ∈MR+ , m→∞R+ ; (10)

and

• discrete dynamic iso-unit iso-functions, so M may be a discrete
sequence of positive-definite values such as, for example, the case
of M ≡MN for the positive-definite set of natural numbers

MN = {1, 2, 3, 4, 5, ...}, m ∈MN, m→∞N (11)

or in the case of M ≡ MFib for the positive-definite set of Fi-
bonacci numbers

MFib = {1, 1, 2, 3, 5, ...}, m ∈MFib, m→∞Fib. (12)

5. Fifth, for this introductory investigation, consider a relatively simple
case and suppose that a = 2 and b = 0, where we know that the
r̂(m) > 0 and κ̂(m) > 0 of eq. (7) will remain positive-definite as m >
0 varies, regardless of whether the positive-definite M is continuous
or discrete. Thus, eq. (7) is rewritten as

T 2
r̂(m) : r̂ ≡ r̂(m) ≡ m2 + 0 ≡ 2m ≡ 1

κ̂(m)
> 0. (13)

In the procedure of this initial thought experiment, we will operate
eq. (13) with r̂(m) = 2m, but note that eq. (13) could be rewritten
again to relate r̂ to additional mathematical quantities as long as it
complies with Santilli’s positive-definite iso-unit constraint r̂(m) > 0
[1, 2, 3, 4, 5, 8] for the iso-topic liftings of eqs. (8–9).
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6. Sixth, given the fundamental exterior and interior iso-duality estab-
lishment [12], we briefly note that

T 2
r̂(m) ≡ T 2

r̂+(m)

T 2
κ̂(m) ≡ T 2

r̂−(m)

(14)

because in this context the T 2
r̂(m) ≡ T 2

r̂+(m) of “outer” iso-radius r̂ ≡
r̂+(m) is the exterior 2-sphere IHR that is “outside” of T 2 because
T 2
r̂+(m) ⊂ Y+, while the T 2

κ̂(m) ≡ T 2
r̂−(m) of “inner” iso-radius κ̂ ≡ r̂−(m)

is the interior 2-sphere IHR that is “inside” of T 2 because T 2
r̂−(m) ⊂ Y−

[12]: T 2
r̂+(m) and T 2

r̂−(m), or equivalently T 2
κ̂(m) and T 2

r̂(m), are iso-dual

[12] due to the fact that

r̂+(m) ≡ r̂(m) ≡ 1

κ̂(m)
≡ 1

r̂−(m)
. (15)

7. Seventh, given eq. (13), we define the initial iso-radius iso-state of
T 2
r̂(m) as

T 2
r̂(m0)

: r̂0 ≡ r̂(m0) ≡ 2m0 ≡
1

κ̂(m0)
> 0, (16)

to identify the initial iso-2-sphere IHR iso-state T 2
r̂(m0)

, where r̂(m0) >

0 is the initial iso-radius, κ̂(m0) > 0 is the initial iso-curvature, and
m0 > 0 is the initial quantity, such that m0 ∈M , regardless of whether
the positive-definite M is continuous or discrete. Therefore, for this
initial case we assign m = m0 for eq. (8) to establish

~yr̂(m0) ≡ ~y × r̂(m0), ∀~y ∈ T 2 → ∀~yr̂(m0) ∈ T 2
r̂(m0)

(17)

so eq. (9) becomes

f(r̂(m0), T
2) : T 2 → T 2

r̂(m0)

f−1(r̂(m0), T
2
r̂(m0)

) : T 2
r̂(m0)

→ T 2.
(18)
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8. Eighth, suppose that the quantity m0 undergoes a change that is
characterized by

δm : m0 → m1, (19)

which causes
δr̂(m) : r̂(m0)→ r̂(m1), (20)

such that
m0 = m1 + ∆m. (21)

Thus, a second version of eq. (16) is written to define the final iso-
radius iso-state of T 2

r̂(m) as

T 2
r̂(m1)

: r̂1 ≡ r̂(m1) ≡ 2m1 ≡
1

κ̂(m1)
> 0, (22)

to identify the final iso-2-sphere IHR iso-state T 2
r̂(m1)

, where r̂(m1) > 0

is the final iso-radius, κ̂(m1) > 0 is the final iso-curvature, and m1 > 0
is the final quantity, such that m1 ∈ M , regardless of whether the
positive-definite M is continuous or discrete. Therefore, for this final
case we assign m = m1 for eq. (8) to establish

~yr̂(m1) ≡ ~y × r̂(m1), ∀~y ∈ T 2 → ∀~yr̂(m1) ∈ T 2
r̂(m1)

(23)

so eq. (18) becomes

f(r̂(m1), T
2) : T 2 → T 2

r̂(m1)

f−1(r̂(m1), T
2
r̂(m1)) : T 2

r̂(m1)
→ T 2.

