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Abstract

In this work, we deploy Santilli’s iso-dual iso-topic lifting and
Inopin’s holographic ring (IHR) topology as a platform to introduce
and assemble a tesseract from two inter-locking, iso-morphic, iso-dual
cubes in Euclidean triplex space. For this, we prove that such an “iso-
dual tesseract” can be constructed by following a procedure of simple,
flexible, topologically-preserving instructions. Moreover, these novel
results are significant because the tesseract’s state and structure are
directly inferred from the one initial cube (rather than two distinct
cubes), which identifies a new iso-geometrical inter-connection be-
tween Santilli’s exterior and interior dynamical systems.

Keywords: Santilli iso-number; Inopin holographic ring; Iso-geometry;
Tesseract.
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1 Introduction
Everybody knows what the square is: a square is a 2D object in 2D

space with 4 equal edges, 4 equal angles, and 4 vertices. Most people know
what the cube is: a cube is a 3D object in 3D space—the 3D analog of the
square—with 12 equal edges, 6 square faces, and 8 vertices, where 3 edges
meet at each vertex. But few people know what the tesseract is: a tesseract
is a 4D object in 4D space—the 4D analog of the cube—with 32 edges, 24
faces, and 16 vertices, where 4 edges meet at each vertex. Basically, the
tesseract is to the cube just as the cube is to the square.

To date, there are numerous geometrical procedures of tesseract con-
struction that operate with conventional mathematics. However, in this
paper, we disclose the first iso-geometrical procedure of tesseract construc-
tion that operates with Santilli’s new iso-mathematics [1, 2, 3, 4, 5, 6].

To introduce and illustrate this notion, lets consider one approach to
build a tesseract. First, we know that the cube has 8 vertices and the
tesseract has 16 vertices, therefore a tesseract has two times as many vertices
as a cube. For this method, this value of two is of interest to us—but why?
Well, suppose that two distinct cubes are positioned in a 3D space, where
the sum of the vertices of these two cubes is 16. These resulting 16 vertices
indicate that a tesseract can be assembled from the two cubes by introducing
8 additional edges to inter-connect the 8 vertex pairs in a pairwise fashion.
Now lets take this one step further: what if one could build a tesseract from
a one cube instead of two? In conventional mathematics, this question
may seem irrelevant because the 8 vertices of a single cube is insufficient
to synthesize a tesseract of 16 vertices. However, in the realm of Santilli’s
iso-mathematics [1, 2, 3, 4, 5, 6], this question becomes legitimate when we
consider the concept of iso-duality.

In this paper, we attack the said inquiry and prove that it is possible to
build a tesseract from one initial cube by iso-topically lifting [1, 2, 3, 4, 5, 6]
its 8 vertices to simultaneously infer an exterior cube and an interior cube
to generate the required 16 vertices, where the double-projected cubes are
iso-dual and are both iso-morphic, inter-locking, and synchronized to the
initial cube. Consequently, the 16 generated vertices are inter-connected in
a pairwise fashion to iso-mathematically synthesize the iso-tesseract. Thus,
for this investigation, Section 2 presents the main procedure and results,
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while Section 3 recapitulates the significance of our discovery and suggests
future modes of exploration along this research trajectory.

2 Procedure
In this main section, we launch our exploration by instantiating the dual

4D space-time IHR topology [6, 7, 8, 9] so we can subsequently generalize
it to encompass the exterior and interior IHR iso-duality [10] and thereby
assemble the iso-dual tesseract from one cube through a step-by-step pro-
cess.

2.1 Preparation: initializing the dual 4D space-time IHR topology
Here, we prepare for the iso-dual tesseract construction of Section 2.2

by first recalling the dual 4D space-time IHR topology [6, 7, 8, 9, 10] via
the following procedure:

1. First, given eq. (18) of [6] we identify Y ≡ T as the set of all triplex
numbers, the Euclidean triplex space, and the dual 3D Cartesian-
spherical coordinate-vector state space. Here, a triplex number ~y ∈ Y
is a dual 3D Cartesian-spherical coordinate-vector state that is ex-
pressed via eq. (17) of [6] as

y = ~y = ~yR + ~yI + ~yZ = (~y) = (|~y|, 〈~y〉, [~y])S = (~yR, ~yI, ~yZ)C , ∀~y ∈ Y,
(1)

where (~yR, ~yI, ~yZ)C is a 3D Cartesian coordinate-vector state in the 3D
Cartesian coordinate-vector state space YC so (~yR, ~yI, ~yZ)C ∈ YC , while
simultaneously (|~y|, 〈~y〉, [~y])S is a 3D spherical coordinate-vector state
in the 3D spherical coordinate-vector state space YS so (|~y|, 〈~y〉, [~y])S ∈
YS, such that YC and YS are dual, iso-morphic, synchronized, and
interlocking in Y [6]. Hence, eq. (1) satisfies with the constraints
imposed by eqs. (19–28) of [6]—see Figures 4 and 5 of [6].

