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Abstract

In this work, we deploy Santilli’s iso-dual iso-topic lifting and
Inopin’s holographic ring (IHR) topology as a platform to introduce
and assemble a tesseract from two inter-locking, iso-morphic, iso-dual
cubes in Euclidean triplex space. For this, we prove that such an “iso-
dual tesseract” can be constructed by following a procedure of simple,
flexible, topologically-preserving instructions. Moreover, these novel
results are significant because the tesseract’s state and structure are
directly inferred from the one initial cube (rather than two distinct
cubes), which identifies a new iso-geometrical inter-connection be-
tween Santilli’s exterior and interior dynamical systems.

Keywords: Santilli iso-number; Inopin holographic ring; Iso-geometry;
Tesseract.



1 Introduction

Everybody knows what the square is: a square is a 2D object in 2D
space with 4 equal edges, 4 equal angles, and 4 vertices. Most people know
what the cube is: a cube is a 3D object in 3D space—the 3D analog of the
square—with 12 equal edges, 6 square faces, and 8 vertices, where 3 edges
meet at each vertex. But few people know what the tesseract is: a tesseract
is a 4D object in 4D space—the 4D analog of the cube—with 32 edges, 24
faces, and 16 vertices, where 4 edges meet at each vertex. Basically, the
tesseract is to the cube just as the cube is to the square.

To date, there are numerous geometrical procedures of tesseract con-
struction that operate with conventional mathematics. However, in this
paper, we disclose the first iso-geometrical procedure of tesseract construc-
tion that operates with Santilli’s new iso-mathematics 1, 2, 3, 4, 5, 6].

To introduce and illustrate this notion, lets consider one approach to
build a tesseract. First, we know that the cube has 8 vertices and the
tesseract has 16 vertices, therefore a tesseract has two times as many vertices
as a cube. For this method, this value of two is of interest to us—but why?
Well, suppose that two distinct cubes are positioned in a 3D space, where
the sum of the vertices of these two cubes is 16. These resulting 16 vertices
indicate that a tesseract can be assembled from the two cubes by introducing
8 additional edges to inter-connect the 8 vertex pairs in a pairwise fashion.
Now lets take this one step further: what if one could build a tesseract from
a one cube instead of two? In conventional mathematics, this question
may seem irrelevant because the 8 vertices of a single cube is insufficient
to synthesize a tesseract of 16 vertices. However, in the realm of Santilli’s
iso-mathematics [1, 2, 3, 4, 5, 6], this question becomes legitimate when we
consider the concept of iso-duality.

In this paper, we attack the said inquiry and prove that it is possible to
build a tesseract from one initial cube by iso-topically lifting [1, 2, 3, 4, 5, 6]
its 8 vertices to simultaneously infer an exterior cube and an interior cube
to generate the required 16 vertices, where the double-projected cubes are
iso-dual and are both iso-morphic, inter-locking, and synchronized to the
initial cube. Consequently, the 16 generated vertices are inter-connected in
a pairwise fashion to iso-mathematically synthesize the iso-tesseract. Thus,
for this investigation, Section 2 presents the main procedure and results,



while Section 3 recapitulates the significance of our discovery and suggests
future modes of exploration along this research trajectory.

2 Procedure

In this main section, we launch our exploration by instantiating the dual
4D space-time THR topology [6, 7, 8, 9] so we can subsequently generalize
it to encompass the exterior and interior IHR iso-duality [10] and thereby
assemble the iso-dual tesseract from one cube through a step-by-step pro-
cess.

2.1 Preparation: initializing the dual 4D space-time IHR topology

Here, we prepare for the iso-dual tesseract construction of Section 2.2
by first recalling the dual 4D space-time IHR topology [6, 7, 8, 9, 10] via
the following procedure:

1. First, given eq. (18) of [6] we identify Y = T as the set of all triplex
numbers, the Euclidean triplex space, and the dual 3D Cartesian-
spherical coordinate-vector state space. Here, a triplex number ¢ € YV
is a dual 3D Cartesian-spherical coordinate-vector state that is ex-
pressed via eq. (17) of [6] as

y=9="ur+ i +9z =)= 7, @) [1)s = U 1. 72)c, V€ (Y’)

1
where (Y, U1, Uz)c is a 3D Cartesian coordinate-vector state in the 8D
Cartesian coordinate-vector state space Y¢ 8o (Yr, U1, Uz)c € Yo, while
simultaneously (|7], (9), [¢9])s is a 3D spherical coordinate-vector state
in the 8D spherical coordinate-vector state space Ys so (7], (9), [4])s €
Ys, such that Yo and Ys are dual, iso-morphic, synchronized, and
interlocking in Y [6]. Hence, eq. (1) satisfies with the constraints
imposed by eqs. (19-28) of [6]—see Figures 4 and 5 of [6].

