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The present work reports study on the interacting Ricci dark energy in a modified gravity

theory named f(R, T ) gravity. The specific model f(R, T ) = µR + νT (proposed in [30]) is

considered here. For this model we have observed a quintom-like behavior of the equation of

state (EoS) parameter and a transition from matter dominated to dark energy density has

been observed through fraction density evolution. The statefinder parameters reveal that

the model interpolates between dust and ΛCDM phases of the universe.

I. INTRODUCTION

The origin of dark energy (for review see [1–3]) responsible for the cosmic acceleration [4, 5] is

one of the most serious problems in modern cosmology. The first step toward understanding the

nature of dark energy is to clarify whether it is a simple cosmological constant or it originates from

other sources that dynamically change in time [6]. In an extensive review, Nojiri and Odintsov

[7] thoroughly discussed the reasons why modified gravity approach is extremely attractive in the

applications for late accelerating universe and dark energy. Other remarkable reviews on modified

gravity are [6, 8]. Various modified gravity theories have been proposed so far. These include, f(R)

[9, 10], f(T ) [11–14], f(G) [15, 16], Horava-Lifshitz [17, 18] and Gauss-Bonnet [19, 20] theories.

The present work concentrates on f(R, T ) gravity, with T being the trace of stress-energy tensor,

manifesting a coupling between matter and geometry. Before going into the details of f(R, T )

gravity, let us first briefly survey the f(R) gravity. The recent motivation for studying f(R)

gravity has come from the necessity to explain the apparent late-time accelerating expansion of

the Universe [8]. Some extensive reviews of f(R) gravity are [21–24]. Thermodynamic aspects of

f(R) gravity have been investigated in the works of [25, 26]. A generalization of f(R) modified

1 The author is a Visiting Associate of the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune,
India.

∗Electronic address: surajit_2008@yahoo.co.in,surajcha@iucaa.ernet.in



2

theories of gravity including in the theory an explicit coupling of an arbitrary function of the Ricci

scalar R with the matter Lagrangian density Lm leads to the motion of the massive particles is

non-geodesic, and an extra force, orthogonal to the four-velocity, arises [27, 29]. Harko et al [27]

proposed an extension of standard general relativity, where the gravitational Lagrangian is given

by an arbitrary function of the Ricci scalar R and of the trace of the stress-energy tensor T and

dubbed this as f(R, T ) gravity. The f(R, T ) gravity model depends on a source term, representing

the variation of the matter stress-energy tensor with respect to the metric. A general expression

for this source term is obtained as a function of the matter Lagrangian Lm [27]. A recent work

[? ] has shown the possibility to construct f(R, T ) gravity by using a bi-metric theory with two

independent connections. In a recent paper, Myrzakulov [30] derived exact solutions for a specific

model f(R, T ) = µR+ νT and showed that for some values of the parameters the expansion of our

universe can be accelerated without introducing any dark component. The present work aims to

reconstruct the Ricci dark energy (RDE) [31, 33–35, 39] under f(R, T ) gravity. Rest of the work is

organized as follows: In section II we have briefly reviewed RDE. In section III we have presented

an overview of f(R, T ) gravity. In section IV we have reconstructed interacting RDE in f(R, T )

gravity. We have concluded in section V.

II. A BRIEF OVERVIEW OF RICCI DARK ENERGY

Gao et.al [31] proposed a holographic dark energy model in which the future event horizon is

replaced by the inverse of the Ricci scalar curvature, and dubbed this model the “Ricci dark energy

model”(RDE). This model (i) avoids the causality problem (ii) is phenomenologically viable, and

(iii) can solve the coincidence problem of dark energy [33]. The Ricci curvature of FRW universe

is given by [33]

R = −6

(

Ḣ + 2H2 +
k

a2

)

(1)

where, k is the curvature of the universe and a is the scale factor. The energy density of RDE is

given by [36]

ρX = 3c2

(

Ḣ + 2H2 +
k

a2

)

(2)

In flat FRW universe, k = 0 and hence we have

ρX = 3c2
(

Ḣ + 2H2
)

(3)
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In the present work we are considering RDE interacting with pressureless dark matter with energy

density ρm. Various forms of “interacting” dark energy models have been constructed in order to

fulfil the observational requirements. Plethora of literatures are available where the interacting

dark energies have been discussed. Several examples of interacting dark energy are presented in

[37–42]. In a subsequent section we shall consider the interacting RDE in f(R, T ) gravity. The

metric of a spatially flat homogeneous and isotropic universe in FRW model is given by

ds2 = dt2 − a2(t)
[

dr2 + r2(dθ2 + sin2θdφ2)
]

