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INTRODUCTION 

 
 

  
 About the works of Florentin Smarandache have been written a lot of books (he 
himself wrote dozens of books and articles regarding math, physics, literature, philosophy). 
Being a globally recognized personality in both mathematics (there are countless functions 
and concepts that bear his name), it is natural that the volume of writings about his research 
is huge. 
 What we try to do with this encyclopedia is to gather together as much as we can both 
from Smarandache’s mathematical work and the works of many mathematicians around the 
world inspired by the Smarandache notions. Because this is too vast to be covered in one 
book, we divide encyclopedia in more volumes. 
 In this first volume of encyclopedia we try to synthesize his work in the field of 
number theory, one of the great Smarandache’s passions, a surfer on the ocean of numbers, 
to paraphrase the title of the book Surfing on the ocean of numbers – a few Smarandache 
notions and similar topics, by Henry Ibstedt. 

We quote from the introduction to the Smarandache’work “On new functions in 
number theory”, Moldova State University, Kishinev, 1999: “The performances in current 
mathematics, as the future discoveries, have, of course, their beginning in the oldest and the 
closest of philosophy branch of nathematics, the number theory. Mathematicians of all times 
have been, they still are, and they will be drawn to the beaty and variety of specific problems 
of this branch of mathematics. Queen of mathematics, which is the queen of sciences, as 
Gauss said, the number theory is shining with its light and attractions, fascinating and 
facilitating for us the knowledge of the laws that govern the macrocosm and the microcosm”. 

We are going to structure this volume of encyclopedia in six parts: the first will cover 
the Smarandache type sequences and series (obviously, among them there are the well-
known sequences of numbers obtained through concatenation but also numerous other 
sequences), the second part will cover the Smarandache type functions and constants, the 
third part will cover the conjectures on Smarandache notions and the conjectures on number 
theory due to Florentin Smarandache, the fourth part will cover the theorems on 
Smarandache notions and the theorems on number theory due to Florentin Smarandache, the 
fifth part will cover the criteria, formulas and algorithms for computing due to Florentin 
Smarandache and the sixth part will cover the unsolved problems regarding Smarandache 
notions and the open problems on number theory due to Florentin Smarandache. 

Obviously, the division into these chapters has mostly the role to organise the matters 
treated, not to delineate them one from another, because all are related; for instance, a 
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function treated in chapter about functions may create a sequence treated in chapter about 
sequences or a conjecture about primes treated in the chapter about primes may involve a 
diophantine equation, though these ones have their own chapter. Similarly, we presented 
some conjectures, theorems and problems on sequences or functions in the chapters 
dedicated to definition of the latter, while we presented other conjectures, theorems and 
problems on the same sequences or functions in separate chapters; we could say we had a 
certain vision doing so (for instance that we wanted to keep a proportion between the sizes of 
the sections treating different sequences or functions and not to interrupt the definitions 
between two related sequences or functions by a too large suite of problems) but it would not 
be entirely true: the truth is that a work, once started, gets its own life and one could say that 
almost it dictates you to obey its internal order. 
 In the book Smarandache Notions (editors Seleacu and Bălăcenoiu), Henry Ibstedt 
made a very interesting classification of Smarandache sequences in: recursive; non-
recursive; obtained through concatenation of terms, elimination of terms, arrangement of 
terms, permutation of terms or mixed operations. Many other classifications are possible (for 
instance Amarnath Murthy and Charles Ashbacher classified them, in the book Generalized 
partitions and new ideas on number theory and Smarandache sequences, in accomodative 
sequences (if all natural numbers can be expressed as the sum of distinct elements of the 
sequence) or semi-accomodative sequences (if all natural numbers can be expressed as the 
sum or difference of distinct elements of the sequence). That’s why, as it can be seen above, 
we simply classified them into two groups: concatenated or non-concatenated. We have 
listed for the each studied sequence the first few terms and also we have mentioned the 
article from OEIS (On-Line Encyclopedia of Integer Sequences) where can be found more of 
these terms. 
 We emphasize that the work is not exhaustive (though is called “encyclopedia”) 
because, as we said before, the volume of works about Smarandache type notions is huge and 
the study of all these thousand of sources is a task virtually insurmontable; moreover, the 
number of Smarandache type sequences and functions continues to grow, while the study of 
those already known continues to be deepened. But, of course, each new edition of this 
encyclopedia will be more complete (if the phrase “more complete” is not a pleonasm).  

We let aside many Smarandache type notions (which are constructed using concepts 
like rings, groups, groupoids) to be treated in a further volume of this encyclopedia regarding 
Algebra; we also didn’t include many proofs of the theorems and just made reference to the 
articles or books where these can be found. 

All the comments of substance (on number theory) from this book (beside the ones 
from the Annex B: A proposal for a new Smarandache type notion, which is our unique and 
exclusive contribution of substance to this work) belong to Florentin Smarandache (they are 
extracted from his works), unless is expressly indicated by footnote another source; our 
comments are only explanatory or descriptive. Sometimes, if the meaning of the sentence is 
clear, we will refer to Florentin Smarandache using the initials F.S.  

We structured the work using numbered Definitions, Theorems, Conjectures, Notes 
and Comments, in order to facilitate an easier reading but also to facilitate references to a 
specific paragraph. We divided the Bibliography in two parts, Writings by Florentin 
Smarandache (indexed by the name of books and articles) and Writings on Smarandache 
notions (indexed by the name of authors). For some papers that appear in bibliography we 
just made reference to Arxiv, an well-known archive for scientific articles, though they were 
published in other math journals too (for instance, to refer to the article that presented for the 
first time the Smarandache function, we simply mentioned ”A function in the number theory, 
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Arxiv”, though this research paper was for the first time published in 1980 in a review 
published by University of Timisoara from Romania). 

We also have, at the end of this book, an Afterword about an infinity of problems 
concerning the Smarandache function and two annexes, Annex A which contains a list of few 
types of numbers named after Florentin Smarandache, where we present few types of such 
numbers which are largely known as Smarandache numbers, Smarandache consecutive 
numbers, Smarandache-Wellin numbers, Smarandache-Radu duplets, Smarandache-
Fibonacci triplets etc. and Annex B which contains a proposal for a new Smarandache type 
notion. 

Because any work of proportions contains errors, especially one dedicated to number 
theory, a very refined field of mathematics, and this encyclopedia will probably not be an 
exception to the rule; the possible mistakes due to our misunderstanding of concepts treated 
will be removed in a later edition of the book.  

We hope that mathematicians who wrote about Smarandache notions will not be 
offended if we mistakely attributed a proof of a theorem to another mathematician than the 
one that has the precedence (our references refers to the works were we found these proofs 
and generally this work intends to give an overview on Smarandache type notions, not to 
establish the paternity on these), also will not be offended if we omitted to mention an 
important sequence, function, theorem, conjecture. All these more than possible but probable 
errors will be straighten, at request, in a future edition (as we said above, the volume of 
works on Smarandache type notions is huge, and “we” are only one, id est me). Finally, we 
hope that we have not treated the same problem in same way in different chapters (and we 
stop here with concerns because ultimately this is a book not a contract to cover all possible 
clauses). 

At the risk to appear redundant, we wrote in footnotes the complete reference every 
time, without resorting to references like op. cit., idem, ibidem: a book, like for instance Only 
problems, not solutions!, is structured differently in an edition from 1993 than in an edition 
from 2000. 

Because the most of Smarandache sequences are sequences of integers we will 
consider this implicitly and we will mention expressly only if it is the case of other type of 
sequence (for instance of rational numbers). 

To not remove readers by a large variety of mathematical simbols, we replaced them, 
when this was possible, with verbal expressions; also, to accustom the readers with the 
symbols of operations accepted as input by the major math programs as Wolfram Alpha or 
commonly used by the major sites of number theory like OEIS, we use for multiplication the 
symbol “*” and for the rise to a power the symbol “^”. Therefore, we understand, in this 
paper, the numbers denoted by “abc” as the numbers obtained by the method of 
concatenation, where a, b, c are digits, and the numbers denoted by “a*b*c” as the products 
of the numbers a, b, c.  

We also used the term deconcatenation to refer to the inverse operation than 
concatenation (for instance, the number 561 admits to be deconcatenated in three ways, into 
the sets of numbers {5, 6, 1}, {5, 61} and {56, 1}, but not, for example, into the set of 
numbers {5, 16}); therefore, instead to define an operation like “partition of a number into 
groups of digits that are (or that form) primes” (e.g. the partition of the number 1729 into 17 
and 29) we define it like “deconcatenation of a number into  a set of primes”. 

We mention that, beside the universal known basic operations, we use in this book the 
following functions and operations: the factorial: the factorial of n (or n factorial) is the 
product of all positive integers smaller or equal to n, written as n! = 1*2*3* … *n, for 
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instance 6! = 1*2*3*4*5*6 = 720; the double factorial function, written as n!!, which has the 
following values: n!! = 1*3*5*…*(n – 2)*n if n is odd respectively n!! = 2*4*6*…*(n – 
2)*n if m is even (respectively, by convention, n!! = 1 if n = 0); the congruence modulo: m is 
congruent modulo x with n and it is noted m ≡ n (mod x) if the remainder of the division of 
m by x is equal to the remainder of the division of n by x, for instance 17 ≡ 5 (mod 3); the 
primorial: this function is usually (and in this book too) met with two different definitions: 
the n-th primorial number is the product of the first n primes (it is noted pn#) and the 
primorial of the positive integer n (it is noted n#) is the product of all primes less than or 
equal to n.  

We also mention that we used both syntagms “non-null natural numbers” and 
“positive integers” to designate the same thing, i.e. the set of natural numbers without zero, 
and both the sintagms “natural numbers” and “non-negative integers” to designate the same 
thing, i.e. the set of positive integers plus zero.  

We noted gcd (m, n) the greatest common divisor of m and n; we noted max{m, n} 
the maximum value from the values of m and n and max{p: p prime, p divides n} the  
maximum value of p, under certain conditions (in this case, the condition that p is prime and 
p divides n); we also used the notation min{f(x)} for the minimum value the function f(x) 
can have etc. We noted, exempli gratia,  with abs{m – n} the absolute value of the 
subtraction of integers m, n and with [x – y] the integer value of the subtraction of real 
numbers x, y.  

We also mention that we understand through “proper divisors of n” all the positive 
divisors of n other than n itself (but including the number 1). Also, because not all the 
sources understand the same thing through the syntagms “inferior part of x” or “superior part 
of x”, implicitly through the arithmetic symbols assigned to them, to avoid any possible 
confusion, we didn’t use symbols (the specific brackets “open” up or down), but wrote, when 
was the case, in formulas or definitions, “in words”: “the inferior part of x, i.e. the largest 
integer n less than or equal to x” respectively “the superior part of x, i.e. the smallest integer 
n greater than or equal to x”. 