(24)

9. Ninth, given the impact of eqs. (19–24), the initial iso-2-sphere IHR
iso-state T 2

r̂(m0)
(of initial iso-radius r̂(m0)) is iso-topically lifted to the

final iso-2-sphere IHR iso-state T 2
r̂(m1)

(of final iso-radius r̂(m1)) via

~yr̂(m1) ≡ ~yr̂(m0) ×
r̂(m1)

r̂(m0)
, ∀~yr̂(m0) ∈ T 2

r̂(m0)
→ ∀~yr̂(m1) ∈ T 2

r̂(m1)
(25)
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for the iso-transition and its inverse

f( r̂(m1)
r̂(m0)

, T 2
r̂(m0)

) : T 2
r̂(m0)

→ T 2
r̂(m1)

f−1( r̂(m1)
r̂(m0)

, T 2
r̂(m1)

) : T 2
r̂(m1)

→ T 2
r̂(m0)

(26)

with the iso-radius ratio r̂(m1)
r̂(m0)

and the corresponding iso-curvature

ratio r̂(m0)
r̂(m1)

characterize the iso-transition to establish that T 2, T 2
r̂(m0)

,

and T 2
r̂(m1)

are indeed locally iso-morphic.

10. Tenth, we note that the iso-transition between T 2
r̂(m0)

and T 2
r̂(m1)

de-
pends on ∆m and complies with the trichotomy:

• Case ∆m < 0: T 2
r̂(m0)

is de-magnified to become T 2
r̂(m1)

via the

iso-topic lifting T 2
r̂(m0)

→ T 2
r̂(m1)

because m1 < m0 so r̂(m1) <

r̂(m0).

• Case ∆m = 0: T 2
r̂(m0)

is equivalent to T 2
r̂(m1)

via the iso-topic

lifting T 2
r̂(m0)

→ T 2
r̂(m1)

because m1 = m0 so r̂(m1) = r̂(m0).

• Case ∆m > 0: T 2
r̂(m0)

is magnified to become T 2
r̂(m1)

via the iso-

topic lifting T 2
r̂(m0)

→ T 2
r̂(m1)

because m1 > m0 so r̂(m1) > r̂(m0).

11. Finally, given the new and developing framework of [13, 14, 15, 16]
that characterizes the effective physical state of black holes for an
emission or absorption transition, we are motivated to define the ef-
fective iso-mathematical state of dynamic iso-2-sphere IHRs (which
are also spherically-symmetric objects) for a transition from T 2

r̂(m0)
to

T 2
r̂(m1)

. Therefore, given the physical black hole effective radius defini-

tion from eq. (5) of [16], we implement the dynamic iso-topic lifting
of [11, 12] and define the iso-mathematical effective iso-2-sphere IHR
iso-radius as

T 2
r̂(m0)

→ T 2
r̂(m1)

: r̂E ≡ r̂E(m0,m1) ≡ 2mE(m0,m1) ≡
1

κ̂E(m0,m1)
> 0,

(27)
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where κ̂E(m0,m1) is the effective iso-2-sphere IHR iso-curvature and
inverse of the iso-unit, such that the effective iso-2-sphere IHR quan-
tity is defined as

mE(m0,m1) ≡
m0 +m1

2
, (28)

which is simply the average of T 2
r̂(m0)

’s initial quantity m0 and T 2
r̂(m1)

’s
final quantity m1.

At this point, we’ve assembled the effective iso-radius encoding platform
for representing dynamic iso-sphere IHR [12] iso-states and iso-transitions
in the iso-dual 4D space-time topology [8].

3 Conclusion
In this work, we successfully assembled the effective iso-radius for a

dynamic iso-sphere IHR [12] in the iso-dual 4D space-time IHR topology
[8] and introduced the corresponding notion of effective iso-state to begin
encoding the iso-transition between two distinct iso-states. For this, the
procedure and step-by-step developing results were presented in Section 2,
and applies to both continuous and discrete dynamic iso-sphere IHRs. Also,
we demonstrated that all of these outcomes comply with the exterior and
interior IHR iso-duality [12]. To recapitulate the final results more precisely,
we defined—for the dynamic iso-sphere IHR T 2

r̂(m)—the effective iso-radius

r̂E(m0,m1) as the average of the initial iso-radius r̂(m0) and the final iso-
radius r̂(m1) in eqs. (27–28), which correspond to the initial dynamic iso-
sphere IHR T 2

r̂(m0)
and the final dynamic iso-sphere IHR T 2

r̂(m1)
, respectively.

The results, constructions, and implications of this preliminary investi-
gation are significant because they exemplify alternative modes of cutting-
edge iso-mathematics research that facilitate a heightened quantifiable char-
acterization of dynamic iso-sphere IHRs [12] in terms of effective iso-states
for iso-transitions with iso-duality. Hence, given that iso-sphere IHRs are
equipped with topological deformation order parameters [6, 7, 8], the next
logical step of this analysis should be to implement iso-topic liftings [1, 2, 3,
4, 5] for the order parameters and then topologically incorporate these “iso-
deformations” into the existing effective iso-state definition. From there,
we may build on this platform and continue to develop the framework by
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exploring and assessing the frontiers of iso-, geno-, and hyper- mathematics
[1, 2, 3, 4, 5]. Thus, this developing class of dynamic iso-sphere IHRs war-
rants further development, scrutiny, collaboration, and hard work in order
to advance it for future application in the discipline of science.
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