(4)

where a(t) is the scale factor. The Einstein field equations are given by

H2 =
1

3
ρ (5)

and

Ḣ = −1

2
(ρ + p) (6)

where ρ and p are energy density and isotropic pressure respectively (choosing 8πG = c = 1). The

conservation equation is given by

ρ̇ + 3H(ρ + p) = 0 (7)

As we are considering interaction between RDE and dark matter,

ρ = ρX + ρm, p = pX (8)

It should be stated that we are considering pressureless dark matter, pm = 0. Since the components

do not satisfy the conservation equation separately in the case of interaction, we need to reconstruct

the conservation equation by introducing an interaction term Q. The interaction term could be in

any of the forms [43]: Q ∝ HρX , Q ∝ Hρm and Q ∝ H(ρX +ρm). In the present paper we take the

interaction term in the second of the three forms mentioned above. Accordingly the conservation

equation is reconstructed as

ρ̇X + 3H(ρX + pX) = 3Hδρm (9)

ρ̇m + 3Hρm = −3Hδρm (10)
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III. THE f(R, T ) MODEL

One of interesting models of f(R, T ) gravity is the so-called M37-model. Its action is [30]

S =

∫

f(R, T )
√−gd4x +

∫

Lm

√−gd4x (11)

where Lm is the matter Lagrangian and f(R, T ) is an arbitrary function of R and T , where R is

the scalar curvature and T is the torsion scalar. Here,

R = u + 6(Ḣ + 2H2) (12)

T = v − 6H2 (13)

Ref [30] considered the following model of f(R, T )

f(R, T ) = µR + νT (14)

where µ and ν are real constants and u and v are taken as u = αan and v = βam with m, n, α

and β as real constants. The equations system of this f(R, T ) is

µD1 + νE1 + K(νT + µR) = −2a3ρ (15)

µA1 + νB1 + M(νT + µR) = 6a2p (16)

ρ̇ + 3H(ρ + p) = 0 (17)

where,

D1 = a3

(

6
ä

a
+ ȧuα̇

)

(18)

E1 = a3

(

−12
ȧ2

a2
+ ȧvα̇

)

(19)

K = −a3 (20)

A1 = 12ȧ2 + 6aä + 3a2ȧuα̇ + a3u̇α̇ − a3uα (21)

B1 = −24ȧ2 − 12aä + 3a2ȧvα̇ + a3v̇α̇ − a3vα (22)
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M = −3a2 (23)

R = u + 6(Ḣ + 2H2) (24)

T = v − 6H2 (25)

Subsequently, the modified field equations are obtained as [30]

3(µ + ν)H2 +
1

2
(µαan + νβam) = ρ (26)

(µ + ν)(2Ḣ + 3H2) +
µα(n + 3)

6
an +

νβ(m + 3)

6
am = −p (27)

IV. INTERACTING RDE IN THE f(R, T ) GRAVITY

As stated earlier, ρ = ρX + ρm and p = pX are taken in the equations (26) and (27). From

equation (10) we get

ρm = ρm0a
−3(1+δ) (28)

Using equations (3) and (28) in the right hand side of the equation (26) we get the Hubble’s

parameter as a function of the scale factor a as

H2 = C1a
2(−2c2+µ+ν)

c2 +
1

3a3

[

αµa3+m

c2(4 + m) − 2(µ + ν)
+

βνa3+n

c2(4 + n) − 2(µ + ν)
+

2a−3δρm0

c2(−1 + 3δ) + 2(µ + ν)

]

(29)

Subsequently we get Ḣ and Ḧ as functions of a as follows

Ḣ = a
2(−2c2+µ+ν)

c2 C1(−2c2+µ+ν)
c2

+ ammαµ
6(c2(4+m)−2(µ+ν))

+ annβν
6(c2(4+n)−2(µ+ν))

− a−3(1+δ)(1+δ)ρm0

c2(−1+3δ)+2(µ+ν)

(30)

Ḧ = H
6a4

[

12a
2(µ+ν)

c2 C1(−2c2+µ+ν)2

c4

+ a4+mm2αµ
c2(4+m)−2(µ+δ)

+ a4+nn2βν
c2(4+n)−2(µ+ν)

+ 18a1−3δ(1+δ)2ρm0

c2(−1+3δ)+2(µ+ν)

]

(31)

Using (29) and (30) in equation (3) we get the energy density for RDE under interaction with

pressureless dark matter under f(R, T ) gravity as

ρX =
1

2

[

6a
2(−2c2+µ+ν)

c2 C1(µ + ν) +
amc2αµ(4 + m)

c2(4 + m) − 2(µ + ν)
+

anc2βν(4 + n)

c2(4 + n) − 2(µ + ν)
− 2a−3(1+δ)c2(−1 + 3δ)ρm0

c2(−1 + 3δ) + 2(µ + ν)

