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Abstract

The fluid equations, named after Claude-Louis Navier and George Gabriel Stokes, describe the motion of
fluid substances. These equations arise from applying Newton’s second law to fluid motion, together with the
assumption that the stress in the fluid is the sum of a diffusing viscous term (proportional to the gradient of
velocity) and a pressure term - hence describing viscous flow. Due to specific of NS equations they could be
transformed to full/partial inhomogeneous parabolic differential equations: differential equations in respect of
space variables and the full differential equation in respect of time variable and time dependent inhomogeneous
part. Finally, orthogonal polynomials as the partial solutions of obtained Helmholtz equations were used for
derivation of analytical solution of incompressible fluid equations in 1D, 2D and 3D space for rectangular boundary.
Solution in 3D space for any shaped boundary is expressed in term of 3D global solution of 3D Helmholtz equation
accordantly.

1 Introduction

In physics, the fluid equations, named after Claude-Louis Navier and George Gabriel Stokes, describe fluid substances
motion. These equations arise from applying Newton’s second law to fluid motion, together with the assumption that
the stress in the fluid is the sum of a diffusing viscous term (proportional to the gradient of velocity) and a pressure
term - hence describing viscous flow. Equations were introduced in 1822 by the French engineer Claude Louis Marie
Henri Navier [1] and successively re-obtained, by different arguments, by a several authors including Augustin-Louis
Cauchy in 1823 [2], Simeon Denis Poisson in 1829, Adhemar Jean Claude Barre de Saint-Venant in 1837, and, finally,
George Gabriel Stokes in 1845 [3]. Detailed and thorough analysis of the history of the fluid equations could be
found in by Olivier Darrigol [4]. The invention of the digital computer led to many changes. John von Neumann,
one of the CFD founding fathers, predicted already in 1946 that automatic computing machines’ would replace
the analytic solution of simplified flow equations by a numerical’ solution of the full nonlinear flow equations for
arbitrary geometries. Von Neumann suggested that this numerical approach would even make experimental fluid
dynamics obsolete. Von Neumann’s prediction did not fully come true, in the sense that both analytic theoretical
and experimental research still coexist with CFD. Crucial properties of CFD methods such as consistency, stability
and convergence need mathematical study [5].

Aims of this article are to propose new approach for solution of incompressible fluid equations. The article has
three basic parts: first part explains how to solve NS in one dimension, second part extend solution to two-dimensional
space and, finally, third part summarize with three-dimensional space.

2 Parabolic formulation of equations

Incompressible fluid equations are expressed as follow

ρ

(
∂v

∂t
+ (v · ∇)v

)
− µ∆v +∇p = f (1)

∂ρ

∂t
+∇ · (ρv) = 0 (2)
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where equation (2) for incompressible flow reduces to dρ
dt = 0 or ρ = const due to ∇v = 0. Equations of fluid

motion (1) could be expressed in full time derivative replacing covariant time derivative by

d

dt
=

∂

∂t
+ (v · ∇) (3)

So, we obtain
dv

dt
− a2∆v =

1

ρ
(−∇p+ f) (4)

3 inhomogeneous parabolic like equation for full time derivative, where a =
√
µ/ρ.

3 One dimensional inhomogeneous solution

Consider the initial-boundary value problem for v = v(x, t)

dv

dt
− a2∆v =

1

ρ
(−∇p+ f) in Ω× (0,∞) (5)

v(x, 0) = v0(x) x ∈ Ω (6)

∂v

∂n
= 0 on ∂Ω× (0,∞) (7)

where p = p(x, t) and f = f(x, t), Ω ⊂ Rn, n the exterior unit normal at the smooth parts of ∂Ω, a2 a positive
constant and v0(x) a given function.