2. Second, given eq. (33) of [6] we recall that
TP={geY |y =r}, (2)

where T? C Y is the 2-sphere IHR of amplitude-radius r > 0 that is
centered on the origin O € Y and is iso-metrically embedded in Y; T2



is the multiplicative group of all non-zero triplex numbers with the
amplitude-radius r, which is simultaneously dual to the two triplex
sub-spaces [6, 7, 8]: the “micro sub-space 3-brane” Y_ C Y and the
“macro sub-space 3-brane” Y, C Y-—see Figure 7 of [6]. Here, we
note that the I-sphere IHR T} C T? of amplitude-radius r > 0 (and
curvature 1) from eq. (16) of [6] is the great circle of T?2.
At this point, we’ve initialized Inopin’s dual 4D space-time IHR topology
[6, 7, 8,9, 10] and are therefore prepared to assemble the iso-dual tesseract
of Section 2.2.

2.2 Engagement: constructing the iso-dual tesseract

Here, equipped with the dual 4D space-time IHR topology of Section
2.1, we introduce, define, and assemble the proposed iso-dual tesseract via
the following procedure:

1. First, we recall that in conventional mathematics the number 1 is the
multiplicative identity which satisfies the original number field axioms
[11]. Thus, in general, the number 1 plays a crucial and diverse role
throughout the various branches of mathematics such as, for exam-
ple, normalization in statistics. Therefore, we begin by setting the
amplitude-radius = 1 for 7} and T2

2. Second, we construct the wnitial cube from 8 triplex vertices that are
confined to T?. For this cube, we define the underlying set of 8 triplex
vertices as

(@ by dyly b, Gy d} = Vi C T2 CY (3)

such that . .
{@0be,Gd,} =V C VR CTI CY (4)

are the “top vertices” for the “top square surface” and

(@b, & d} =V C Vi CTECY (5)



are the “bottom vertices” for the “bottom square surface”, which com-
ply with the cubic vertex triplex amplitude-radius constraints

I =r = |C:ir| = |Q| = |€r| = |Cir| (6)
= @l = Bl = &l = |l
the cubic vertex triplex phase constraints
@) = (by—2 = (G)xtm = (d) -
i _ i _ (7)
(@) = (b)—-5 = (@)£r = (&) —F
such that . -
<f> = <gr> 7
by = (b)) £ 7
@) = @Gyt ®)
d)) = (d)+m,
and the cubic vertexr triplex inclination constraints
@] = b = @] = [d]
. B ) B (9)
@] = bl = & = [d]
such that . _
[_’r] = [gr] + 7
b,] = [lzr] +m
2] = ]+ (10)
[d] = [d;]£m,
to establish the cubic vertex triplex antisymmetric constraints
a, = —EZL’T
b= i,
g = —@é (11)
d, = —d,.

Therefore, the cube built from the 8 triplex vertices comprising Vz2 of
eq. (3)—which satisfy eqs. (6-11) and are confined to T*>—is depicted
in Figures 1 and 2.



Fig. 1: The 8 triplex vertices of the initial cube comprise the set

{d@., b, ,dy, @y, by, Cr,dp } = Vpz, which are confined to T? (not shown).
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3. Third, in iso-mathematics [1, 2, 3, 4, 5], Santilli proved that the stan-
dard multiplicative unit which satisfies the conventional number field
axioms [11] is not limited to the number 1, and can thus be replaced
with a positive-definite iso-multiplicative iso-unit 7, > 0 for iso-
numbers. Thus, in accordance to Santilli’s methodology [1, 2, 3, 4, 5],
we select some 7, with the corresponding iso-unit inverse 7_ = e

such that

T >r>7_>0. (12)

4. Fourth, we engage 7, to iso-topically lift [1, 2, 3, 4, 5] T? to the
exterior 1so-2-sphere IHR T, ,?+ via the transition

2 4y, 72 2
f(T5 ) s T =T, (13)
and its corresponding inverse

—1 2 A . 2 2
JNIZ ) T2 T, (14)

f‘+7

such that the iso-unit 7, is the exterior iso-radius of Tfa, which is
“outside” of T? because eq. (2) becomes

