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All the fermion masses may be determined from merely two numbers dependent
on = , e, and a few rational fractions, and all the fermion charges thereafter.,

In this, now, dimension independent revision; the electron mass and the ratio of the
muon mass to the electron mass are shown calculable from simple quadratic functions
of = , e, and a few rational fractions. All the remaining masses may be determined
from from these constants and their indexes determined by the mass-generalized
Maxwell's equations. These calculated masses are all well within current specs as of
this publication. In fact, more recent neutrino measurements and estimates have put
their values into a rather tight range which the computed values in this update fall
within.

My book, "Reality is a Mathematical Model" (reference [1]), lays out the
foundations of the algebraic construction of the vector-geometry of space-time and
how the smooth functions represent the fundamental objects therein.

From there, my book, "A Mathematical Preon Foundation for the Standard Model"
(reference [2]), gives an introductory look at how fundamental object mass originates
from charge; an architecture of these fundamental objects; and the interactions of
these fundamental objects.

Here, the picture of the mass of the fundamental objects is extended.

the field equations of the electromagnetic-nuclear field, which can be expressed in
the form:

m m
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that is, the mass-generalized Maxwell’'s or Maxwell-Cassano equations, are a
representation of the equations also obtained from the Helmholtzian matrix product
form noted at the begining of my video, [3]:

Now, from [2], the fermion architecture is as follows:

e = e(1) = (ELELED),

u = e(2) = (ELEZED),

= e(3) = (ELEZLEY),

ve = v(1) = (B,B%,B%),

v, = v(2) = (B1,B%B?),

v. = v(3) = (B},B%,B?),

Ur = Ui(1) = (BL,E2E?),

cr = U1(2) = (BL,E2E?),

tr = U1(3) = (BL,E% E?),

Ug = U2(1) = (El,BZ,E3)l

Cc = Ux(2) = (El,Bz,E3)2

tc = U2(3) = (E*,B%E®),

Ug = Ug(l) = (El,EZ,B3)1

Cg = U3(2) = (El,Ez,B3)2

te = U3(3) = (EL,E?B?),

dr = di(1) = (E5,BZB9),

SR = d1(2) = (El,BZ,Bs)2

br = d1(3) = (EL,BZBY),

de = d2(1) = (B, E?,B?),

se = d2(2) = (BY,E?%,B?),

be = d2(3) = (B,E?,B3),

ds = da(1) = (B*,B%,E?),

ss = d3(2) = (B, B%E3),

bs = d3(3) = (B!, B?%,E®),

If the fermion masses may be described by the mass-generalized Maxwell’s

eguations, then denote them as follows:

m3,1) =me: e =¢(l)

m3,2) =m, : u~ = €e2)

m3,3) =m; : 7~ = ¢e(3)

m(0,1) = m,, : ve = v(1)

m(0,2) =m,, : v, = v(2)

m(0,3) =m,, : v; = v(3)

m(2,1) = my : ux = ux(l)

m(2,2) = m¢ : Cx = Ux(2)

m(2,3) = m; : tx = Ux(3)

m(1,1) = my : dx = dx(1)

m(1,2) = ms : sx = dx(2)

m(1,3) = mp : bx = dx(3)

Where for an object’s mass:

m(h,i) :

h indicates the number of E's In the object’s Sg architecture.
i indicates the generation of the object’'s Sg architecture.

After much analysis, the following relationships arise.

Define:
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From which the masses may be written:
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which may be written out explicitly as:
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or.

m(0,1) = m(0, 1)f(0) | m(0,i) = m(0,1)g(0,i)

m(L,1) = m2, DfL) | mL,i) = m2,1)gLi) , (i 1)

m2,1) = m3,1f2) | m2,i) = m(L,1)g2.i) , (i +1)

m3,1) = m(0,1)f3) | m(3,i) = m(3,1)g(3,i)
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So, the f(h) are: :
f(0) = w(0)p(0) =1
f(1) =w()e(1) =2
f(2) =w(2)p((2) =5
f(3) = W(3)¢p(3) = 10° - (2k)

Continuing, the following table may be built:

f(0) = 1 my, = m(0,1) = m(0,1)f(0) = m(0,1)
f(1) = 2 mg = m(L,1) = m2, 1f(1) = 2m(2,1)
f(2) = 5 me = m(2,1) = m3,1)f(2) = 5m(3,1)
f(3) = 10° - (2k) | Me = M(3,1) = m(0, 1)f(3) = 10° - (2k)m(0, 1)

The fermion measured to the greatest accuracy is the electron.
It's current measured value is: me ~.0.510998928(11)MeV/c?
However, consider:

1715, 1 (486\7a_
10[ LS+ ks (5 }e 0.5109989278047020776144390005897

Since this is right in the middle of the margin of error of a quantity measured to

eight significant figures, it is not even remotely out of line to make the assignment:

_ 1731 1 (486
me = 45| 8 2000 (3) J°

It may seem odd that a physical constant with units may be calculable, but
like converting from centimeters to inches or liters to quarts there is only a

proportionality constant involved, so the dimensionless quantity involved would be




some multiple of this (which, here may be )

So, taking the mass of the electron as the basis, from the above analysis (in

MeV/c?):
me = M(3,1) = 0.5109989278047020776144390005897
My = M2,1) = m(3,1)f(2) = 5m(3,1) — 2.5549946390235103880721950029485
ma = m(1,1) = m(2,1)f(1) = 2m(2,1) = 5.109989278047020776144390005897
Note:
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The g(h,i) simplify to:
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Yielding:



m(h,1) = m(h,1)

m(h, 2)
o =g(h,2)

m(h 4 (—1)Ms G 1)
m(h, 3) — ah3)

m(h+ (1), 1)

which may be written out explicitly as:

mO,1) = mO,1) | 1 = 60.2) = 9(0.3)
ML) = m1,1) | 1S - 62 mE - o3)
m2,1) - m2,1) mgg ~ 9(2,2) ngg ~ g(2,3)
mEL) = mE Y| 12 = 0E2) DI - o@3)
Since the first column is a set of identities (g(h,1) = 1) , the case: i =1 may

be ignored.

The g(h,i) may be calculated into the following table ( g(h,1) = 1).
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[To(1+1)-To(Tp(1+1))]

01.2) - ()77 . ([2-1+ (-2 0T i)

-(B) @210~ (B)®

[To(2+1)-To(Tp(2+1))]

922 =1-([2-2+ (—1)22%[1%*1)21]@ =1.([4+2'K" =1.(6k)

[To(B+1)-To(To(3+1))]

93.2) = 1- ([2-3+ (-1)%23 D] k) =1.([6-2)" =1-(5k)

2T0(0)

9(0,3) = 1-[1 ([2 0+ (-1)°27[%¢ 1>°]]k> [To(0+1)- To(To(0+1))]:|

~1. [([0+ zl]k)2'°] =1.(0+2K°=1.(1)?=1

9(1,3) = (gg [V(l 3)<[2 1+ (-1)*2z[BD ]]k> [To(L+1)- To(To(1+1)>]}2T°“)

“(B) le-2wt T (B) wr - (B)

02,3)=1- (1004)< 2 2+ (- 1)22 [1+(-1) ]:| ) [To(2+1)- TO(T0(2+1))]:|2T0(2)

98.3)=1- (1450)( [2-3+ (-1)%23[=C 1)3]]k> Mo(FH0= To(To<3+1>>]J2TO<3>

[

-1 [(1004)([4”1]'()2'1}2 - 1-[ () @07 ]
[
[

-1 (1450)([6_21]'()2'1}2 :1’[(W>(5k)2}2

From these tables the constant k may be determined, as well as a host of
relationships between the fermion masses.
The upper generation fermion masses fill out the following table.

(It is rather remarkable how simple the relationships are.)

m0,2) _, m@©,3) _ 4

m(0,1) m(0, 1)

m(1,2) /23 m(1,3) 23

m2,1) (%£)-® m(2,1) (25 ad
0D e | IO 1 [(F)e]
m(3,2) m(3,3) _

m(3,1) =1-(3k) m(3, ]_) |:( 1450 >(5k) :|

So, from tables above:



mo3 _,_ mo2 _ B B . m@E1)
m(0.1) =1= m(0.1) m(0,3) = m(0,2) = m(0,1) = —105 - (Zk)
And:

- m(1,2) 25 _ 1 m(2,2) 1 m(3,2)

= me) 6[ m(, )J [m(sl)J

_|m@,3) [25 _ 1 |1004 [M(2,3) _ 1 [1450 | M@3,3)
m21) V23 64 3 mL1) 54 2 m(3,1)
Now, the constant k may be established as follows:

k= 47"+ 8+ 2500 %( 20) =477+ 2+ 000
= 41.353655699595529713433202094743
So, using the already above determined value:
m(3,1) = me = 0.5109989278047020776144390005897MeV/c?
= m(3,2) = 5km(3,1) = 105.65836861649061337988846727846MeV/c?
It's current measured value is:

m, = m(3,2) ~ 105.6583715(35)MeV/c?