So according to [6] equation (4), when x is normed to a = 1, could be rewritten as follow

dv

dt
= vxx +Q(x, t), x ∈ Ω, t > 0 (8)

We expand v and Q in the eigenfunctions sin (nπxL ) on space Ω ∈ [0, L] where sin(nπxL ) and sin(mπxL ) functions
orthogonality could be applied. So, we obtain

Q(x, t) =

∞∑
n=1

qn(t) sin (
nπx

L
) (9)

with

qn(t) =
1

I1

∫
Ω

Q(x, t) sin (
nπx

L
)dx (10)

I1 =

∫
Ω

sin2 (
nπx

L
)dx =

L

2
(11)

and

v(x, t) =

∞∑
n=1

un(t) sin (
nπx

L
) (12)

Let’s choose coordinate system, where t and x are independent. Thus we get the inhomogeneous ODE

u̇n(t) +
(nπ
L

)2

un(t) = qn(t), (13)

whose solution is

un(t) = un(0)e−(nπ/L)2t +

∫ t

0

qn(τ)e−(nπ/L)2(t−τ)dτ (14)

where

un(0) =
1

I1

∫
Ω

v0(x) sin (
nπx

L
)dx (15)

Again, we substitute all obtained equations into (12) and have

v(x, t) =

∫
Ω

v0(s)(

∞∑
n=1

1

I1
sin (

nπs

L
) sin (

nπx

L
)e−(nπ/L)2t)ds

+

∫
Ω

ds

∫ t

0

Q(s, τ)(

∞∑
n=1

1

I1
sin (

nπs

L
) sin (

nπx

L
)e−(nπ/L)2(t−τ))dτ (16)
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Now, we are going back to the initial coordinate system of Navier-Stokes equations and obtain resulting spatial
distribution of velocities v(x0 − v(x, t) · t, t)

4 Two dimensional inhomogeneous solution

Consider the initial-boundary value problem for v = v(x, y, t)

dvi

dt
− a2∆vi =

1

ρ
(−∇ip+ fi) in Ω× (0,∞) (17)

vi(x, y, 0) = vi0(x, y) x, y ∈ Ω (18)

∂vi

∂n
= 0 on ∂Ω× (0,∞) (19)

where p = p(x, y, t) and f = f(x, y, t), Ω ⊂ R2n, n the exterior unit normal at the smooth parts of ∂Ω, a2 a positive
constant and vx0 (x, y), vy0 (x, y) a given function.

So, when x and y are normed to a = 1, equation (4) could be rewritten as follow

dvi

dt
= vixx + viyy +Qi(x, y, t), x, y ∈ Ω, t > 0 (20)

4.1 Rectangular boundary

We expand v and Q in the eigenfunctions sin (nπxLx
) sin (mπyLy

) on space Ω ∈ [0, Lx]× [0, Ly] where sin (nπxLx
) sin (mπyLy

)

and sin (n
′πx
Lx

) sin (m
′πy
Ly

) functions orthogonality could be applied. So, we obtain

Qi(x, y, t) =

∞∑
m,n=1

qimn(t) sin (
nπx

Lx
) sin (

mπy

Ly
) (21)

with

qimn(t) =
1

I2

∫∫
Ω

Qi(x, y, t) sin (
nπx

Lx
) sin (

mπy

Ly
)dxdy (22)

I2 =

∫∫
Ω

(sin (
nπx

Lx
) sin (

mπy

Ly
))2dxdy =

LxLy
4

(23)

and

vi(x, y, t) =

∞∑
m,n=1

(uimn(t) sin (
nπx

Lx
) sin (

mπy

Ly
) (24)

Let’s choose coordinate system, where t and x, y are independent. Thus we get the inhomogeneous ODE

u̇imn(t) + k2
m,nu

i
mn(t) = qimn(t), (25)

k2
m,n =

(
nπ

Lx

)2

+

(
mπ

Ly

)2

(26)

whose solution is

uimn(t) = uimn(0)e−k
2
m,nt +

∫ t

0

qijmn(τ)e−k
2
m,n(t−τ)dτ (27)

where

uimn(0) =
1

I2

∫∫
Ω

vi0(x, y) sin (
nπx

Lx
) sin (

mπy

Ly
)dxdy (28)