We noted with σ(n) or sigma(n) the divisor function (the sum of the positive divisors 
of n, including 1 and n), with τ(n) or tau(n) the (Dirichlet) divisor function, i.e. the number of 
all positive divisors of n (including 1 and n), with π(n) sau pi(n) the prime counting function 
(the number of primes smaller than or equal to n), with ω(n) or omega(n) the number of 
distinct prime factors of n and with φ(n) or phi(n) the Euler’s totient, i.e. the number of 
positive integers smaller than or equal to n which are coprime with n (we used the notations 
customary in many math programs like Wolfram Alpha); we also noted with R(n) the 
reversal of the positive integer n, i.e. the number formed by the same digits, in reverse order. 

We hope that professional mathematicians who know of course these symbols, 
functions and operations will not be offended by these explanations, as this book is not 
addressed only to them but also to young aspirants. This encyclopedia is both for researchers 
that will have on hand a tool that will help them “navigate” in the universe of Smarandache 
type notions and for young math enthusiasts: many of them will be attached by this 
wonderful branch of mathematics, number theory, reading the works of Florentin 
Smarandache.  

 
 

The author 
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SUMMARY 
 
 
Part one. Smarandache type sequences and series  
 
Chapter I.  Sequences and series of numbers obtained through concatenation  
 

(1)  The Smarandache consecutive numbers sequence 
(2)   The reverse sequence 
(3)   The concatenated odd sequence 
(4)   The concatenated even sequence 
(5)   The concatenated prime sequence 
(6)   The back concatenated prime sequence 
(7)   The concatenated square sequence 
(8)   The concatenated cubic sequence 
(9)   The sequence of triangular numbers 
(10) The symmetric numbers sequence 
(11) The antisymmetric numbers sequence 
(12) The mirror sequence 
(13) The “n concatenated n times”  sequence 
(14) The permutation sequence 
(15) The constructive set of digits 1 and 2 sequence 
(16) The generalized constructive set sequence 
(17) The pierced chain sequence 
(18) The concatenated Fibonacci sequence 
(19) The circular sequence 
(20) The back concatenated sequences 
(21) The concatenated S-Sequence 
(22) The generalized palindrome sequence 
(23) The Smarandache n2*n sequence 
(24) The Smarandache nn^2 sequence 
(25) The Smarandache nk*n generalized sequence 
(26) The Smarandache breakup perfect power sequences 
(27) The Smarandache breakup prime sequence 
(28) The Smarandache power stack sequences 
(29) The Smarandache left-right and right-left sequences 
(30) The Smarandache sequences of happy numbers 
 

Chapter II. Other sequences and series  
 

(1) The Smarandache Quotient sequence 
(2) The (non-concatenated) permutation sequence 
(3) The deconstructive sequence 
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(4) The generic digital sequence 
(5) The generic construction sequence 
(6) The digital sum sequence 
(7) The digital product sequence 
(8) The divisor products sequence 
(9) The proper divisor products sequence 
(10) The square complements sequence 
(11) The cube complements sequence 
(12) The m-power complements sequence 
(13) The double factorial complements sequence 
(14) The prime additive complements sequence 
(15) The double factorial sequence 
(16) The “primitive numbers of power 2” sequence 
(17) The “primitive numbers of power 3” sequence 
(18) The generalized “primitive numbers” sequence 
(19) The cube free sieve sequence 
(20) The m-power free sieve sequence 
(21) The Inferior prime part sequence 
(22) The Superior prime part sequence 
(23) The Inferior square part sequence 
(24) The Superior square part sequence 
(25) The Inferior factorial part sequence 
(26) The Superior factorial part sequence 
(27) The irrational root sieve sequence 
(28) The odd sieve sequence 
(29) The binary sieve sequence 
(30) The consecutive sieve sequence 
(31) The Smarandache-Fibonacci triplets sequence 
(32) The Smarandache-Radu duplets sequence 
(33) The Smarandache prime product sequence 
(34) The Smarandache friendly pairs set 
(35) The Smarandache friendly prime pairs set 
(36) The 3n-digital subsequence 
(37) The 4n-digital subsequence 
(38) The 5n-digital subsequence 
(39) The crescendo and decrescendo subsequences 
(40) The crescendo and descrescendo pyramidal subsequences 
(41) The crescendo and descrescendo symmetric subsequences 
(42) The permutation subsequences 
(43) The Smarandache bases of numeration sequences 
(44) The multiplicative sequence 
(45) The non-multiplicative general sequence 
(46) The non-arithmetic progression sequence 
(47) The non-geometric progression sequence 
(48) The “wrong numbers” sequence 
(49) The “impotent numbers” sequence 
(50) The “simple numbers” sequence 
(51) The square product sequence 
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(52) The cubic product sequence 
(53) The factorial product sequence 
(54) The Smarandache recurrence type sequences 
(55) The Smarandache partition type sequences 
(56) The square residues sequence 
(57) The cubical residues sequence 
(58) The exponents of power 2 sequence 
(59) The exponents of power 3 sequence 
(60) The unary sequence 
(61) The Smarandache periodic sequences 
(62) The Smarandache pseudo-primes sequences 
(63) The Smarandache pseudo-squares sequences 
(64) The Smarandache pseudo-factorials sequences 
(65) The Smarandache pseudo-divisors sequences 
(66) The Smarandache almost primes sequences 
(67) The square roots sequence 
(68) The cubical roots sequence 
(69) The m-power roots sequence 
(70) The no-prime-digit sequence 
(71) The no-square-digit sequence 
(72) The Smarandache prime-digital subsequence 
(73) The Smarandache prime-partial-digital sequence 
(74) The Smarandache square-partial-digital sequence 
(75) The Erdős-Smarandache numbers sequence 
(76) The Goldbach-Smarandache table sequence 
(77) The Smarandache-Vinogradov table sequence 
(78) The Smarandache-Vinogradov sequence 
(79) The Smarandache paradoxist numbers sequence 
(80) Sequences involving the Smarandache function 
(81) The Smarandache perfect sequence 
(82) The partial perfect additive sequence 
(83) The Smarandache A-sequence 
(84) The Smarandache B-2 sequence 
(85) The Smarandache C-sequence 
(86) The Smarandache uniform sequences 
(87) The Smarandache operation sequences 
(88) The repeatable reciprocal partition of unity sequence 
(89) The distinct reciprocal partition of unity sequence 
(90) The Smarandache Pascal derived sequences 
(91) The Smarandache sigma divisor prime sequence 
(92) The Smarandache smallest number with n divisors sequence 
(93) The Smarandache summable divisor pairs set 
(94) The Smarandache integer part of x^n sequences 
(95) The Smarandache sigma product of digits natural sequence 
(96) The Smarandache least common multiple sequence 
(97) The Smarandache reverse auto correlated sequences 
(98) The Smarandache forward reverse sum sequence 
(99) The Smarandache reverse multiple sequence 



 10

(100) The Smarandache symmetric perfect power sequences 
(101) The Smarandache Fermat additive cubic sequence 
(102) The Smarandache patterned sequences 
(103) The Smarandache prime generator sequence 
(104) The Smarandache LCM ratio sequences 

Part two. Smarandache type functions and constants 
 
Chapter I.  Smarandache type functions 
 
 (1) The Smarandache function 

(2) The Smarandache double factorial function 
(3) The Smarandache near-to-primorial function 
(4) The Smarandache-Kurepa function 
(5) The Smarandache-Wagstaff function 
(6) The Smarandache ceil functions of n-th order 
(7) The Smarandache primitive functions 
(8) The Smarandache functions of the first kind 
(9) The Smarandache functions of the second kind 
(10) The Smarandache functions of the third kind 
(11) The pseudoSmarandache function 
(12) The pseudoSmarandache function of the first kind 
(13) The pseudoSmarandache function of second kind 
(14) The Smarandache multiplicative one function  
(15) The inferior and the superior f–part of x  
(16) The inferior and the superior fractional f–part of x  
(17) The Smarandache complementary functions 
(18) The functional Smarandache iteration of first kind 
(19) The functional Smarandache iteration of second kind 
(20) The functional Smarandache iteration of third kind 
(21) The Smarandache prime function 
(22) The Smarandache coprime function 
(23) The smallest power function 
(24) The residual function 
(25) The Smarandacheian complements 
(26) The increasing repetead compositions 
(27) The decreasing repetead compositions 
(28) The back and forth factorials (the Smarandacheials) 
(29) The Smarandache infinite products 
(30) The Smarandache-simple function 
(31) The duals of few Smarandache type functions 
(32) Generalizations of Smarandache function 
(33) The Smarandache counter 
(34) The pseudoSmarandache totient function 
(35) The pseudoSmarandache squarefree function 
(36) The Smarandache Zeta function 
(37) The Smarandache sequence density 
(38) The Smarandache generating function 
(39) The Smarandache totient function 



 11

(40) The Smarandache divisor function 
(41) The additive analoque of the Smarandache function 
(42) The Smarandache P and S persistence of a prime 
(43) Smarandache type multiplicative functions 
(44) The Smarandache factor partition function 
(45) Smarandache fitorial and supplementary fitorial functions 
(46) The Smarandache reciprocal function 
(47) The sumatory function associated to Smarandache function 
 

Chapter II.  Constants involving the Smarandache function  
 
 (1) The first constant of Smarandache 

(2) The second constant of Smarandache  
(3) The third constant of Smarandache 
(4) The fourth constant of Smarandache 
(5) Other Smarandache constants 

 
Part three. Conjectures on Smarandache notions and conjectures on number 

theory due to Florentin Smarandache 
 
Chapter I.  Conjectures on Smarandache type notions  
 

(1) Conjectures on Smarandache function 
(2) Conjectures on pseudo-Smarandache function 
(3) Conjectures on Smarandache double factorial function 
(4) Conjecture involving irrational and transcendental numbers 
(5) Conjecture on Smarandache function average 
(6) Conjecture on pseudo-Smarandache function and palindromes 
(7) Conjecture on Smarandache deconstructive sequence 
(8) Conjectures on Smarandache odd sequence 
(9) Conjectures on Smarandache even sequence 
 

Chapter II.  Conjectures on primes due to Smarandache 
 

(1) Generalizations of Andrica’s Conjecture 
(2) Generalizations of Goldbach’s and de Polignac’s Conjectures 
(3) Conjecture on Gaussian primes 
(4) Conjecture on the difference between two primes 
(5) Conjecture on a Silverman problem 
(6) Conjecture on twin primes involving the pseudo-twin primes 
 

Chapter III.  Conjectures on Diophantine equations due to Smarandache 
 

(1) Generalizations of Catalan’s Conjecture 
(2) Conjecture proved by Florian Luca 
(3) Conjecture on diophantine equation y = 2*x1*x2*…*xn + 1 