2. Second, given eq. (33) of [6] we recall that

T 2
r = {~y ∈ Y : |~y| = r}, (2)

where T 2
r ⊂ Y is the 2-sphere IHR of amplitude-radius r > 0 that is

centered on the origin O ∈ Y and is iso-metrically embedded in Y ; T 2
r
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is the multiplicative group of all non-zero triplex numbers with the
amplitude-radius r, which is simultaneously dual to the two triplex
sub-spaces [6, 7, 8]: the “micro sub-space 3-brane” Y− ⊂ Y and the
“macro sub-space 3-brane” Y+ ⊂ Y—see Figure 7 of [6]. Here, we
note that the 1-sphere IHR T 1

r ⊂ T 2
r of amplitude-radius r > 0 (and

curvature 1
r
) from eq. (16) of [6] is the great circle of T 2

r .

At this point, we’ve initialized Inopin’s dual 4D space-time IHR topology
[6, 7, 8, 9, 10] and are therefore prepared to assemble the iso-dual tesseract
of Section 2.2.

2.2 Engagement: constructing the iso-dual tesseract
Here, equipped with the dual 4D space-time IHR topology of Section

2.1, we introduce, define, and assemble the proposed iso-dual tesseract via
the following procedure:

1. First, we recall that in conventional mathematics the number 1 is the
multiplicative identity which satisfies the original number field axioms
[11]. Thus, in general, the number 1 plays a crucial and diverse role
throughout the various branches of mathematics such as, for exam-
ple, normalization in statistics. Therefore, we begin by setting the
amplitude-radius r = 1 for T 1

r and T 2
r .

2. Second, we construct the initial cube from 8 triplex vertices that are
confined to T 2

r . For this cube, we define the underlying set of 8 triplex
vertices as

{~ar,~br,~cr, ~dr, ~̄ar,~̄br, ~̄cr, ~̄dr} ≡ VT 2
r
⊂ T 2

r ⊂ Y (3)

such that
{~ar,~br,~cr, ~dr} ≡ V ↑T 2

r
⊂ VT 2

r
⊂ T 2

r ⊂ Y (4)

are the “top vertices” for the “top square surface” and

{~̄ar,~̄br, ~̄cr, ~̄dr} ≡ V ↓T 2
r
⊂ VT 2

r
⊂ T 2

r ⊂ Y (5)
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are the “bottom vertices” for the “bottom square surface”, which com-
ply with the cubic vertex triplex amplitude-radius constraints

1 ≡ r ≡ |~ar| ≡ |~br| ≡ |~cr| ≡ |~dr|
≡ |~̄ar| ≡ |~̄br| ≡ |~̄cr| ≡ | ~̄dr|,

(6)

the cubic vertex triplex phase constraints

〈~ar〉 ≡ 〈~br〉 − π
2
≡ 〈~cr〉 ± π ≡ 〈~dr〉 − 3π

2

〈~̄ar〉 ≡ 〈~̄br〉 − π
2
≡ 〈~̄cr〉 ± π ≡ 〈 ~̄dr〉 − 3π

2

(7)

such that
〈~ar〉 ≡ 〈~̄ar〉 ± π
〈~br〉 ≡ 〈~̄br〉 ± π
〈~cr〉 ≡ 〈~̄cr〉 ± π
〈~dr〉 ≡ 〈 ~̄dr〉 ± π,

(8)

and the cubic vertex triplex inclination constraints

[~ar] ≡ [~br] ≡ [~cr] ≡ [~dr]

[~̄ar] ≡ [~̄br] ≡ [~̄cr] ≡ [ ~̄dr]

(9)

such that
[~ar] ≡ [~̄ar]± π
[~br] ≡ [~̄br]± π
[~cr] ≡ [~̄cr]± π
[~dr] ≡ [ ~̄dr]± π,

(10)

to establish the cubic vertex triplex antisymmetric constraints

~ar ≡ −~̄ar
~br ≡ −~̄br
~cr ≡ −~̄cr
~dr ≡ − ~̄dr.