T2 ={G, €Y |G | =7 x 7y} (15)

for
Jr, =YX Py, VG ET? = Vg, €17

12_0_7

(16)

where T2 and Tfa are locally iso-morphic [6, 10]. Therefore, given that
Ve C T7, the iso-topic lifting of egs. (13-16) indicates

Eif+ = CY,«Xf.._
gﬂ_ = 6;><72+
5@_ = ErXer
€lf+ = C_er,f'i_ (17)
ap, = Qp X T4
ngr = B;X?ﬁ.
872+ = ETXf+
i ,,,X’f'+7



enabling us to rewrite eq. (6) to establish the exterior cubic iso-vertex
1so-triplex amplitude-radius constraints

f+| = |6f+| = |f+| (18)

= —

o= an] = 1

= @ | = |be| = |G| = |ds,|

with the exterior iso-vertex directional-preservations

@) = @) | la,) = (@l
Gr) = () | Bl = [B]
@) =@ | 6 = @
(diy) = (dr) | ldi)] = [di]
= _ > = _ = 19
@) = @ | (@) = (@ 19)
Br) = @) | ) = B
@) o=@ | &) = G
(diy) = (d) | lds] = [d}]
that continue to satisfy the generalized constraints of eqs. (7-11) to
establish
(@ o oo oy G by G di } = Vi CTZ CYy (20)

for the implied exterior vertex iso-topic lifting Vze — V52 |, where Ve
’l"+ 7‘+

is the exterior set of 8 iso-triplex iso-vertices that are confined to T7,
and form the exterior cube of the tesseract for the exterior dynamical
system of the macro sub-space 3-brane Y.

. Fifth, given eqgs. (13-16), the relation 7_ = i is the foundation of the
exterior and interior IHR iso-duality of [10], where the iso-unit inverse
7 is the interior iso-radius of the interior iso-2-sphere IHR T? that
is “inside” of T, such that 77 is simultaneously iso-topically lifted to

T? via the transition

ATRio): TP =T (21)
and its corresponding inverse

JUT o) s T = T, (22)

T—
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because eq. (2) becomes

T? ={jeY |jl=rxr} (23)

T

for

J=gxi_ VjeT? »VjeT?, (24)
where T7? and T} are locally iso-morphic [6, 10]. Thus, the T7 of
eqs. (13-16) is iso-dual to the T? of eqs. (21-24) with respect to
T? in accordance to the exterior and interior IHR iso-duality of [10].
Therefore, given that V52 C T?, the iso-topic lifting of eqs. (21-24)
indicates

612_ = EL:,- X P
b = b ox i
5,27 = E;, X T
di = d, Xx71_ o5
Ay = dp X T_ (25)
bf_ = br X r_
8,27 = E,« X r_
T dr Xr_,

enabling us to rewrite eq. (6) to establish the interior cubic iso-vertex
1so-triplex amplitude-radius constraints

Pz a| = b| = |G| = |d|
=il = b=l =l
with the interior iso-vertex directional-preservations

@) = (@) = (@) | @) = @l = [a.]
(bio) = (o) = (b)) | [bo] = [b] = [ba]
G =@ = (@) | &) =@ = @)
(i) = (dv) = (@) | [d] = [d] = l[dn]
@) = (@) = (@) | @] = @ = @] 0
(i) = (o) = (b)) | [bp] = [b] = [ba]
@) =@ =@ | &l =& =[G
(di_) (dr) (dip) | ldi] [d,] [, ]
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that incorporate eq. (19) and continue to satisfy the generalized con-
straints of egs. (7-11) to establish

1

(@i, by, G dy_, s by, G, Ci;_} =V CT? CY_ (28)

for the implied interior vertex iso-topic lifting V2 — Ve, where Ve

is the interior set of 8 iso-triplex iso-vertices that are confined to 77
and form the interior cube of the tesseract for the interior dynamical
system of the micro sub-space 3-brane Y_.

. Sixth, given the 8 exterior iso-triplex iso-vertices of Tri in eq. (20)
and the 8 interior iso-triplex iso-vertices of T? in eq. (28), we identify
the 16 iso-triplex iso-vertices of the iso-dual tesseract as

VT?gi = VT§+ U VT'??, (29)

where 8 additional edges are inserted to inter-link the iso-vertex pairs
in a pairwise fashion to inter-connect Santilli’s exterior and interior
dynamical systems for Y, and Y_, respectively. See Figure 3 for a
depiction of the iso-dual tesseract.