Again, we substitute all obtained equations into (24) and have

vi(x, y, t) =

∫∫
Ω

vi0(s′, s)(

∞∑
m,n=1

1

I2
sin (

nπs

Lx
) sin (

mπs′

Ly
) sin (

nπx

Lx
) sin (

mπy

Ly
)e−k

2
m,nt)ds′ds

+

∫∫
Ω

ds′ds

∫ t

0

Qi(s′, s, τ)(

∞∑
m,n=1

1

I2
sin (

nπs

Lx
) sin (

mπs′

Ly
) sin (

nπx

Lx
) sin (

mπy

Ly
)e−k

2
m,n(t−τ))dτ (29)

Now, we are going back to the initial coordinate system of Navier-Stokes equations and obtain resulting spatial
distribution of velocities vi(x0 − vx(x, y, t) · t, y0 − vy(x, y, t) · t, t)
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4.2 Any shaped boundary

For any shaped boundary ∂Ω, equation (21) could be replaced by

Qi(x, y, t) =

∞∑
m,n=1

qimn(t)Hmn
∂Ω (x)Hmn

∂Ω (y) (30)

and equation (24) by

vi(x, y, t) =

∞∑
m,n=1

uimn(t)Hmn
∂Ω (x)Hmn

∂Ω (y). (31)

where Hmn
∂Ω (x)Hmn

∂Ω (y) are partial solutions of Helmholtz 2D equation for given boundary ∂Ω and could be taken for
example from [7]. So equation (29) transforms to

vi(x, y, t) =

∫∫
Ω

vi0(s′, s)(

∞∑
m,n=1

1

I2mn
Hmn
∂Ω (s)Hmn

∂Ω (s′)Hmn
∂Ω (x)Hmn

∂Ω (y)e−k
2
m,nt)ds′ds

+

∫∫
Ω

ds′ds

∫ t

0

Qi(s′, s, τ)(

∞∑
m,n=1

1

I2mn
Hmn
∂Ω (s)Hmn

∂Ω (s′)Hmn
∂Ω (x)Hmn

∂Ω (y)e−k
2
m,n(t−τ))dτ (32)

where I2mn is expressed as follow

I2mn =

∫∫
∂Ω

(Hmn
∂Ω (x)Hmn

∂Ω (y))2dxdy. (33)

Now, we are going back to the initial coordinate system of Navier-Stokes equations and obtain resulting spatial
distribution of velocities vi(x0 − vx(x, y, t) · t, y0 − vy(x, y, t) · t, t)

5 Three dimensional inhomogeneous solution

Consider the initial-boundary value problem for v = v(x, y, z, t)

dvi

dt
− a2∆vi =

1

ρ
(−∇ip+ fi) in Ω× (0,∞) (34)

vi(x, y, z, 0) = vi0(x, y, z) x, y, z ∈ Ω (35)

∂vi

∂n
= 0 on ∂Ω× (0,∞) (36)

where p = p(x, y, z, t) and f = f(x, y, z, t), Ω ⊂ R3n, n the exterior unit normal at the smooth parts of ∂Ω, a2 a
positive constant and vx0 (x, y, z), vy0 (x, y, z), vz0(x, y, z) a given function.

So, when x, y and z are normed to a = 1, equation (4) could be rewritten as follow

dvi

dt
= vixx + viyy + vizz +Qi(x, y, z, t), x, y, z ∈ Ω, t > 0 (37)

5.1 Rectangular boundary

We expand v and Q in the eigenfunctions sin (nπxLx
) sin (mπyLy

) sin (pπzLz
) on space Ω ∈ [0, Lx] × [0, Ly] × [0, Lz] where

sin (nπxLx
) sin (mπyLy

) sin (pπzLz
) and sin (n

′πx
Lx

) sin (m
′πy
Ly

) sin (p
′πz
Lz

) functions orthogonality could be applied. So, we ob-

tain

Qi(x, y, z, t) =

∞∑
m,n,p=1

qimn(t) sin (
nπx

Lx
) sin (

mπy

Ly
) sin (

pπz

Lz
) (38)

with

qimnp(t) =
1

I3

∫∫∫
Ω

Qi(x, y, z, t) sin (
nπx

Lx
) sin (

mπy

Ly
) sin (

pπz

Lz
)dxdydz (39)