(11)

Therefore, the cube built from the 8 triplex vertices comprising VT 2
r

of
eq. (3)—which satisfy eqs. (6–11) and are confined to T 2

r —is depicted
in Figures 1 and 2.
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Fig. 1: The 8 triplex vertices of the initial cube comprise the set

{~ar,~br,~cr, ~dr, ~̄ar,~̄br, ~̄cr, ~̄dr} ≡ VT 2
r
, which are confined to T 2

r (not shown).
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Fig. 2: The 8 triplex vertices of the initial cube comprise the set

{~ar,~br,~cr, ~dr, ~̄ar,~̄br, ~̄cr, ~̄dr} ≡ VT 2
r
, which are confined to T 2

r (shown).
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3. Third, in iso-mathematics [1, 2, 3, 4, 5], Santilli proved that the stan-
dard multiplicative unit which satisfies the conventional number field
axioms [11] is not limited to the number 1, and can thus be replaced
with a positive-definite iso-multiplicative iso-unit r̂+ > 0 for iso-
numbers. Thus, in accordance to Santilli’s methodology [1, 2, 3, 4, 5],
we select some r̂+ with the corresponding iso-unit inverse r̂− = 1

r̂+
,

such that
r̂+ > r > r̂− > 0. (12)

4. Fourth, we engage r̂+ to iso-topically lift [1, 2, 3, 4, 5] T 2
r to the

exterior iso-2-sphere IHR T 2
r̂+

via the transition

f(T 2
r , r̂+) : T 2

r → T 2
r̂+

(13)

and its corresponding inverse

f−1(T 2
r̂+
, r̂+) : T 2

r̂+
→ T 2

r , (14)

such that the iso-unit r̂+ is the exterior iso-radius of T 2
r̂+

, which is

“outside” of T 2
r because eq. (2) becomes

T 2
r̂+
≡ {~yr̂+ ∈ Y : |~yr̂+| = r × r̂+} (15)

for
~yr̂+ ≡ ~y × r̂+, ∀~y ∈ T 2

r → ∀~yr̂+ ∈ T 2
r̂+
, (16)

where T 2
r and T 2

r̂+
are locally iso-morphic [6, 10]. Therefore, given that

VT 2
r
⊂ T 2

r , the iso-topic lifting of eqs. (13–16) indicates

~ar̂+ ≡ ~ar × r̂+
~br̂+ ≡ ~br × r̂+
~cr̂+ ≡ ~cr × r̂+
~dr̂+ ≡ ~dr × r̂+
~̄ar̂+ ≡ ~̄ar × r̂+
~̄br̂+ ≡ ~̄br × r̂+
~̄cr̂+ ≡ ~̄cr × r̂+
~̄dr̂+ ≡ ~̄dr × r̂+,

(17)
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enabling us to rewrite eq. (6) to establish the exterior cubic iso-vertex
iso-triplex amplitude-radius constraints

r̂+ ≡ |~ar̂+| ≡ |~br̂+| ≡ |~cr̂+ | ≡ |~dr̂+ |
≡ |~̄ar̂+| ≡ |~̄br̂+| ≡ |~̄cr̂+ | ≡ | ~̄dr̂+ |

(18)

with the exterior iso-vertex directional-preservations

〈~ar̂+〉 ≡ 〈~ar〉 | [~ar̂+ ] ≡ [~ar]

〈~br̂+〉 ≡ 〈~br〉 | [~br̂+ ] ≡ [~br]
〈~cr̂+〉 ≡ 〈~cr〉 | [~cr̂+ ] ≡ [~cr]

〈~dr̂+〉 ≡ 〈~dr〉 | [~dr̂+ ] ≡ [~dr]
〈~̄ar̂+〉 ≡ 〈~̄ar〉 | [~̄ar̂+ ] ≡ [~̄ar]

〈~̄br̂+〉 ≡ 〈~̄br〉 | [~̄br̂+ ] ≡ [~̄br]
〈~̄cr̂+〉 ≡ 〈~̄cr〉 | [~̄cr̂+ ] ≡ [~̄cr]

〈 ~̄dr̂+〉 ≡ 〈 ~̄dr〉 | [ ~̄dr̂+ ] ≡ [ ~̄dr]

(19)

that continue to satisfy the generalized constraints of eqs. (7–11) to
establish

{~ar̂+ ,~br̂+ ,~cr̂+ , ~dr̂+ , ~̄ar̂+ ,~̄br̂+ , ~̄cr̂+ , ~̄dr̂+} ≡ VT 2
r̂+
⊂ T 2

r̂+
⊂ Y+ (20)

for the implied exterior vertex iso-topic lifting VT 2
r
→ VT 2

r̂+
, where VT 2

r̂+

is the exterior set of 8 iso-triplex iso-vertices that are confined to T 2
r̂+

and form the exterior cube of the tesseract for the exterior dynamical
system of the macro sub-space 3-brane Y+.