  
Chapter IV.  Other conjectures due to Smarandache 
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(1) Conjecture on an Erdős’ open problem 
(2) Conjecture on the difference between a cube and a square 

 
Part four. Theorems on Smarandache notions and theorems on number 

theory due to Florentin Smarandache 
 
Chapter I.  Theorems on Smarandache type notions  
 

(1) Theorems on Smarandache function 
(2) Theorems on Smarandache function of a set 
(3) Theorems on pseudo-Smarandache function 
(4) Theorems on Smarandache double factorial function 
(5) Theorems on Smarandache type function P(n) 
(6) Theorem on Smarandache type function C(n) 
(7) Theorems on a dual of Smarandache function 
(8) Theorems on a dual of pseudo-Smarandache function 
(9) Theorems on Smarandache ceil function 
(10) Theorems on Smarandache sequences 
(11) Theorem on the Smarandache concatenated power decimals 
(12) Theorem on Smarandache function and perfect numbers 
(13) Theorem on Smarandache function and the Dirichlet divisor function 
(14) Theorems on Smarandache primitive numbers of power p 

 
Chapter II.  Theorems due to Smarandache 
 

(1) A generalization of Euler’s Theorem on congruences 
(2) Theorem on an inequality involving factorials 
(3) Theorem on divisibility involving factorials 
(4) Theorem on an infinity of a set of primes 
(5) General theorem of characterization of n primes simultaneously 
(6) Theorems on Carmichael’s totient functions Conjecture 
(7) Theorem inspired by Crittenden and Vanden Eynden’s Conjecture 
(8) Theorem which generalizes Wilson’s Theorem 
(9) Theorems on arithmetic and geometric progressions 
(10) Theorem on the number of natural solutions of a linear equation 
(11) Theorems on the solutions of diophantine quadratic equations 
(12) Theorems on linear congruences 
(13) Theorem on very perfect numbers 
(14) Theorems on inequalities for the integer part function 

 
Part five. Criteria, formulas and algorithms for computing due to Florentin 

Smarandache 
 

(1) Criterion for coprimes involving Euler’s totient 
(2) Criteria for simultaneous primality 
(3) Criteria for primality derived from Wilson’s Theorem 
(4) A formula to calculate the number of primes 
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(5) A closed expression for the generalized Pells’s equation 
(6) The Romanian multiplication 
(7) Algorithm for division by k^n 

 
Part six. Unsolved problems regarding Smarandache notions and open 

problems on number theory due to Florentin Smarandache 
 
Chapter I.  Problems regarding sequences  
 
Chapter II.  Problems regarding Smarandache function  
 
Chapter III.  Problems regarding pseudoSmarandache function  
 
Chapter IV.  Problems regarding Smarandache double factorial function  
 
Chapter V.  Problems regarding other functions  
 
Chapter VI.  Problems regarding equations  
 
Chapter VII. Problems regarding prime numbers  
 
Chapter VIII. Other unsolved problems  
 
Afterword.  An infinity of problems concerning the Smarandache function 
 
Annex A.  List of twenty types of numbers named after Florentin 

Smarandache 
 
Annex B.  A proposal for a new Smarandache type notion 
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PART ONE 
Smarandache type sequences, series and functions 

 
 
Chapter I. Sequences and series of numbers obtained through concatenation  
 
(1)  The Smarandache consecutive numbers sequence1 
 
Definition: 

Sn is defined as the sequence obtained through the concatenation of the first n positive 
integers.  

The first ten terms of the sequence (A007908 in OEIS):  
1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 12345678910. 

Notes: 
1. The Smarandache consecutive number sequence has the following special property: 

thus far there is no prime number known in this sequence, though there have been 
checked the first about 40 thousand terms2. 

2. The problem of the number of primes contained by this sequence was raised by 
Florentin Smarandache since 1979.3  

3. Generalizing the problem, F.S. asked how many primes are among the terms of the 
consecutive sequence if this is considered in an arbitrary numeration base B; in base 
3, for instance, the terms of the sequence are 1, 12, 1210, 121011, 12101112 (…), 
which are equivalent to the following decimal numbers: 1, 5, 48, 436, 3929 (…)4. The 
computer programs used for finding these numbers, for numeration bases until 10, 
showed that these numbers are very rare. For instance, no prime was found among the 
first thousand of these terms for the numeration base 4. 

Comment5: 
From the Smarandache consecutive number sequence it can be formed the series defined 
as the sum from n = 1 to n = ∞ of the numbers 1/Sn. The series 1 + 1/12 + 1/123 + 1/1234 
+ … is convergent to a value greater than one and smaller than or equal to 10/9. 

 
(2)  The reverse sequence 
                                                 
1 The name of this sequence was generalized (Smarandache consecutive numbers sequences) for all the 
sequences obtained through concatenation of consecutive numbers of a certain type: the sequence Sn of the 
numbers obtained through concatenation of first n primes (named Smarandache-Wellin sequence); the 
sequence Sn of the numbers obtained through concatenation of first n squares etc. Many sequences of this type 
were studied by F.S., hwo revealed an important feature common to all of them: they all contain a small 
number of primes. See the article Consecutive number sequences from Weisstein, Eric W., CRC Concise 
Encyclopedia of Mathematics, CRC Press, 1999, p. 310. 
2 According to article Consecutive number sequences from the on-line math encyclopedia Wolfram Math 
World. 
3 Student Conference, University of Craiova, Department of Mathematics, April 1979, "Some problems in 
number theory" by Florentin Smarandache, cited by F.S. in Only problems, not solutions!, Xiquan Publishing 
House, fourth edition, 1993, p. 18. 
4 The sequence A048435 in OEIS. 
5 Majumdar, A.A.K., Wandering in the world of Smarandache numbers, InProQuest, 2010, Chapter 1: Some 
Smarandache sequences, Section 1.12: Series involving Smarandache sequences. 
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Definition: 

Sn is defined as the sequence obtained through the concatenation of the first n positive 
integers, in reverse order.  

The first ten terms of the sequence (A000422 in OEIS):  
1, 21, 321, 4321, 54321, 654321, 7654321, 87654321, 987654321, 10987654321. 

Note: The primes appear very rare among the terms of this sequence too: until now there are 
only two known, corresponding to n = 82 (a number having 155 digits) şi n = 37765 (a 
number having 177719 digits). 

Theorem6:  
Element number n of the base 10 reverse sequence is not square-free if n is congruent to 
0  or 8 modulo 9. 

 
(3)  The concatenated odd sequence 
 
Definition: 

Sn is defined as the sequence obtained through the concatenation of the first n odd 
numbers (the n-th term of the sequence is formed through the concatenation of the odd 
numbers from 1 to 2*n – 1). 

The first ten terms of the sequence (A019519 in OEIS):  
1, 13, 135, 1357, 13579, 1357911, 135791113, 13579111315, 1357911131517, 
135791113151719. 

Notes:  
1. F.S. conjectured that there exist an infinity of prime terms of this sequence. 
2. The terms of this sequence are primes for the following values of n: 2, 10, 16, 34, 49, 

2570 (the term corresponding to n = 2570 is a number with 9725 digits); there is no 
other prime term known though where checked the first about 26 thousand terms of 
this sequence.7 

Theorem8:  
 Let n be the number of the element in the concatenated odd sequence. 

a) If n is congruent to 3 modulo 5, then element number n is evenly divisible by 5. 
b) If n is congruent to 0 modulo 3, then element number n is evenly divisible by 3 and if 
n is congruent to 1 or 2 modulo 3, then element number n is congruent to 1 modulo 3. 

 
(4)  The concatenated even sequence 
 
Definition: 

Sn is defined as the sequence obtained through the concatenation of the first n even 
numbers (the n-th term of the sequence is formed through the concatenation of the even 
numbers from 1 to 2*n). 

The first ten terms of the sequence (A019520 in OEIS):  
2, 24, 246, 2468, 246810, 24681012, 2468101214, 246810121416, 24681012141618, 
2468101214161820. 

Notes:  

                                                 
6 For the proof of this theorem, see Ashbacher, Charles, Smarandache Sequences, stereograms and series, 
Hexis, Phoenix, 2005, p. 38-39. 
7 According to article Consecutive number sequences from the on-line math encyclopedia Wolfram Math 
World. 
8 For the proof of this theorem, see Ashbacher, C., Smarandache Sequences, stereograms and series, Hexis, 
Phoenix, p. 44-46. 
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1. Any term of this sequence can’t be, obviously, prime. In the case of this sequence is 
studied the primality of the numbers obtained through the division of its terms by 2: 
1, 12, 123, 1234, 123405, 1240506, 1234050607 (…). 

2. F.S. conjectured that there is no any term of this sequence which is a perfect square. 
3. H. Ibsted has not found any perfect square among the first 200 terms of this 

sequence.9 
4. A.A.K. Majumdar proved that none of the terms of the subsequence ES(2*n – 1) is a 

perfect square or higher power of an integer greater than one.10 
 
(5)  The concatenated prime sequence 
 
Definition: 

Sn is defined as the sequence obtained through the concatenation of the first n primes. 
The first ten terms of the sequence (A019518 in OEIS):  

2, 23, 235, 2357, 235711, 23571113, 2357111317, 235711131719, 23571113171923, 
2357111317192329. 

Notes:  
1. The terms of this sequence are known as Smarandache-Wellin numbers11. Also, the 

Smarandache-Wellin numbers which are primes are named Smarandache-Wellin 
primes. The first three such numbers are 2, 23 şi 2357; the fourth is a number with 
355 digits and there are known only 8 such primes. The 8 known values of n for 
which through the concatenation of the first n primes we obtain a prime number are 1, 
2, 4, 128, 174, 342, 435, 1429. The computer programs not yet found, until n = 10^4, 
another such a prime.12  

2. F.S. conjectured that there exist an infinity of prime terms of this sequence.13 
Comment14:  
 The concatenated odd, even and prime sequences are particular cases of so-called “G 

add-on sequence” defined in the following way: let G = {g1, g2, …, gk, …} be an ordered 
set of positive integers with a given property G; then the corresponding G add-on 
sequence is defined through formula SG = {ai: a1 = g1, ak = ak-1*10^(1 + log10(gk)) + gk, k 
≥ 1}. 

 
(6)  The back concatenated prime sequence  
 
Definition: 

Sn is defined as the sequence obtained through the concatenation of the first n primes, in 
reverse order. 

The first ten terms of the sequence (A038394 in OEIS):  
2, 32, 532, 7532, 117532, 13117532, 1713117532, 191713117532, 23191713117532, 
2923191713117532. 