All the above mass ratio relationships may be verified using this value.
= m3,1) = m([o L sGhe ]5&‘11’“””),1) -(3)
~1)To@® _1)To@®
_ m(sﬁf) R el ,1) . 105 « (2K)
- m(5£11)° Y 1) . 105 « (2)
= m(6%, - 614,1) - 105 - (2k)
—m(0-0,1) - 105 - (2k) = m(0,1) - 10° + (2k)
m(3,1)
105 - (2k)
0.5109989278047020776144390005897

10° - 2 . 41. 353655699595529713433202094743
= 6.17840090748857345622278244761 x 10-8MeV/c? = m,,

=m,, =m0,1) =

So, the first generation fermion masses fill the following table.
(in Mev/c?)
me = M(3,1) = 0.5109989278047020776144390005897
m,, = m(0,1) = 6.17840090748857345622278244761 x 108
mu = M(2,1) = 2.5549946390235103880721950029485
mg = m(1,1) = 5.109989278047020776144390005897

Thus:



m(0,3) = m(0,2) = m(0,1) = 6.17840090748857345622278244761 x 10-3MeV/c

And the rest of the mass values may also be computed (in Mev/c? ):

ey - (8)-w

— ms = m(L,2) = m(2, 1)( )k 97.205609127171364309497389896187

m2,2)
@D ~ 116

— me = M(2,2) = 6m(1, 1)k = 1267.9004233978873605586616073416

m3,2) _
D ~ 116
= m, = m(3,2) = 5m(3, 1)k = 105.65836861649061337988846727846

m,,. = m(0,2) = m(0,1) = 6.17840090748857345622278244761 x 108

won - (8)

= my = m(1,3) = m2, 1)( ) k? = 4190.9426907545271186849743851983

NS 1 [(1&) 0]

2
= m = m(2,3) = [(ﬁ)@k)z} m(1,1) = 172924.17191486611744398343538627

ey L[ (do)eo’]

2
= m; = m(3,3) = [(ﬁ)(smz} m(3,1) = 1776.9680674108457768918379570944

m,, = m(0,3) = m(0,1) = 6.17840090748857345622278244761 x 10-8

And all the fermion masses may be tabulated as follows, along side reported mass
values.

(as of this publication)

(in Mev/c?)



Calculated

Measured

mg = m(1,1) = 5.109989278047020776144390005897

mg = m(1,1) ~ 5.0(0.5)

my = mM(2,1) = 2.5549946390235103880721950029485

my = m2,1) ~ 2.4(0.6)

me = M(3,1) = 0.5109989278047020776144390005897

me = M(3,1) = 0.510998928(11)

m,, = m(0,1) = 10~7 x 0.617840090748857345622278244761

my. = m(0,1) ~ 107 x 0.583(183)

ms = M(1,2) = 97.205699127171364309497389896187

ms = m(1,2) ~ 95(5)

me = M(2,2) = 1267.9004233978873605586616073416

me = m(2,2) ~ 1275(25)

m, = m(3,2) = 105.65836861649061337988846 /27846

m, = m(3,2) ~ 105.6583715(35)

my,. = m(0,2) = 10" x 0.617840090748857345622278244761

M. = M(0,2) ~ 107 x 0.583(183)

mp = m(1,3) = 4190.9426907545271186849743851983

mp = m(1,3) ~ 4180(30)

my = m(2,3) = 172924.17191486611744398343538627

my = m(2,3) = 172970(620)

m; = m(3,3) = 1/76.96806/4108457768918379570944

m, = m(3,3) ~ 1,776.82(16)

m,, = m(0,3) = 10~7 x 0.617840090748857345622278244761

m,, = m(0,3) ~ 107 x 0.583(183)

https://en.wikipedia.org/wiki/Lepton#Mass
https://en.wikipedia.org/wiki/Electron
https://en.wikipedia.org/wiki/Muon
https://en.wikipedia.org/wiki/Tauon
https://en.wikipedia.org/wiki/Quark
https://en.wikipedia.org/wiki/Down_quark
https://en.wikipedia.org/wiki/Up_quark
https://en.wikipedia.org/wiki/Charm_quark
https://en.wikipedia.org/wiki/Strange_quark
https://en.wikipedia.org/wiki/Bottom_quark
https://en.wikipedia.org/wiki/Top_quark
https://en.wikipedia.org/wiki/Current_quark_mass
https://en.wikipedia.org/wiki/Neutrino#Mass
http://pdg.lbl.gov/2012/tables/rpp2012-sum-leptons.pdf
http://pdg.lbl.gov/2012/tables/rpp2012-sum-quarks.pdf
http://prd.aps.org/abstract/PRD/v86/i1/e010001

There are variations between the references on some of the masses, but the

tightest ranges have been used, and the value centered in the error range.