5. Fifth, given eqs. (13–16), the relation r̂− = 1
r̂+

is the foundation of the

exterior and interior IHR iso-duality of [10], where the iso-unit inverse
r̂− is the interior iso-radius of the interior iso-2-sphere IHR T 2

r̂−
that

is “inside” of T 2
r , such that T 2

r is simultaneously iso-topically lifted to
T 2
r̂−

via the transition

f(T 2
r , r̂−) : T 2

r → T 2
r̂− (21)

and its corresponding inverse

f−1(T 2
r̂− , r̂−) : T 2

r̂− → T 2
r , (22)
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because eq. (2) becomes

T 2
r̂− ≡ {~̂y ∈ Y : |~̂y| = r × r̂−} (23)

for
~̂y ≡ ~y × r̂−, ∀~y ∈ T 2

r → ∀~̂y ∈ T 2
r̂− , (24)

where T 2
r and T 2

r̂−
are locally iso-morphic [6, 10]. Thus, the T 2

r̂+
of

eqs. (13–16) is iso-dual to the T 2
r̂−

of eqs. (21–24) with respect to

T 2
r in accordance to the exterior and interior IHR iso-duality of [10].

Therefore, given that VT 2
r
⊂ T 2

r , the iso-topic lifting of eqs. (21–24)
indicates

~ar̂− ≡ ~ar × r̂−
~br̂− ≡ ~br × r̂−
~cr̂− ≡ ~cr × r̂−
~dr̂− ≡ ~dr × r̂−
~̄ar̂− ≡ ~̄ar × r̂−
~̄br̂− ≡ ~̄br × r̂−
~̄cr̂− ≡ ~̄cr × r̂−
~̄dr̂− ≡ ~̄dr × r̂−,

(25)

enabling us to rewrite eq. (6) to establish the interior cubic iso-vertex
iso-triplex amplitude-radius constraints

r̂− ≡ |~ar̂−| ≡ |~br̂−| ≡ |~cr̂− | ≡ |~dr̂− |
≡ |~̄ar̂−| ≡ |~̄br̂−| ≡ |~̄cr̂− | ≡ | ~̄dr̂− |

(26)

with the interior iso-vertex directional-preservations

〈~ar̂−〉 ≡ 〈~ar〉 ≡ 〈~ar̂+〉 | [~ar̂− ] ≡ [~ar] ≡ [~ar̂+ ]

〈~br̂−〉 ≡ 〈~br〉 ≡ 〈~br̂+〉 | [~br̂− ] ≡ [~br] ≡ [~br̂+ ]
〈~cr̂−〉 ≡ 〈~cr〉 ≡ 〈~cr̂+〉 | [~cr̂− ] ≡ [~cr] ≡ [~cr̂+ ]

〈~dr̂−〉 ≡ 〈~dr〉 ≡ 〈~ar̂+〉 | [~dr̂− ] ≡ [~dr] ≡ [~dr̂+ ]
〈~̄ar̂−〉 ≡ 〈~̄ar〉 ≡ 〈~̄ar̂+〉 | [~̄ar̂− ] ≡ [~̄ar] ≡ [~̄ar̂+ ]

〈~̄br̂−〉 ≡ 〈~̄br〉 ≡ 〈~̄br̂+〉 | [~̄br̂− ] ≡ [~̄br] ≡ [~̄br̂+ ]
〈~̄cr̂−〉 ≡ 〈~̄cr〉 ≡ 〈~̄cr̂+〉 | [~̄cr̂− ] ≡ [~̄cr] ≡ [~̄cr̂+ ]

〈 ~̄dr̂−〉 ≡ 〈 ~̄dr〉 ≡ 〈 ~̄dr̂+〉 | [ ~̄dr̂− ] ≡ [ ~̄dr] ≡ [ ~̄dr̂+ ]

(27)
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that incorporate eq. (19) and continue to satisfy the generalized con-
straints of eqs. (7–11) to establish

{~ar̂− ,~br̂− ,~cr̂− , ~dr̂− , ~̄ar̂− ,~̄br̂− , ~̄cr̂− , ~̄dr̂−} ≡ VT 2
r̂−
⊂ T 2

r̂− ⊂ Y− (28)

for the implied interior vertex iso-topic lifting VT 2
r
→ VT 2

r̂−
, where VT 2

r̂−

is the interior set of 8 iso-triplex iso-vertices that are confined to T 2
r̂−

and form the interior cube of the tesseract for the interior dynamical
system of the micro sub-space 3-brane Y−.