. Seventh, it is straightforward to assign triplex order parameters [6, 7,
9] to the iso-vertices of eq. (29) to topologically deform the tesseract.
For example, suppose that one layer of triplex order parameters [6, 7,
9] is assigned to the 8 vertices of V72 as

— — —

(5(@,), 0(b), 0(@.), 0(d), ¥dy), 5 (by), 0(6,), 6(dy)} = e (30)

to encode topological deformations that comply with the antisymmet-
ric constraints

ia) = i)
JE) = () o
Y(dy) = —v(d,)

that are depicted in Figure 4.
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Fig. 3: The 8 triplex vertices of VZ C T? are iso-topically lifted via the double-
projection iso-dual transition VTg CT? «+ V2 — VTf - T§+ to generate the 16
iso-triplex iso-vertices of VT’gi for the iso-dual tesseract. Here, the exterior cube’s 8
exterior iso-vertices in VT§+ are confined to the exterior IHR T§+ C Y4 (not shown) in
the exterior dynamical system while the interior cube’s 8 interior iso-vertices in VT?_ are
confined to the interior THR Tfﬁ C Y_ (not shown) in the interior dynamical system,
which are iso-dual to each other and are both iso-morphic, inter-locking, and synchronized
to the initial cube [10].
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Fig. 4: The 8 triplex vertices of Vp2 C T} are assigned one layer of triplex order
parameters [6, 7, 9] to encode topological deformations. These order parameter states
can be iso-topically lifted [1, 2, 3, 4, 5, 6] to iso-triplex iso-vertex order parameter states

in a double-projective fashion for the iso-dual tesseract.
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8. Finally, we can simply select some positive-definite iso-unit with a
corresponding inverse (i.e. we can reuse 7y and 7_ or select alternative
quantities) and repeat the iso-dual iso-topic lifting of Steps 1-6 for the
vertice’s triplex order parameters of egs. (30-31) to define iso-triplex
order parameters for the iso-dual tesseract. Thus, if we opt to redeploy
7. and 7_ we define the iso-dual iso-topic liftings
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and the corresponding inverses

Wa) = @) « .
Pb) = D)« D)
e ) = @)« dlE,)
Wdi) = d) — d(dy,) ”
Pa) = (@) « 9(a.)
P) = 9l « P
BE) = 9@ « 9@
Wdi) = 9(d) — G(dr,).

At this point, we’ve completed the construction of the iso-dual tesseract
by generalizing the dual 4D space-time IHR topology of Section 2.1 with
the exterior and interior iso-duality [10].

3 Conclusion

In this research investigation, we deployed Santilli’s iso-mathematics
[1, 2, 3, 4, 5, 6] and Inopin’s dual 4D space-time THR topology [6, 7, 8, 9]
as a platform to assemble the iso-dual tesseract from two inter-locking,
iso-morphic, iso-dual cubes in Euclidean triplex space that fundamentally
comply with exterior and interior IHR iso-duality [10]. To prove that such
a tesseract can be built from one cube (rather than two distinct cubes),
we presented the step-by-step procedure of Section 2 with simple, flexi-
ble, topologically-preserving instructions, where the single, initial cube was
iso-topically lifted to simultaneously infer the exterior cube and the interior
cube via double-projection. Subsequently, the exterior cube and the interior
cube were inter-linked together in a point-by-point fashion by inter-linking
the 8 iso-vertex pairs with 8 additional edges to superstruct the iso-dual
tesseract. In total, the outcomes of this exploration are significant because
an original iso-geometrical inter-connection between Santilli’s exterior and
interior dynamical systems has been established, which advances the appli-
cation of iso-mathematics [1, 2, 3, 4, 5, 6] in a new direction.

We suggest that the next logical step of this research process should be
to assign triplex order parameters [6, 7, 8, 9] to further encode topologi-
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cal deformations and thereby define a complete “iso-dual tesseract wave-
function”. From there, we may continue to launch from this platform to
explore this frontier along various trajectories and assess the application
of geno-mathematics and hyper-mathematics [1, 2, 3, 4, 5]. Thus, this de-
veloping iso-geometrical framework warrants further development, scrutiny,
collaboration, and hard work in order to advance it for future application
in the discipline of science.
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