]

(32)
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Using the above form of ρX in the conservation equation (9) we get the pressure for RDE in the

present case as

pX = 1
6

[

−an(3 + n)αµ − am(3 + m)βν − 6(µ + ν)

{

−a
2(−2c2+µ+ν)

c2 C1(c2−2(µ+ν))
c2

+

am(3+m)αµ

3(c2(4+m)−2(µ+ν))
+ an(3+n)βν

3(c2(4+n)−2(µ+ν))
− 2a−3(1+δ)δρm0

c2(−1+3δ)+2(µ+ν)

}]

(33)

Using the expressions for energy density and pressure derived above we get the equation of state

parameters

wX =
pX

ρX
(34)

and

wtotal =
pX

ρX + ρm
; (pm = 0) (35)
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FIG. 1: Behavior of wX = pX

ρX

against redshift z =

a−1 − 1.

The deceleration parameter q [44] comes out to be

q = −aä

ȧ2
= −1 − Ḣ

H2
= −1 − ζ1

ζ2
(36)

where,

ζ1 =
6a2(−2c2+µ+ν)C1(−2c2 + µ + ν)

c2
+

ammαµ

c2(4 + m) − 2(µ + ν)
+

annβν

c2(4 + n) − 2(µ + ν)
− 6a−3(1+δ)(1 + δ)ρm0

c2(−1 + 3δ) + 2(µ + ν)
(37)

ζ2 = 2

(

3a
2(−2c2+µ+ν)

c2 C1 +
ammαµ

c2(4 + m) − 2(µ + ν)
+

anβν

c2(4 + n) − 2(µ + ν)
+

2a−3(1+δ)ρm0

c2(−1 + 3δ) + 2(µ + ν)

)

(38)
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FIG. 2: Behavior of wtotal = pX

ρX+ρm

.

Next, we consider the statefinder parameters {r, s} [45] for the present case. Using equations (29),

(30) and (31) we get the statefinder parameters as

r = 1 + 3
Ḣ

H2
+

Ḧ

H3
= 1 +

%1

%2
(39)

%1 = 6a
2(−2c2+µ+ν)

c2 C1{2c4−5c2(µ+ν)+2(µ+ν)2}
c4

+ amm(3+m)αµ

(c2(4+m)−2(µ+ν))
+ ann(3+n)βν

(c2(4+n)−2(µ+ν))
− 18a−3(1+δ)(1+δ)δρm0

c2(−1+3δ)+2(µ+ν)

(40)

%2 = 2

[

3C1a
2(−2c2+µ+ν)

c2 + 1
a3

{

αµa3+m

c2(4+m)−2(µ+ν)
+

βνa3+n

c2(4+n)−2(µ+ν)
+ 2a−3δρm0

c2(−1+3δ)+2(µ+ν)

}]

(41)

s = − 3HḢ + Ḧ

3H(2Ḣ + 3H2)
=

ξ1

ξ2
(42)

where,

ξ1 = −
(

amm(3+m)αµ

6(c2(4+m)−2(µ+ν))
+ ann(3+n)βν

6(c2(4+n)−2(µ+ν))

+ 1
c4

a
2(−2c2+µ+ν)

c2 C1(2c
4 − 5c2(µ + ν) + 2(µ + ν)2) + 3a−3(1+δ)δ(1+δ)ρm0

c2(−1+3δ)+2(µ+ν)

) (43)

ξ2 = 3

(

− 1
c2

a
2(−2c2+µ+ν)

c2 + am(3+m)αµ

3(c2(4+m)−2(µ+ν))

+ an(3+n)βν

3(c2(4+n)−2(µ+ν))
− 2a−3(1+δ)δρm0

c2(−1+3δ)+2(µ+ν)

)

(44)
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V. DISCUSSIONS

In figure 1 we have presented the EoS parameter wX = pX

ρX
for RDE under f(R, T ) gravity

against redshift z = a−1 − 1. In this and the subsequent figures the solid, dashed and dotted lines

would correspond to c2 <, =, > 0.5 respectively. Figure 1 shows that for all values of c2 the

EoS parameter transits from wX > −1 to wX < −1 i.e. from quintessence to phantom. From this

figure we see that at early times, roughly z > 2, the EoS approaches 0; i.e., in this model the dark

energy behaves like dust matter during most of the epoch of matter domination. The EoS crosses

phantom crossing wX = −1 at z ≈ −0.2 and in the distant future, the equation of state approaches

wX = −1.2, the Universe evolves into the phantom-dominated epoch. For this model, the EoS

crosses −1 , so it may be classified as a “quintom” [48]. Thus, the interacting RDE behaves like

quintom in the f(R, T ) gravity model proposed by [30]. In figure 2 we have plotted ptotal = pX