                                                 
9 See Ibstedt, Henry, Computer analysis of number sequences, American Research Press, 1998, Chapter V: 
Smarandache concatenated sequences, Section 4: The Smarandache even sequence.  
10 See Majumdar, A.A.K., Wandering in the world of Smarandache numbers, InProQuest, 2010, Chapter 1: 
Some Smarandache sequences, Section 1.3: Smarandache even sequence. The Smarandache odd sequence is 
sometimes named with the acronym OS while the even sequence is sometimes named ES. 
11 After the names of F.S. and mathematician Paul R. Wellin. 
12 According to article Smarandache-Wellin number from the on-line math encyclopedia Wolfram Math 
World. 
13 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Definition 17. 
14 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequences 229-231. 
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(7)  The concatenated square sequence 
 
Definition: 

Sn is defined as the sequence obtained through the concatenation of the first n squares: 
1(2^2)(3^2)…(n^2). 

The first ten terms of the sequence (A019521 in OEIS):  
1, 14, 149, 14916, 1491625, 149162536, 14916253649, 1491625364964, 
149162536496481, 149162536496481100. 

Notes: 
1. The third term, the number 149, it is the only prime from the first about 26 thousand 

terms of this sequence.15 
2. F.S. raised the problem of the number of the terms of this sequence which are perfect 

squares.16 
Conjecture:   

There is no term of the Smarandache concatenated square sequence which is perfect 
square.17 

  
(8)  The concatenated cubic sequence 
 
Definition: 

Sn is defined as the sequence obtained through the concatenation of the first n cubes: 
1(2^3)(3^3)…(n^3). 

The first ten terms of the sequence (A019521 in OEIS):  
1, 18, 1827, 182764, 182764125, 182764125216, 182764125216343, 
182764125216343512, 182764125216343512729, 1827641252163435127291000. 

Notes: 
1. There were not found prime terms of this sequence, though there were checked the 

first about 22 terms.18 
2. F.S. raised the problem of the number of the terms of this sequence which are perfect 

cubes.19 
Conjecture:   

There is no term of the Smarandache concatenated cubic sequence which is perfect 
cube.20 

   
(9)  The sequence of triangular numbers 
 
Definition: 

Sn is defined as the sequence obtained through the concatenation of the first n triangular 
numbers: 1(2^3)(3^3)…(n^3). 

                                                 
15 According to article Consecutive number sequences from the on-line math encyclopedia Wolfram Math 
World. 
16 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Definition 21. 
17 Ashbacher, C., Smarandache Sequences, stereograms and series, Hexis, Phoenix, p. 63. 
18 According to article Consecutive number sequences from the on-line math encyclopedia Wolfram Math 
World. 
19 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Definition 22. 
20 Ashbacher, C., Smarandache Sequences, stereograms and series, Hexis, Phoenix, p. 65. 
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The first ten terms of the sequence (A078795 in OEIS):  
1, 13, 136, 13610, 1361015, 136101521, 13610152128, 1361015212836, 
136101521283645, 13610152128364555. 

Notes: 
1. The triangular numbers are a subset of the polygonal numbers (which are a subset of 

figurate numbers) constructed with the formula T(n) = (n*(n + 1))/2 = 1 + 2 + 3 +… 
+ n. 

2. The only two known primes from this sequence (among the first about 5000 terms) 
are 13 and 136101521. 

 
(10)  The symmetric numbers sequence 
 
Definition: 

Sn is defined as the sequence obtained through the concatenation in the following way: if 
n is odd, the n-th term of the sequence is obtained through concatenation 123…(m-
1)m(m-1)…321, where m = (n + 1)/2; if n is even, the n-th term of the sequence is 
obtained through concatenation 123…(m-1)mm(m-1)…321, unde m = n/2. 

The first ten terms of the sequence (A007907 in OEIS):  
1, 11, 121, 1221, 12321, 123321, 1234321, 12344321, 123454321, 1234554321, 
12345654321. 

Notes: 
1. F.S. raised the problem of the numbers of the terms of this sequence which are 

primes. 
2. Generalizing the problem, F.S. asked how many primes are among the terms of the 

symmetric sequence if this is considered in an arbitrary numeration base B. 
Comment: 

The prime numbers among the terms of this sequence “may not be as rare as the primes 
in the consecutive sequence, for all the numbers in this sequence are odd.”21 

Theorem22:  
If p is an odd prime in the base 3 symmetric sequence, then the index must be of the form 
4*k + 1. 

 
(11)  The antisymmetric numbers sequence  
 
Definition: 

Sn is defined as the sequence obtained through the concatenation in the following way: 
12…(n)12…(n). 

The first ten terms of the sequence (A019524 in OEIS):  
11, 1212, 123123, 12341234, 1234512345, 123456123456, 12345671234567, 
1234567812345678, 123456789123456789. 

Note: There is no term of this sequence which can be prime, no matter in what numeration base 
is this sequence considered. In the case of this sequence is studied the primality of the 
numbers of the form 12…(n)12…(n) ± 1. 

 
(12)  The mirror sequence 
 
Definition: 
                                                 
21 Ashbacher, C., Smarandache Sequences, stereograms and series, Hexis, Phoenix, p. 14. 
22 For the proof of this theorem, see Ashbacher, C., Smarandache Sequences, stereograms and series, Hexis, 
Phoenix, p. 18-19. 
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Sn is defined as the sequence obtained through the concatenation in the following way: 
n(n – 1)…32123…(n – 1)n. 

The first ten terms of the sequence (A007942 in OEIS):  
1, 212, 32123, 4321234, 543212345, 65432123456, 7654321234567, 876543212345678, 
98765432123456789, 109876543212345678910. 

Notes: 
1. F.S. raised the problem of the numbers of the terms of this sequence which are 

primes. 
2. Generalizing the problem, F.S. asked how many primes are among the terms of the 

symmetric sequence if this is considered in an arbitrary numeration base B. The 
computer programs used for finding these primes, for the numeration bases up to ten, 
not found any prime among the first 500 terms of the sequence for the numeration 
base 6. 

Theorems: 
1. If B > 2 is odd, then all of the elements in the base B mirror sequence are odd.23 
2. If the base B > 2 is even, then the parity of the elements in the base B Mirror 

Sequence alternate, with the elements of even index being even and the elements of 
odd index odd. 24 

 
(13)  The “n concatenated n times” sequence  
 
Definition: 

The sequence Sn defined as the sequence of the numbers obtained concatenating n times 
the number n. 

The first ten terms of the sequence (A000461 in OEIS):  
1, 22, 333, 4444, 55555, 666666, 7777777, 88888888, 999999999, 
10101010101010101010. 

Note:  There is no term of this sequence which can be prime, all terms of the sequence being 
repdigit numbers, therefore multiples of repunit numbers. 

 
(14)  The permutation sequence25 
 
Definition: 

The sequence Sn defined as the sequence of numbers obtained through concatenation and 
permutation in the following way: 13…(2n – 3)(2n – 1)(2n)(2n – 2)(2n – 4)…42. 

The first seven terms of the sequence (A007943 în OEIS):  
12, 1342, 135642, 13578642, 13579108642, 135791112108642, 1357911131412108642, 
13579111315161412108642. 

Notes:  
1. There is obviously no term of this sequence which can be prime. In the case of this 

sequence is studied the primality of the numbers obtained through the division of its 

                                                 
23 For the proof of this theorem, see Ashbacher, C., Smarandache Sequences, stereograms and series, Hexis, 
Phoenix, p. 23-25. 
24 For the proof of this theorem, see Ashbacher, C., Smarandache Sequences, stereograms and series, Hexis, 
Phoenix, p. 25. 
25 The sequence is named Smarandache permutation sequence by Ashbacher, C., Smarandache Sequences, 
stereograms and series, Hexis, Phoenix, p. 28; Majumdar, A.A.K., Wandering in the world of Smarandache 
numbers, InProQuest, 2010, p. 23. Other sources (Wolfram Math World, OEIS) understand through the name 
Smarandache permutation sequence another sequence, i.e. the sequence obtained concatenating ascendent 
sequences of odd numbers with descending sequences of even numbers: 1, 2, 1, 3, 4, 2, 1, 3, 5, 6, 4, 2 (…). 
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terms by 2: 6, 671, 67821, 6789321 (…), or the primality of the numbers of the form 
13…(2n – 3)(2n – 1)(2n)(2n – 2)(2n – 4)…42 ± 1. 

2. There is no term of this sequence which can be perfect square, because every term of 
this sequence, beside the first one, is divisible by 2 but not by 2^2. 

 
(15)  The constructive set of digits 1 and 2 sequence26 
 
Definition: 

The sequence S of the numbers obtained through concatenation of the digits 1 and 2, 
defined in the following way: (i) the digits 1 and 2 belong to S; (ii) if a and b belong to S, 
then ab belong to S too; (iii) only elements obtained by rules (i) and (ii) applied a finite 
number of times belong to S. 

The first twenty-five terms of the sequence:  
1, 2, 11, 12, 21, 22, 111, 112, 121, 211, 212, 221, 222, 1111, 1112, 1121, 1122, 1211, 
1212, 1221, 1222, 2111, 2112, 2121, 2122. 

Comment:   
There are 2^k numbers of k digits in the sequence, for k = 1, 2, 3, … 

 
(16)  The generalized constructive set sequence27 
 
Definition: 

The sequence S obtained generalizing the previous sequence, so the sequence of the 
numbers obtained through concatenation of the distinct digits d1, d2, …, dm, where 1 ≤ m 
≤ 9, defined in the following way: (i) the digits d1, d2, …, dm belong to S; (ii) if a and b 
belong to S, then ab belongs to  S too; (iii) only elements obtained by rules (i) and (ii) 
applied a finite number of times belong to S. 

Comments: 
1. There are 2^k numbers of k digits in the sequence, for k = 1, 2, 3, … 
2. All digits di can be replaced by numbers as large as we wantm and also m can be as 

large as we want. 
Theorem28:    

The series defined as the sum from n = 1 to n = ∞ of the fractions 1/an^r, where {an} is a 
sequence constructed according to the definition (generalised constructive set) and r is a 
positive number, is convergent if r > log m and divergent if r ≤ log m. 

 
(17)  The pierced chain sequence 
 
Definition: 

The sequence obtained in the following way: the first term of the sequence is 101 and 
every next term is obtained through concatenation of the previous term with the group of 
digits 0101. 

                                                 
26 F.S., Only problems, no solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 6. See also F.S., 
Sequences of numbers involved in unsolved problems, Hexis, 2006, where, in Sequence 115, is defined the 
constructive set of digits 1, 2 and 3. For a study of the constructive set of digits 1 and 2, see Atanassov, 
Krassimir T., On some of the Smarandache’s problems, American Research Press, 1999, p. 50-51; for a study 
of the constructive set of digits 1, 2 and 3, see the same book, p. 51. 
27 F.S., Only problems, no solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 8. See also F.S., 
Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 116. See also Atanassov, 
Krassimir T., On some of the Smarandache’s problems, American Research Press, 1999, p. 51-56. 
28 The theorem is enunciated and proved by Gou Su, see the article „On the generalised constructive set”, 
Research on  Smarandache problems in number theory (Collected papers), Hexis, 2004. 