6. Sixth, given the 8 exterior iso-triplex iso-vertices of T 2
r̂+

in eq. (20)

and the 8 interior iso-triplex iso-vertices of T 2
r̂−

in eq. (28), we identify
the 16 iso-triplex iso-vertices of the iso-dual tesseract as

VT 2
r̂±
≡ VT 2

r̂+
∪ VT 2

r̂−
, (29)

where 8 additional edges are inserted to inter-link the iso-vertex pairs
in a pairwise fashion to inter-connect Santilli’s exterior and interior
dynamical systems for Y+ and Y−, respectively. See Figure 3 for a
depiction of the iso-dual tesseract.

7. Seventh, it is straightforward to assign triplex order parameters [6, 7,
9] to the iso-vertices of eq. (29) to topologically deform the tesseract.
For example, suppose that one layer of triplex order parameters [6, 7,
9] is assigned to the 8 vertices of VT 2

r
as

{~ψ(~ar), ~ψ(~br), ~ψ(~cr), ~ψ(~dr), ~ψ(~̄ar), ~ψ(~̄br), ~ψ(~̄cr), ~ψ( ~̄dr)} ≡ ~ψT 2
r

(30)

to encode topological deformations that comply with the antisymmet-
ric constraints

~ψ(~ar) ≡ −~ψ(~̄ar)
~ψ(~br) ≡ −~ψ(~̄br)
~ψ(~cr) ≡ −~ψ(~̄cr)
~ψ(~dr) ≡ −~ψ( ~̄dr)

(31)

that are depicted in Figure 4.
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Fig. 3: The 8 triplex vertices of V 2
Tr
⊂ T 2

r are iso-topically lifted via the double-

projection iso-dual transition VT 2
r̂−
⊂ T 2

r̂−
← VT 2

r
→ VT 2

r̂+
⊂ T 2

r̂+
to generate the 16

iso-triplex iso-vertices of VT 2
r̂±

for the iso-dual tesseract. Here, the exterior cube’s 8

exterior iso-vertices in VT 2
r̂+

are confined to the exterior IHR T 2
r̂+
⊂ Y+ (not shown) in

the exterior dynamical system while the interior cube’s 8 interior iso-vertices in VT 2
r̂−

are

confined to the interior IHR T 2
r̂−
⊂ Y− (not shown) in the interior dynamical system,

which are iso-dual to each other and are both iso-morphic, inter-locking, and synchronized

to the initial cube [10].
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Fig. 4: The 8 triplex vertices of VT 2
r
⊂ T 2

r are assigned one layer of triplex order

parameters [6, 7, 9] to encode topological deformations. These order parameter states

can be iso-topically lifted [1, 2, 3, 4, 5, 6] to iso-triplex iso-vertex order parameter states

in a double-projective fashion for the iso-dual tesseract.
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8. Finally, we can simply select some positive-definite iso-unit with a
corresponding inverse (i.e. we can reuse r̂+ and r̂− or select alternative
quantities) and repeat the iso-dual iso-topic lifting of Steps 1–6 for the
vertice’s triplex order parameters of eqs. (30–31) to define iso-triplex
order parameters for the iso-dual tesseract. Thus, if we opt to redeploy
r̂+ and r̂− we define the iso-dual iso-topic liftings