ρX+ρm
,

where we found similar crossing of the phantom divide wtotal = −1 and transition from wtotal > −1

at higher redshift to wtotal < −1 at lower redshifts. It might be stated that we have chosen the

model parameters as α = 1.2, β = 1.2, ν = 0.3, µ = 0.4, n = 3, C1 = 3.02, δ = 0.05, ρm0 = 0.23

and m = 2. In all the figures, the solid, dashed and dotted lines correspond to c2 < 0.5, = 0.5

and > 0.5 respectively.
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FIG. 3: Behavior of fractional densities ΩX = ρX

3H̃2
(red

lines) and Ωm = ρm

3H̃2
(blue lines) with evolution of the

universe.

In figure 3 we have plotted fractional densities ΩX = ρX

3H̃2
and Ωm = ρm

3H̃2
against redshift z.

where, H̃2 = (µ + ν)H2 + 1
6(µα(1 + z)−n + νβ(1 + z)−m). We observe that at from higher to

lower redshifts the fractional density ΩX of RDE is increasing, while the fractional density of dark

matter is decreasing. This indicates the transition from the matter dominated to dark energy
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dominated universe. At very early stage of universe z > 2, the fractional density of dark energy

ΩX is dominated by fractional density of dark matter ΩDM . After z = 2, the ΩX starts showing

an increasing pattern and ΩDM starts showing a decaying pattern. This indicates the gradual

transition from matter dominated era to the dark energy dominated era. We denote the cross-over

point of the fractional densities by zcross, where ΩX = ΩDM . For c2 < 0.5, = 0.5 and > 0.5 the

zcross ≈ 0.6, 0.75 and 0.5 respectively. It is also observed that in the early universe the density

contribution of dark energy can occupy roughly 20%-30%. However, at this stage the dark energy

behaves like dust matter. So, effectively speaking, the matter density contribution is still 100%.

Finally, from figure 3 our observation is that RDE in f(R, T ) gravity is capable of achieving the

transition from matter-dominated to dark energy-dominated universe.

In figure 4 we have plotted the deceleration parameter q as a function of the redshift z. We

-1 0 1 2 3 4 5 6

-1.5

-1.0

-0.5

0.0

z

q

FIG. 4: Behavior of deceleration parameter q (Eq. 36).

observe that at very early stage, roughly z > 2, q > 0 i.e. the decelerated universe. At z ≈ 2.5

the deceleration parameter transits from positive to negative level. That is, the universe gradually

transits from decelerated to accelerated stage. At later stage q = −1.5. Thus, we observe that it

is possible to achieve the accelerated phase of the universe from decelerated phase for RDE under

f(R, T ) gravity.

In figure 5 we have created the r − s trajectories for the three values of c2 under consideration.

Sahni et al. [45] demonstrated that the statefinder diagnostic could effectively discriminate different

forms of dark energy. Cosmological constant, quintessence, Chaplygin gas, and braneworld models

were investigated by [46] using the statefinder diagnostics and it was observed that the statefinder

pair could differentiate between these models. An investigation on statefinder parameters for

differentiating between dark energy and modified gravity was carried out in [47]. Statefinder

diagnostics for f(T ) gravity has been investigated in [49]. In the {r, s} plane, s > 0 corresponds
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FIG. 5: The r − s trajectory (Eqs. 39 and 42).

to a quintessence like dark energy and s < 0 corresponds to a phantom-like dark energy, and an

evolution from phantom to quintessence or inverse is given by a crossing of the point (r = 1, s = 0)

in {r, s} plane [49]. Also, the fixed point (r = 1, s = 0) corresponds to ΛCDM scenario. In figure

5 we clearly observe a transition from quintessence to phantom as the r − s trajectory transits

from positive to negative sides of s after crossing the (r = 1, s = 0) point. Also, we find that, for

finite r, s → −∞ that corresponds to dust phase. Thus, the interacting RDE in f(, T ) gravity

with f(R, T ) = µR + νT interpolates between dust and ΛCDM phases of the universe. Also, the

statefinder diagnostics supports the quintom-like behavior of the equation of state.

VI. CONCLUDING REMARKS

In this work we considered interacting Ricci dark energy in f(R, T ) = µR + νT gravity. We

have observed that the EoS parameter exhibits quintom like behavior for this model. Also, the

transition from matter dominated to dark energy dominated universe is achievable by this model.

The deceleration parameter have exhibited a transition from positive to negative sign, thereby

showing the evolution of the universe from deceleration to acceleration. The statefinder diagnostics

have been investigated and an interpolation between dust and ΛCDM phases of the universe has

been observed under this model.
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