 21

The first seven terms of the sequence (A031982 in OEIS):  
101, 1010101, 10101010101, 101010101010101, 1010101010101010101, 
10101010101010101010101, 101010101010101010101010101. 

Note: Because, of course, all terms of this sequence are divisible by 101, the problem raised by 
F.S. is how many from the numbers obtained through the division of the terms of the 
sequence by 101 are primes or squarefree numbers. 

Theorem29:  
There are no primes obtained through the division of the terms of the sequence by 101. 

 
(18)  The concatenated Fibonacci  sequence 
 
Definition: 

The sequence obtained through concatenation of the terms of Fibonacci sequence30. 
The first ten terms of the sequence (A019523 in OEIS):  

1, 11, 112, 1123, 11235, 112358, 11235813, 1123581321, 112358132134, 
11235813213455. 

Notes:  
1. From the first 800 terms of this sequence only two are primes, the second and the 

fourth (respectively the numbers 11 and 1123). 
2. Florentin Smarandache raised the problem if there exist any term of this sequence 

(beside 1) which is a Fibonacci number.31  
 
(19)  The circular sequence32 
 
Definition: 

The sequence Sn constructed through concatenation and permutation in the following 
way33: 

The first twenty terms of the sequence (A001292 in OEIS):  
1, 12, 21, 123, 231, 312, 1234, 2341, 3412, 4123, 12345, 23451, 34512, 45123, 51234, 
123456, 234561, 345612, 456123, 561234. 

Note: The problem raised by F.S. is how many from the terms of the sequence are primes or 
powers of integers.34 Another problem raised is to find the probability for which the 

                                                 
29 The theorem is proved by Kenichiro Kashihara, Comments and topics on Smarandache notions and 
problems, Erhus University Press, 1996, p. 7-8. For other theorems concerning this sequence see Majumdar, 
A.A.K., Wandering in the world of Smarandache numbers, InProQuest, 2010, Chapter 1: Some Smarandache 
sequences, Section 1.11: Smarandache pierced chain sequence. 
30 The Fibonacci numbers are the numbers defined by the recurrence relation F(n) = F(n – 1) + F(n – 2). 
31 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Definition 23. Charles Ashbacher conjectured that there is no such a term of 
the sequence: Smarandache Sequences, stereograms and series, Hexis, Phoenix, p. 66.  
32 Named Smarandache circular sequence by F.S., Only problems, no solutions!, Xiquan Publishing House, 
fourth edition, 1993, Problem 4. Other sources (Majumdar, A.A.K., Wandering in the world of Smarandache 
numbers, InProQuest, 2010, p. 26) use the name Smarandache circular sequence refering to The Smarandache 
consecutive numbers sequence (1, 12, 123, 1234, …).  
33 For a formula for the n-th term of the sequence, see Vassilev-Missana, Mladen and Atanassov, Krassimir, 
Some Smarandache problems, Hexis, 2004, Chapter 1: On some Smarandache’s problems, Section 1: On the 
2-nd Smarandache’s problem. 
34 Kashihara  conjectured that the sequence contains no powers of integers. See Kashihara, K., Comments and 
topics on Smarandache notions and problems, Erhus University Press, 1996, p. 25. 
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trailing digit of a term is equal to c, where c belongs to the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 
9}.35 
 

(20)  The back concatenated sequences36 
 
The back concatenated odd sequence37: 

The first ten terms of the sequence (A038395 in OEIS): 
1, 31, 531, 7531, 97531, 1197531, 131197531, 15131197531, 1715131197531, 
1917151311975311. 

The back concatenated even sequence: 
The first ten terms of the sequence (A038396 in OEIS): 
2, 42, 642, 8642, 108642, 12108642, 1412108642, 161412108642, 18161412108642, 
2018161412108642. 

The back concatenated  square sequence: 
The first ten terms of the sequence (A038397 in OEIS): 
1, 41, 941, 16941, 2516941, 362516941, 49362516941, 6449362516941, 
816449362516941, 100816449362516941. 

The back concatenated cubic sequence: 
The first ten terms of the sequence (A019522 in OEIS): 
1, 18, 1827, 182764, 182764125, 182764125216, 182764125216343, 
182764125216343512, 182764125216343512729, 1827641252163435127291000. 

The back concatenated Fibonacci sequence: 
The first ten terms of the sequence (A038399 in OEIS): 
1, 11, 211, 3211, 53211, 853211, 13853211, 2113853211, 342113853211, 
55342113853211. 
 

(21)  The concatenated S-Sequence 
 
Definition: 

The sequence obtained generalizing the Smarandache concatenated sequences defined in 
the following way: let s1, s2, …, sn be a sequence of integers noted with S; then s1, s1s2, 
s1s2s3, …, s1s2s3…sn is named Concatenated S-Sequence.  

Note: Florentin Smarandache raised the problem of the number of the terms of the 
Concatenated S-Sequence which belong to the initial sequence.38 

 
(22)  The generalized palindrome sequence39 
 
Definition: 

                                                 
35 For a deeper study of this sequence see Ripà, Marco, Patterns related to the Smarandache circular sequence 
primality problem, Unsolved Problems in Number Theory, Logic, and Criptography. 
36 Beside the back concatenated prime sequence which is treated supra, F.S. defined many other back 
concatenated sequences; here are listed few of them. See F.S., Definitions, solved and unsolved problems, 
conjectures, and theorems in number theory and geometry, Xiquan Publishing House, 2000, Definitions 17, 
18, 19, 21, 22, 23. 
37 For a recursion formula for general term of this sequence and theorems about it see Junzhuang, Li and 
Nianliang, Wang, On the Smarandache back concatenated odd sequences, in Wenpeng, Zhang, et al. (editors), 
Research on  Smarandache problems in number theory (vol. 2), Hexis, 2005. 
38 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Definition 20. 
39 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 254. 
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The sequence of numbers which are called Generalized Smarandache Palindromes (GSP) 
and are defined as follows: numbers of the form a1 a2 …an an …a 2a1 , with n ≥ 1, where 
a1, a2, …, an are positive integers of various number of digits.  

Example:  
 The number 1256767251 is a GSP of type ABCCBA because can be deconcatenated into 

the set of numbers {1, 25, 67, 67, 25, 1}. 
Conjecture:  
 There are infinitely many primes which are GSP. 
 
(23)  The Smarandache n2*n sequence40 
  
Definition: 

The n-th term of the sequence a(n) is obtained concatenating the numbers n and 2*n. 
The first fifteen terms of the sequence (A019550 in OEIS):  

12, 24, 36, 48, 510, 612, 714, 816, 918, 1020, 1122, 1224, 1326, 1428, 1530. 
Note:  

Because obviously every element of this sequence a(n) is divisible by 6*n, in the case of 
this sequence is studied the primality of the numbers a(n)/6*n. 

Conjecture:  
The sequence a(n)/6*n contains infinitely many primes. 

 
(24)  The Smarandache nn^2 sequence41 
  
Definition: 

The n-th term of the sequence a(n) is obtained concatenating the numbers n and n^2. 
The first fifteen terms of the sequence (A053061 in OEIS):  

11, 24, 39, 416, 525, 636, 749, 864, 981, 10100, 11121, 12144, 13169, 14196, 15225. 
Theorem:  

The Smarandache nn^2 sequence contains no perfect squares. 
Definition:  

The sequence a(n)/n is called the reduced Smarandache nn^2 sequence. 
The first fifteen terms of the reduced Smarandache nn^2 sequence (A061082 in OEIS):  

11, 12, 13, 104, 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015. 
Conjecture:  

There are infinitely many primes in the reduced Smarandache nn^2 sequence. 
Definition: 

The sequence a(n) obtained concatenating the numbers n and n^m is called the 
Smarandache nn^m sequence. 

Theorem:  
The Smarandache nn^m sequence, for any value of m, contains only one prime, the 
number 11.  

Definition:  
The sequence a(n)/n is called the reduced Smarandache nn^m sequence. 

Question:  
How many terms in this sequence are prime? 

 

                                                 
40 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 125. 
41 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 130. 
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(25)  The Smarandache nk*n generalized sequence42 
  
Definition: 

The n-th term of the sequence a(n) is obtained concatenating all of the numbers n, 2*n, 
3*n, …, n*n. 

The first eight terms of the sequence (A053062 in OEIS):  
1, 24, 369, 481216, 510152025, 61218243036, 7142128354249, 816243240485664. 

Question:  
How many from the numbers a(n)/n are primes? 

 
(26)  The Smarandache breakup perfect power sequences 
  
Definition: 

The n-th term of the sequence is defined as the smallest positive integer which, by 
concatenation with all previous terms, forms a perfect power. 

The Smarandache breakup  square sequence (A051671 in OEIS): 
 4, 9, 284, 61209, 14204828164, 4440027571600000000001, … 
 Example: 284 belongs to the sequence because 49284 = 222^2. 
The Smarandache breakup  cube sequence (A061109): 
 1, 6, 6375, 34623551127976881, … 
 Example: 6375 belongs to the sequence because 166375 = 55^3. 
 
(27)  The Smarandache breakup prime sequence 
  
Definition: 

The n-th term of the sequence is defined as the smallest positive integer which, by 
concatenation with all previous terms, forms a prime. 

The Smarandache breakup  prime sequence (A048549 in OEIS): 
 2, 23, 233, 2333, 23333, 2333321, 233332117, 2333321173, 233332117313, … 
 
(28)  The Smarandache power stack sequences 
  
Definition: 

The n-th term of the sequence is defined as the positive integer obtained by concatenating 
all the powers of k from k^0 to k^n. 

The Smarandache power stack sequence for k = 2: 
 1, 12, 124, 1248, 12416, 1241632, 124163264… 
The Smarandache power stack sequence for k = 3: 
 1, 13, 139, 13927, 1392781, 1392781243… 
 
(29)  The Smarandache left-right and right-left sequences 
  
Definition 143: 

The sequence of positive integers obtained starting with 1 and concatenating alternatively 
on the left and on the right the next numbers. 

The first ten terms of the sequence (A053063 in OEIS):  

                                                 
42 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 125. 
43 Russo, Felice, On a problem concerning the Smarandache left-right sequences, Smarandache Notions Journal, 
vol. 14, 2004. 
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1, 21, 213, 4213, 42135, 642135, 6421357, 86421357, 864213579, 10864213579. 
Definition 2: 

The sequence of positive integers obtained starting with 1 and concatenating alternatively 
on the right and on the left the next numbers. 