I3 =

∫∫∫
Ω

(sin (
nπx

Lx
) sin (

mπy

Ly
) sin (

pπz

Lz
))2dxdydz =

LxLyLz
8

(40)
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and

vi(x, y, z, t) =

∞∑
m,n,p=1

uimn(t) sin (
nπx

Lx
) sin (

mπy

Ly
) sin (

pπz

Lz
) (41)

Let’s choose coordinate system, where t and x, y, z are independent. Thus we get the inhomogeneous ODE

u̇imnp(t) + k2
mnpu

i
mnp(t) = qimnp(t), (42)

k2
mnp =

(
nπ

Lx

)2

+

(
mπ

Ly

)2

+

(
pπ

Ly

)2

(43)

whose solution is

uimnp(t) = uimnp(0)e−k
2
mnpt +

∫ t

0

qimnp(τ)e−k
2
mnp(t−τ)dτ (44)

where

uimnp(0) =
1

I3

∫∫∫
Ω

vi0(x, y, z) sin (
nπx

Lx
) sin (

mπy

Ly
) sin (

pπz

Lz
)dxdydz (45)

Again, we substitute all obtained equations into (41) and have

vi(x, y, z, t) =

∫∫∫
Ω

vi0(s′′, s′, s)(
∞∑

m,n,p=1

1

I3
Smnp(s, s

′, s′′)Smnp(x, y, z)e
−k2mnpt)ds′′ds′ds

+

∫∫∫
Ω

ds′′ds′ds

∫ t

0

Qi(s′′, s′, s, τ)(

∞∑
m,n,p=1

1

I3
Smnp(s, s

′, s′′)Smnp(x, y, z)e
−k2mnp(t−τ))dτ (46)

Smnp(x, y, z) = sin (
nπx

Lx
) sin (

mπy

Ly
) sin (

pπz

Lz
) (47)

Now, we are going back to the initial coordinate system of Navier-Stokes equations and obtain resulting spatial
distribution of velocities vi(x0 − vx(x, y, z, t) · t, y0 − vy(x, y, z, t) · t, z0 − vz(x, y, z, t) · t, t)

5.2 Any shaped boundary

For any shaped boundary ∂Ω, equation (38) could be replaced by

Qi(x, y, z, t) = qi(t)H∂Ω,k(x, y, z) (48)

and
vi(x, y, z, t) = ui(t)H∂Ω,k(x, y, z) (49)

where H∂Ω,k(x, y, z) is global solution of Helmholtz 3D equation for given boundary ∂Ω and could be taken for
example from [8] or [9]. So equation (46) transforms to

vi(x, y, z, t) =

∫∫∫
Ω

vi0(s′′, s′, s)H∂Ω,k(s, s′, s′′)H∂Ω,k(x, y, z)e−k
2tds′′ds′ds

+

∫∫∫
Ω

ds′′ds′ds

∫ t

0

Qi(s′′, s′, s, τ)H∂Ω,k(s, s′, s′′)H∂Ω,k(x, y, z)e−k
2(t−τ)dτ (50)

Now, we are going back to the initial coordinate system of Navier-Stokes equations and obtain resulting spatial
distribution of velocities vi(x0 − vx(x, y, z, t) · t, y0 − vy(x, y, z, t) · t, z0 − vz(x, y, z, t) · t, t)

6 Conclusions

Due to the form of fluid equations they could be transformed into the full/partial inhomogeneous parabolic differential
equations: differential equations in respect to space variables and full differential equations in respect to the time
variable and inhomogeneous time dependent part. Finally, orthogonal polynomials as the partial solutions of obtained
Helmholtz equations were used for derivation of analytical solution of velocities for incompressible fluid in 1D, 2D
and 3D space for rectangular boundary. Solution in 3D space for any shaped boundary is expressed in term of 3D
global solution of 3D Helmholtz equation accordantly.
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