All the calculated masses above are accurate well within their margin of error.
The error ranges for all the masses are rather tight (even the neutrino mass

estimates, now), so confidence on the formulation is high.

There is an affine transformation that relates the above two constants to two




rational fractions:
o/ et = (35) + 28 ()

e/10
- (8 Babo)

Is it just a coincidence that all the fermion masses may be calculated from merely
two well chosen constants, indexed via the two field strength fundamentals founded by
the constructed doublet-R—-algebra?

Even if so, how does the Higgs mechanism explain the above mass ratio
relationships?

Does SUSY predict this relationship? How about S&M Theory?

Now, that it has just been shown that all the fermion masses may be determined by
fixed constants via the mass-generalized Maxwell’'s equations field strengths E & B
: the issue of the relationship of charge to the mass-generalized Maxwell's equations
field strengths and possibly to mass may be re-examined in this new context from
another direction.

The relationship between the mass-generalized Maxwell’s equations field strengths
and the fermion charges may be established by constructing a function c() is defined
simply by:

c((RLR%,R?))) = c(Ry) + c(R}) + c(RR),
c(Rh) = —c(RY),

c(Eh) = %,

C(Blh) =Y.

then the objects are:

c(e(i)) = =3x,c(v(i)) = 3y,c(uj(i)) = 2x+y,c(d;(i)) = —(X+2y).

From here, two different calibrations are consistent with current empirical evidence.

Each has its advantages.

Calibrating this with: -1 = c(e(1)) = -3x,0 = ¢(v(1)) =3y = x= 1,y =0
Operating this linear function on the objects, yields:

c(e(i)) = -1,c(v(i)) =0

c(ui(i)) = 5,c(di() = -5

These correspond to the charge characteristics of all the fermions.

If, on the other hand, the calibration is as follows:

. _ 2 = 2
Let: X =AMgp) » Y =AM,



Calibrating this with: -1 = c(e(1)) = -3x = -3Am5 ), = X = =
. _ 12
and: 1 = Mg , ,
— 3y = 3Am2.,. = M) _ 1 M)
= cv() = 3y = 3, = ( My ) = Y~ 3\ ey
Operating this linear function on the objects, yields:

c(e(h)) = -1,c(v(h)) = (mv((h» )2

Me((h))

m 2 . m 2
2 1 v((h)) 1 2 v((h))
cu(h)) = 5 + 5( Me(h)) ,c(di(i)) = -5 - 5( Me((h))

From the above discussion:

Myay Y2 _ (MO, \* _ 107 x 06178400007 )2 14
(mee) = (m(S, ) (= osaaorrs ~ 1.209082949 < 10

(Please excuse the rounding off to ten significant

figures.)

Since the neutrino masses are the same and the higher generation lepton masses
are significantly greater, the charge differences for the higher generations are
significantly smaller.

The advantage of this calibrationis that because Noether’'s Theorem applied to the
charge density (see [1]) insists the above charge function is a global invariant, so is
mass/energy. Noether's Theorem doesn’t have to be asserted twice, but Hamilton’s
principle (for charge density) is a consequence of the R-algebra and Noether’s
Theorem applied to that, with the above insight, establishes conservation of charge
and mass/energy, as a single consequence.

And, this illustrates that charge, being a measure of first order object (lepton)
masses, only exists where a fermion rest mass exists. That is, charges do not exist in
isolation - in a vacuum - but only where Sg field strength component matrix entries
exist. The generalized electric field strength S matrix entries are basically directly
proportional to the charge, and also where the preponderance of the mass of second
order objects (quarks) rests.

Nowhere here was there found in this discussion Hilbert space, annhilation
operators, spontaneous symmetry breaking, path integrals, Feynman diagrams, or
any other inveigles or obfuscations.

The coincidences mount.

The space-time we recognize is described by the constructive R-doublet-algebra

The vector dot and cross products we all learned in high school are natural
products in the constructed R-doublet-algebra.

The mass-generalized Maxwell’s equations are satisfied for all smooth functions in
the constructed R-doublet-algebra which satisfy the four-vector-doublet Klein-Gordon



equation, yet reduce to Maxwell’s equations for zero mass (something the Dirac
equation does not do).

The fermions and photons are natural fundamental constructions from the field
strengths of the mass-generalized Maxwell’s equations. (and the hadrons are natural
constructions therein, as well).

The charges of the fermions are a natural function of the field strength components
of the mass-generalized Maxwell's equations.

The masses of all the fermions may be calculated from merely two fixed constants
indexed via the field strength components of the mass-generalized Maxwell's
equations.
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