The first ten terms of the sequence (A053064 in OEIS):  
1, 12, 312, 3124, 53124, 531246, 7531246, 75312468, 975312468, 97531246810. 

Definition 3: 
The sequence of positive integers obtained starting with 2 and concatenating alternatively 
on the left and on the right the next primes. 

The first nine terms of the sequence (A053065 in OEIS):  
 2, 32, 325, 7325, 732511, 13732511, 1373251117, 191373251117, 19137325111723. 
Definition 4: 

The sequence of positive integers obtained starting with 2 and concatenating alternatively 
on the right and on the left the next primes. 

The first nine terms of the sequence (A053066 in OEIS):  
 2, 23, 523, 5237, 115237, 11523713, 1711523713, 171152371319, 23171152371319. 
Questions:  

1. How many terms of this sequences are prime numbers? 
2. How many terms are additive primes?44 
3. Is the number of the primes in these sequences finite? 

 
(30)  The Smarandache sequences of happy numbers 
  
Definition 145: 

The sequence of numbers obtained concatenating the happy numbers46. 
The first eight terms of the Smarandache sequence of happy numbers (A053064 in OEIS)47:  

1, 17, 1710, 171013, 17101319, 1710131923, 171013192328, 17101319232831. 
Definition 2 : 

The sequence of numbers obtained concatenating the happy numbers. 
The first eight terms of the reversed Smarandache H-sequence (A071827 in OEIS):  

1, 71, 1071, 131071, 19131071, 2319131071, 282319131071, 31282319131071. 
Comments:  

1. There are only 3 primes in the first 1000 terms of the H-sequence, i.e. SH(2) = 17, 
SH(5) = 17101319 and SH(43), a number with 108 digits.  

2. There are 1429 happy numbers in the first 10000 terms of the H-sequence. 
3. There are 8 primes in the reversed H-sequence. 

Questions:  
1. How many terms of the H-sequence or of the reversed H-sequence are primes? 

Are there infinitely many? 
2. How many terms are happy numbers? 
 

 
Chapter II. Other sequences and series 

                                                 
44 An additive prime is a prime number with the property that the sum of its digits is a prime too. 
45 Gupta, Shyam Sunder, Smarandache sequence of happy numbers, Smarandache Notions Journal, vol. 13, 2002. 
46 A happy number is a number with the property that, through the iterative summation of the squares of its 
digits, it is eventually obtained the number 1; e.g. 7 is a happy number because 7^2 = 49, 4^2 + 9^2 = 97, 9^2 
+ 7^2 = 130, 1^2 + 3^2 + 0^2 = 10, 1^2 + 0^2 = 1. The numbers which don’t have this property are called 
unhappy numbers. The first few happy numbers (sequence A007770 in OEIS): 1, 7, 10, 13, 19, 23, 28, 31, … 
47 Also named with the acronym Smarandache H-sequence. 
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(1)  The Smarandache Quotient sequence 
 
Definition48: 

The sequence of positive integers k with the property that they are the smallest positive 
integers so that the product n*k is a factorial number, where n integer, n ≥ 1. 

The first twenty terms of the sequence (A007672 in OEIS):  
1, 1, 2, 6, 24, 1, 720, 3, 80, 12, 3628800, 2, 479001600, 360, 8, 45, 20922789888000, 40, 
6402373705728000, 6. 

Comments: 
1. The sequence contains an infinity of factorial numbers.49 
2. The sequence contains an infinity of primes, perfect squares and perfect cubes.50 

 
(2)  The (non-cocatenated) permutation sequence 
 
Definition: 

The sequence Sn defined in the following way: the first term is 1, the second term is 2, 
then alternates sequences of ascending odd numbers with sequences of descending even 
numbers.51  

The first thirty terms of the sequence (A004741 in OEIS):  
1, 2, 1, 3, 4, 2, 1, 3, 5, 6, 4, 2, 1, 3, 5, 7, 8, 6, 4, 2, 1, 3, 5, 7, 9, 10, 8, 6, 4, 2. 

 
(3)  The deconstructive sequence 
 
Definition: 

The sequence obtained in the following way: the first term is 1 and then every term of the 
sequence it will have one more digit than the previous one, while the digits scroll from 1 
to 9 and then they are repetead cyclically.52 

The first seven terms of the sequence (A007923 in OEIS):  
1, 23, 456, 7891, 23456, 789123, 4567891, 23456789, 123456789, 1234567891. 

Properties53: 
1. The trailing digits of the terms of this sequence follow the sequence: 

1, 3, 6, 1, 6, 3, 1, 9, 9, 1, 3, 6, 1, 6, 3, 1, 9, 9, 1, ... 
2. The leading digit of the n-th term of this sequence is given by the formula n*(n + 1)/2 

(mod 9). 
 
 (4)  The generic digital sequence 

                                                 
48 The number k is named Smarandache Quotient. See also infra, Part Two, Chapter I, Section (1): 
Smarandache function. F.S. named this sequence The factorial quotients. See Only problems, not solutions!, 
Xiquan Publishing House, fourth edition, 1993, Problem 45. 
49 Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, 
p. 16. 
50 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 
1998, p. 8. 
51 Some sources (Wolfram Math World, OEIS) name this sequence Smarandache permutation sequence. We 
name it Smarandache (non-concatenated) permutation sequence to distinguish it from the sequence 12, 1342, 
135642, 13578642…(see supra) which has the consacrated name Smarandache permutation sequence. 
52 For a study of this sequence, see Atanassov, Krassimir T., On some of the Smarandache’s problems, 
American Research Press, 1999, p. 7-11. 
53 Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, 
Chapter 1: Some comments and problems on Smarandache notions. 
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Definition: 

The generic sequence (a particular case of the sequences of sequences) defined in the 
following way: in any numeration base B, for any sequence of integer or rational 
numbers s1, s2, s3, … and for any digit C, 0 ≤ C ≤ B – 1, is constructed a new sequence of 
integers which associates to s1 the number of digits C of s1,  in numeration base B, to s2 
the number of digits C of s2,  in numeration base B, and so on. 54 

Examples:  
1. We consider the sequence of primes in base 10 and the digit C = 1. The number of 

times the digit 1 appears in this sequence is: 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 1, 0 (…).55 
2. We consider the sequence of factorials in base 10 and the digit C = 0. The number of 

times the digit 0 appears in this sequence is: 0, 0, 0, 0, 0, 1, 1, 2, 2, 1, 3.56 
3. We consider the sequence n^n in base 10 and the digit C = 5. The number of times 

the digit 5 appears in this sequence is: 0, 0, 0, 1, 1, 1, 1, 0, 0, 0.57 
 
(5)  The generic construction sequence 
 
Definition: 

The generic sequence (a particular case of the sequences of sequences) defined in the 
following way: in any numeration base B, for any sequence of integer or rational 
numbers s1, s2, s3, … and for any digits C1, C2,…, Ck (k < B),  is constructed a new 
sequence of integers so that every of its terms Q1 < Q2 < Q3 < … is constituted only from 
the digits C1, C2,…, Ck (plus every from these digits must be used) and corresponds to a 
term si from the initial sequence.58 

Examples:  
1. We consider the sequence of primes in base 10 and the digits C1 = 1 and C2 = 7. The 

sequence of numbers constituted only from these digits (every from these digits must 
be used) is: 17, 71 (…).59 

2. We consider the sequence of multiples of primes 3 in base 10 and the digits C1 = 0 
and C2 = 1. The sequence of numbers constituted only from these digits (every from 
these digits must be used) is: 1011, 1101, 1110, 10011, 10101, 10110, 11001, 11010, 
11100 (…).60 

 
(6)  The digital sum sequence 
 
Definition:  

The sequence dS(n) defined as the sum of the digits of n.61 
The first forty terms of the sequence (A007953 in OEIS):  

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 3, 4, 5, 6, 
7, 8, 9, 10, 11, 12. 

                                                 
54 The sequence is named by F.S. (Only problems, no solutions!, Xiquan Publishing House, fourth edition, 
1993, Problem 4), Digital sequences. 
55 The sequence is named by F.S. The Digit-1  prime sequence. 
56 The sequence is named by F.S. The Digit-0  factorial sequence. 
57 The sequence is named by F.S. The Digit-5  n^n sequence. 
58 The sequence is named by F.S. (Only problems, no solutions!, Xiquan Publishing House, fourth edition, 
1993, Problem 4), Construction sequences. 
59 The sequence is named by F.S. The Digit-1-7-only prime sequence. 
60 The sequence is named by F.S. The Digit-0-1-only  multiple of 3 sequence. 
61 For the formula of the n-the term of this sequence, see Atanassov, Krassimir T., On some of the 
Smarandache’s problems, American Research Press, 1999, p. 12-15. 
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(7)  The digital product sequence 
 
Definition: 

The sequence dP(n) defined as the product of the digits of n.62 
The first forty terms of the sequence (A007954 in OEIS):  

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 0, 3, 6, 
9, 12, 15, 18, 21, 24, 27. 

 
(8)  The divisor products sequence 
 
Definition: 

The sequence Pd(n) defined as the product of the positive divisors of n.63 
The first thirty terms of the sequence (A007955 in OEIS):  

1, 2, 3, 8, 5, 36, 7, 64, 27, 100, 11, 1728, 13, 196, 225, 1024, 17, 5832, 19, 8000, 441, 
484, 23, 331776, 125, 676, 729, 21952, 29, 810000. 

Properties64: 
1. The sequence obviously contains an infinite number of primes: if p is prime, then 

Pd(p) = p. 
2. The sequence contains an infinite number of the forms p^k, where p is prime. 
3. Pd(n) = n only if n = 1 or n is prime; for any composite number, Pd(n) > n. 
4. For a prime p, p^m belongs to Pd only if there is some integer k such that k*(k + 

1)/2 = m. 
 
(9)  The proper divisor products sequence 
 
Definition: 

The sequence pd(n) defined as the product of the proper divisors of n. 
The first thirty terms of the sequence (A007956 in OEIS):  

1, 1, 1, 2, 1, 6, 1, 8, 3, 10, 1, 144, 1, 14, 15, 64, 1, 324, 1, 400, 21, 22, 1, 13824, 5, 26, 27, 
784, 1, 27000. 