~ψ(~ar̂+) ≡ ~ψ(~ar)× r̂+ | ~ψ(~ar̂−) ≡ ~ψ(~ar)× r̂−
~ψ(~br̂+) ≡ ~ψ(~br)× r̂+ | ~ψ(~br̂−) ≡ ~ψ(~br)× r̂−
~ψ(~cr̂+) ≡ ~ψ(~cr)× r̂+ | ~ψ(~cr̂−) ≡ ~ψ(~cr)× r̂−
~ψ(~dr̂+) ≡ ~ψ(~dr)× r̂+ | ~ψ(~dr̂−) ≡ ~ψ(~dr)× r̂−
~ψ(~̄ar̂+) ≡ ~ψ(~̄ar)× r̂+ | ~ψ(~̄ar̂−) ≡ ~ψ(~̄ar)× r̂−
~ψ(~̄br̂+) ≡ ~ψ(~̄br)× r̂+ | ~ψ(~̄br̂−) ≡ ~ψ(~̄br)× r̂−
~ψ(~̄cr̂+) ≡ ~ψ(~̄cr)× r̂+ | ~ψ(~̄cr̂−) ≡ ~ψ(~̄cr)× r̂−
~ψ( ~̄dr̂+) ≡ ~ψ( ~̄dr)× r̂+ | ~ψ( ~̄dr̂−) ≡ ~ψ( ~̄dr)× r̂−

(32)

for the double-projection iso-morphic transitions

~ψ(~ar̂−) ← ~ψ(~ar) → ~ψ(~ar̂+)
~ψ(~br̂−) ← ~ψ(~br) → ~ψ(~br̂+)
~ψ(~cr̂−) ← ~ψ(~cr) → ~ψ(~cr̂+)
~ψ(~dr̂−) ← ~ψ(~dr) → ~ψ(~dr̂+)
~ψ(~̄ar̂−) ← ~ψ(~̄ar) → ~ψ(~̄ar̂+)
~ψ(~̄br̂−) ← ~ψ(~̄br) → ~ψ(~̄br̂+)
~ψ(~̄cr̂−) ← ~ψ(~̄cr) → ~ψ(~̄cr̂+)
~ψ( ~̄dr̂−) ← ~ψ( ~̄dr) → ~ψ( ~̄dr̂+)

(33)
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and the corresponding inverses

~ψ(~ar̂−) → ~ψ(~ar) ← ~ψ(~ar̂+)
~ψ(~br̂−) → ~ψ(~br) ← ~ψ(~br̂+)
~ψ(~cr̂−) → ~ψ(~cr) ← ~ψ(~cr̂+)
~ψ(~dr̂−) → ~ψ(~dr) ← ~ψ(~dr̂+)
~ψ(~̄ar̂−) → ~ψ(~̄ar) ← ~ψ(~̄ar̂+)
~ψ(~̄br̂−) → ~ψ(~̄br) ← ~ψ(~̄br̂+)
~ψ(~̄cr̂−) → ~ψ(~̄cr) ← ~ψ(~̄cr̂+)
~ψ( ~̄dr̂−) → ~ψ( ~̄dr) ← ~ψ( ~̄dr̂+).

(34)

At this point, we’ve completed the construction of the iso-dual tesseract
by generalizing the dual 4D space-time IHR topology of Section 2.1 with
the exterior and interior iso-duality [10].

3 Conclusion
In this research investigation, we deployed Santilli’s iso-mathematics

[1, 2, 3, 4, 5, 6] and Inopin’s dual 4D space-time IHR topology [6, 7, 8, 9]
as a platform to assemble the iso-dual tesseract from two inter-locking,
iso-morphic, iso-dual cubes in Euclidean triplex space that fundamentally
comply with exterior and interior IHR iso-duality [10]. To prove that such
a tesseract can be built from one cube (rather than two distinct cubes),
we presented the step-by-step procedure of Section 2 with simple, flexi-
ble, topologically-preserving instructions, where the single, initial cube was
iso-topically lifted to simultaneously infer the exterior cube and the interior
cube via double-projection. Subsequently, the exterior cube and the interior
cube were inter-linked together in a point-by-point fashion by inter-linking
the 8 iso-vertex pairs with 8 additional edges to superstruct the iso-dual
tesseract. In total, the outcomes of this exploration are significant because
an original iso-geometrical inter-connection between Santilli’s exterior and
interior dynamical systems has been established, which advances the appli-
cation of iso-mathematics [1, 2, 3, 4, 5, 6] in a new direction.

We suggest that the next logical step of this research process should be
to assign triplex order parameters [6, 7, 8, 9] to further encode topologi-
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cal deformations and thereby define a complete “iso-dual tesseract wave-
function”. From there, we may continue to launch from this platform to
explore this frontier along various trajectories and assess the application
of geno-mathematics and hyper-mathematics [1, 2, 3, 4, 5]. Thus, this de-
veloping iso-geometrical framework warrants further development, scrutiny,
collaboration, and hard work in order to advance it for future application
in the discipline of science.
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