Notes: 
1. If n is prime, then pd(n) = 1. 
2. “Numbers of the form pd(n) = n may well be called Smarandache amicable 

numbers, after the usual amicable numbers”.65 
 
(10)  The square complements sequence 
 

                                                 
62 For a deeper study of this sequence, see Vassilev-Missana, Mladen and Atanassov, Krassimir, Some 
Smarandache problems, Hexis, 2004, Chapter 1: On some Smarandache’s problems, Section 4: On the 17-th 
Smarandache’s problem. 
63 For a deeper study of this sequence and of the following one, see Vassilev-Missana, Mladen and Atanassov, 
Krassimir, Some Smarandache problems, Hexis, 2004, Chapter 1: On some Smarandache’s problems, Section 
5: On the 20-th and the 21-st Smarandache’s problems. 
64 Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, 
Chapter 1: Some comments and problems on Smarandache notions. 
65 Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, 
Chapter 1: Some comments and problems on Smarandache notions, p. 10. A pair of amicable numbers consists 
in two numbers that have the following relation: the sum of the proper divisors of one of them is equal to the 
other number: for instance [220, 284] is such a pair because the sum of proper divisors of 220 equals 284 while 
the sum of proper divisors of 284 equals 220. 
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Definition: 
The sequence of the numbers k with the property that k is the smallest integer so that n*k 
is a perfect square. 

The first forty terms of the sequence:  
1, 2, 3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7, 29, 
30, 31, 2, 33, 34, 35, 1, 37, 38, 39, 10. 

Properties:  
All the terms of the sequence are squarefree. “The Smarandache square somplement 
sequence is the set of all square-free numbers. Moreover, each element of the set appears 
an infinite number of times.”66 

 
(11)  The cube complements sequence67 
 
Definition: 

The sequence of the numbers k with the property that k is the smallest integer so that n*k 
is a perfect cube. 

The first thirty terms of the sequence (A048798 in OEIS):   
1, 4, 9, 2, 25, 36, 49, 1, 3, 100, 121, 18, 169, 196, 225, 4, 289, 12, 361, 50, 441, 484, 529, 
9, 5, 676, 1, 98, 841, 900. 

Properties:  
All the terms of the sequence are cubefree. This sequence is the set of all cubefree 
numbers. Moreover, every number in the sequence appears an infinite number of times. 

 
(12)  The m-power complements sequence 
 
Definition: 

The sequence of the numbers k with the property that k is the smallest integer so that n*k 
is a perfect m-power (m ≥ 2)68. 

Properties:  
All the terms of the sequence are m-power free. 

 
(13)  The double factorial complements sequence 
 
Definition: 

The sequence of the numbers k with the property that k is the smallest integer so that n*k 
is a double factorial. 

The first twenty-five terms of the sequence (A007919 in OEIS):  
1, 1, 1, 2, 3, 8, 15, 1, 105, 192, 945, 4, 10395, 46080, 1, 3, 2027025, 2560, 34459425, 
192, 5, 3715891200, 13749310575, 2, 81081. 

 

                                                 
66 For the proof of this property, see Kashihara, K., Comments and topics on Smarandache notions and 
problems, Erhus University Press, 1996, Chapter 1: Some comments and problems on Smarandache notions, p. 
10. 
67 The function that generates the numbers from this sequence is sometimes named the Smarandache cubic 
complementary function. For the properties of this function see Popescu, Marcela and Nicolescu, Mariana, 
About the Smarandache complementary cubic function, Smarandache Notions Journal, vol. 7, no. 1-2-3, 1996. 
For a generalization of Smarandache complementary functions see infra, Part Two, Chapter 1, Section (17): 
The Smarandache complementary functions. 
68 For a study of this sequence, see Atanassov, Krassimir T., On some of the Smarandache’s problems, 
American Research Press, 1999, p. 16-21. 
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(14)  The prime additive complements sequence69 
 
Definition: 

The sequence of the numbers k with the property that k is the smallest integer so that n + 
k is a prime.70 

The first thirty terms of the sequence (A007920 in OEIS):  
2, 1, 0, 0, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0. 

Notes71: 
1. F.S. asked the following questions: Is it possible to have k as large as we want k, 

k – 1, k – 2, k – 3, ... , 2, 1 (where k is odd), included in this sequence? Is it 
possible to have k as large as we want k, k – 1, k – 2, k – 3, ... , 2, 1 (where k is 
even), included in this sequence?72 Is the sequence convergent or divergent? 

2. F.S. conjectured that the sequence is divergent. 
3. F.S. also defined (and raised the same questions from above) the prime nearest 

complements sequence, i.e. the sequence formed from the numbers k with the 
property that, for n ≥ 1, the absolute value of k is minimal and n + k is prime. The 
terms of this sequence are: {1, 0, 0, ±1, 0, ±1, 0, –1, ±2, 1, 0, ±1, 0, –1, ±2, …}.  

 
(15)  The  double factorial sequence 
 
Definition: 

The sequence of the numbers k with the property that k is the smallest integer so that k!! 
is a multiple of n. 

The first forty terms of the sequence (A007922 in OEIS):  
1, 2, 3, 4, 5, 6, 7, 4, 9, 10, 11, 6, 13, 14, 5, 6, 17, 12, 19, 10, 7, 22, 23, 6, 15, 26, 9, 14, 29, 
10, 31, 8, 11, 34, 7, 12, 37, 38, 13, 10. 

 
(16)  The “primitive numbers of power 2” sequence73 
 
Definition: 

The sequence of the numbers  S2(n) with the property that S2(n) is the smallest integer for 
which 2^n divides S2(n)!. 

The first forty terms of the sequence (A007843 in OEIS):  

                                                 
69 The function that generates the numbers from this sequence is sometimes named the Smarandache prime 
complementary function. For the properties of this function see Popescu, Marcela and Seleacu, Vasile, About 
the Smarandache complementary prime function, Smarandache Notions Journal, vol. 7, no. 1-2-3, 1996. For a 
generalization of Smarandache complementary functions see infra, Part Two, Chapter 1, Section (17): The 
Smarandache complementary functions. 
70 For a deeper study of this sequence, see Vassilev-Missana, Mladen and Atanassov, Krassimir, Some 
Smarandache problems, Hexis, 2004, Chapter 1: On some Smarandache’s problems, Section 8: On the 46-th 
Smarandache’s problem. 
71 Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, 
Chapter 1: Some comments and problems on Smarandache notions, p. 14. 
72 Maohua Le proved that, for k an arbitrary large positive integer, the Smarandache prime additive 
complements sequence include the decreasing sequence k, k – 1, …, 1, 0. See On the Smarandache prime 
additive sequence, in Seleacu, V., Bălăcenoiu, I. (editors), Smarandache Notions (Book series), vol. 10, 
American Research Press, 1999. 
73 See Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 3, F.S., 
Sequences of numbers involved in unsolved problems, Hexis, 2006, Problem 47. See also F.S., Sequences of 
numbers involved in unsolved problems, Hexis, 2006, Sequence 68. 
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1, 2, 4, 4, 6, 8, 8, 8, 10, 12, 12, 14, 16, 16, 16, 16, 18, 20, 20, 22, 24, 24, 24, 26, 28, 28, 
30, 32, 32, 32, 32, 32, 34, 36, 36, 38, 40, 40, 40, 42. 

Properties:  
1.  This is the sequence of even numbers, each number being repetead as many times as 

its exponent (of power 2) is. 
2. This is one of irreductible functions, noted S2(k), which helps to calculate the 

Smarandache function. 
 
(17)  The “primitive numbers of power 3” sequence74 
 
Definition: 

The sequence of the numbers  S3(n) with the property that S3(n) is the smallest integer for 
which 3^n divides S3(n)!. 

The first forty terms of the sequence (A007844 in OEIS):  
1, 3, 6, 9, 9, 12, 15, 18, 18, 21, 24, 27, 27, 27, 30, 33, 36, 36, 39, 42, 45, 45, 48, 51, 54, 
54, 54, 57, 60, 63, 63, 66, 69, 72, 72, 75, 78, 81, 81, 81, 81. 

Properties:  
1.  This is the sequence of multiples of 3, each number being repetead as many times as 

its exponent (of power 3) is. 
2. This is one of irreductible functions, noted S3(k), which helps to calculate the 

Smarandache function. 
 
(18)  The generalized primitive numbers (of power p) sequence75 
 
Definition: 

The sequence of the numbers  Sp(n) with the property that Sp(n) is the smallest integer for 
which p^n divides Sp(n)!, where p is prime. 

Properties:  
1.  This is the sequence of multiples of p, each number being repetead as many times as 

its exponent (of power p) is. 
2. These are irreductible functions, noted Sp(k), for any prime number p, which helps to 

calculate the Smarandache function. 
 
(19)  The cube free sieve sequence 
 
Definition: 

From the set of positive integers except 0 and 1 take off all multiples of 2^3, 3^3, 5^3 and 
so on: take off all multiples of all cubic primes.76 

The first forty terms of the sequence (A004709 in OEIS):  
2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 
33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47. 

Properties:  
All the terms of the sequence are cubefree. 

                                                 
74 See F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 69. 
75 See F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 70. For a study of 
this sequence, see Ibstedt, Henry, Computer analysis of number sequences, American Research Press, 1998, 
Chapter III: Non-recursive sequences, Section 1: Smarandache primitive numbers. 
76 For a deeper study of this sequence and of the following one, see Vassilev-Missana, Mladen and Atanassov, 
Krassimir, Some Smarandache problems, Hexis, 2004, Chapter 1: On some Smarandache’s problems, Section 
6: On the 25-th and the 26-th Smarandache’s problems. 
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(20)  The m-power free sieve 
 
Definition: 

From the set of positive integers except 0 and 1 take off all multiples of 2^m, 3^m, 5^m 
and so on: take off all multiples of all m-power primes (m ≥ 2). 

Properties:  
All the terms of the sequence are m-power free. 

 
(21)  The inferior prime part sequence77 
 
Definition: 

The sequence PP(n) defined as the sequence of numbers with the property that they are 
the largest primes smaller than or equal to n. 

The first forty terms of the sequence (A007917 in OEIS):  
2, 3, 3, 5, 5, 7, 7, 7, 7, 11, 11, 13, 13, 13, 13, 17, 17, 19, 19, 19, 19, 23, 23, 23, 23, 23, 23, 
29, 29, 31, 31, 31, 31, 31, 31, 37, 37, 37, 37, 41. 

 
(22)  The superior prime part sequence78  
 
Definition: 

The sequence PP(n) defined as the sequence of numbers with the property that they are 
the smallest primes greater than or equal to n.79 

The first forty terms of the sequence (A007918 in OEIS):   
2, 2, 2, 3, 5, 5, 7, 7, 11, 11, 11, 11, 13, 13, 17, 17, 17, 17, 19, 19, 23, 23, 23, 23, 29, 29, 
29, 29, 29, 29, 31, 31, 37, 37, 37, 37, 37, 37, 41, 41. 

 
(23)  The inferior square part sequence80 
 
Definition: 

The sequence of numbers with the property that they are the largest squares smaller than 
or equal to n. 

The first forty terms of the sequence (A048761 in OEIS):  
0, 1, 1, 1, 4, 4, 4, 4, 4, 9, 9, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16, 16, 16, 25, 25, 25, 25, 
25, 25, 25, 25, 25, 25, 25, 36, 36, 36, 36. 

 
(24)  The superior square part sequence81 
 
Definition: 

The sequence of numbers with the property that they are the smallest squares greater than 
or equal to n.82 

                                                 
77 See F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 38. 
78 See F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 39. 
79 For a study of  Superior and Inferior prime part sequences, see Atanassov, Krassimir T., On some of the 
Smarandache’s problems, American Research Press, 1999, p. 22-26. 
80 See F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 40. 
81 See F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 41. The Sequences 
42-43 from the same book define the inferior and the superior cube part. 
82 For a study of  Superior and Inferior square part sequences, see Atanassov, Krassimir T., On some of the 
Smarandache’s problems, American Research Press, 1999, p. 27-32. 
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The first forty terms of the sequence (A048761 in OEIS):  
0, 1, 4, 4, 4, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16, 25, 25, 25, 25, 25, 25, 25, 25, 25, 36, 
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 49, 49, 49. 

 
(25)  The inferior factorial part sequence83 
 
Definition: 

The sequence FP(n) defined as the sequence of numbers with the property that they are 
the largest factorials smaller than or equal to n. 

The first thirty terms of the sequence (A048674 in OEIS):  
1, 2, 2, 2, 2, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 24, 24, 24, 24, 24, 24, 24. 

 
(26)  The superior factorial part sequence84 
 
Definition: 

The sequence fP(n) defined as the sequence of numbers with the property that they are the 
smallest factorials greater than or equal to n.85 

The first forty terms of the sequence (A048675 in OEIS): 
1, 2, 6, 6, 6, 6, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 120, 
120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120. 

 
(27)  The irrational root sieve sequence 
 
Definition: 

From the set of positive integers greater than 1 take off all multiples of all square primes. 
The first forty terms of the sequence:  

2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 
41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66. 

Properties:  
The terms of the sequence are all natural numbers those m-roots, for any m ≥ 2, are 
irrational. 

 
(28)  The odd sieve sequence  
 
Definition: 

The sequence obtained in the following way: subtract 2 from all primes and obtain a 
temporary sequence; choose all odd numbers that do not belong to the temporary 
sequence.86 

The first forty terms of the sequence (A007921 in OEIS):  
7, 13, 19, 23, 25, 31, 33, 37, 43, 47, 49, 53, 55, 61, 63, 67, 73, 75, 79, 83, 85, 89, 91, 93, 
97, 103, 109, 113, 115, 117, 119, 121, 123, 127, 131, 133, 139, 141, 143, 145. 

 
(29)  The binary sieve sequence87 

                                                 
83 See F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 44. 
84 See F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 45. 
85 For a study of  Superior and Inferior prime part sequences, see Atanassov, Krassimir T., On some of the 
Smarandache’s problems, American Research Press, 1999, p. 33-37. 
86 For explicit formulae for the n-th term of this sequence and theorems, see Vassilev-Missana, Mladen and 
Atanassov, Krassimir, Some Smarandache problems, Hexis, 2004, Chapter 1: On some Smarandache’s 
problems, Section 7: On the 28-th Smarandache’s problem. 
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Definition: 

The sequence obtained in the following way: start to count on the natural numbers set 
and, at any step from 1, delete every 2-nd numbers, delete, from the remaining ones, 
every 4-th numbers and so on, delete, from the remaining ones, every (2^k)-th numbers, 
where k = 1, 2, ... 

The first forty terms of the sequence (A007950 in OEIS):  
1, 3, 5, 9, 11, 13, 17, 21, 25, 27, 29, 33, 35, 37, 43, 49, 51, 53, 57, 59, 65, 67, 69, 73, 75, 
77, 81, 85, 89, 91, 97, 101, 107, 109, 113, 115, 117, 121, 123, 129, 131. 

 
(30)  The consecutive sieve sequence88 
 
Definition: 

The sequence obtained in the following way: from the natural numbers set: keep the first 
number and delete one number out of 2 from all remaining numbers; keep the first 
remaining number and delete one number out of 3 from the next remaining numbers; 
keep the first remaining number and delete one number out of 4 from the next remaining 
numbers and so on, for step k (k ≥ 2), keep the first remaining number and delete one 
number out of k from the next remaining numbers.  

The first thirty terms of the sequence (A007952 in OEIS):  
0, 1, 3, 5, 9, 11, 17, 21, 29, 33, 41, 47, 57, 59, 77, 81, 101, 107, 117, 131, 149, 153, 173, 
191, 209, 213, 239, 257, 273, 281. 

Property:  
This sequence is much less dense than the prime number sequence, and their ratio tends 
to pn/n as n tends to infinity. 

 
(31)  The Smarandache-Fibonacci triplets sequence89 
 
Definition: 

The sequence obtained in the following way: the integer n is such one that S(n) = S(n – 1) 
+ S(n – 2), where S(k) is the Smarandache function.  

The first fifteen terms of the sequence (A015047 in OEIS):  
11, 121, 4902, 26245, 32112, 64010, 368140, 415664, 2091206, 2519648, 4573053, 
7783364, 79269727, 136193976, 321022289.  

Notes:  
1. The Smarandache function S(n) is defined as the smallest integer S(n) such that 

S(n)! is divisible by n. 90 
 2. The Fibonacci recurence formula is Fn = Fn-1 + Fn-2, for n ≥ 2 and F0 = F1 = 1.  

3. The numbers that form the numbers from this sequence are known as 
Smarandache-Fibonacci triplets. 

                                                                                                                                                             
87 Similarly is defined the Smarandache n-ary sieve sequence. For instance, if Sn denote the Smarandache n-
ary sieve sequence, S2 is the binary sieve sequence and S3 is the sequence  {1, 2, 4, 5, 7, 8, 10, 11, 14, 16, 17, 
19, 20…}. 
88 For other related sieve sequences, like Trinary sieve sequence, n-ary power sieve sequence, k-ary 
consecutive sieve sequence, General-sequence sieve, see F.S., Sequences of numbers involved in unsolved 
problems, Hexis, 2006, p. 19-21. 
89 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Problem 10. See also Ibstedt, H., Surphing on the ocean of numbers – a few 
Smarandache notions and similar topics, Erhus University Press, Vail, 1997, Chapter II: On Smarandache 
functions. 
90 See infra, Part Two, Chapter I, Section (1): The Smarandache function.  
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Properties:  
1. It is not known whether this sequence has infinitely or finitely many terms. 91 
2. The largest known number from this sequence is 19448047080036.92 

Observation: 
Apart from the case n = 26245, all the (known) terms of this sequence have a common 
property: from the three numbers which form a Smarandache-Fibonacci triplet, one is 
two times a prime number while the other two are prime numbers. Henry Ibstedt raised 
the following question: is the case n = 26245 the only  different case?93 

 
(32)  The Smarandache-Radu duplets sequence94 
 
Definition: 

The sequence obtained in the following way: the integer n is such one that between S(n) 
and S(n + 1) there is no prime, where S(n) and S(n +1) are included, where S(k) is the 
Smarandache function.  

The first fifteen terms of the sequence (A015048 in OEIS):  
224, 2057, 265225, 843637, 6530355, 24652435, 35558770, 40201975, 45388758, 
46297822, 67697937, 138852445, 157906534, 171531580, 299441785. 

Notes:  
1. The Smarandache function S(n) is defined as the smallest integer S(n) such that 

S(n)! is divisible by n. 95 
2. The numbers from this sequence are known as Smarandache-Radu duplets. 

Properties:  
1. It is not known whether this sequence has infinitely or finitely many terms.96 
2. The largest known number from this sequence is 

270329975921205253634707051822848570391313.97 
 
(33)  The Smarandache prime product sequence98 
 
Definition: 

The sequence of primes of the form pn# ± 1, where pn# is the product of the first n 
primes.  

The first seven terms of the sequence (A034386 in OEIS)99:  

                                                 
91 Henry Ibstedt and Charles Ashbacher independently conjectured that are infinitely many terms. 
92 Found by H. Ibstedt. See Begay, Anthony, Smarandache ceil functions, Smarandache Notions Journal. 
93 See Ibstedt, H., Surphing on the ocean of numbers – a few Smarandache notions and similar topics, Erhus 
University Press, Vail, 1997, Chapter II: On Smarandache functions. 
94 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Problem 11.  
95 See infra, Part Two, Chapter I, Section (1): The Smarandache function.  
96 I.M. Radu and Henry Ibstedt conjectured that are infinitely many terms. See Ibstedt, H., Surphing on the 
ocean of numbers – a few Smarandache notions and similar topics, Erhus University Press, Vail, 1997, 
Chapter II: On Smarandache functions, Section 2: Radu’s problem. In other words, Radu’s problem can be 
formulated this way: “show that, except for a finite set of numbers, there exists at least one prime number 
between S(n) and S(n + 1)”. See Radu I.M., Proposed problem, Ibstedt, H., Base solution (the Smarandache 
function), Ibstedt, H., On Radu’s problem, all three articles in Smarandache Notions Journal, vol. 7, no. 1-2-3, 
1996. 
97 Found by H. Ibstedt. See Begay, Anthony, Smarandache ceil functions, Smarandache Notions Journal. 
98 For a study of this sequence, see Ibstedt, Henry, Computer analysis of number sequences, American 
Research Press, 1998, Chapter II: Recursive integer sequences. 
99 The eighth term of the sequence has 154 digits. 
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2, 3, 7, 31, 211, 2311, 200560490131.  
Notes:  

1. It is not known if the number of the terms of this sequence is infinite. 
2. The primes of this type are known under the acronym PPS primes100 but they are 

also known under the name primorial primes101. The programs PrimeGrid, Open 
PFGW and others are searching for PPS primes: the biggest prime known of the 
form pn# – 1 is the number 1098133# – 1 (a number with more than 450 thousand 
digits) and the biggest prime known of the form pn# + 1 is the number 392113# + 
1 (a number with more than 150 thousand digits). 

 
(34)  The Smarandache friendly pairs set 
 
Definition: 

The set of pairs of natural numbers [m, n], where m < n, with the property that the 
product m*n is equal to the sum of all natural numbers from m to n (m and n are 
included).  

Example:  
[3, 6] is such a pair because 3*6 = 3 + 4 + 5 + 6.  

First four Smarandache friendly pairs:  
[1, 1], [3, 6], [15, 35], [85, 204]. 

Notes:   
1. There is an infinity of Smarandache friendly pairs (they are known under the 

acronym SFP).  
2. If [m, n] is a Smarandache friendly pair, then [2*n + m, 5*n + 2*m – 1] it will be 

too such a pair. 
Question102:   

Is there an infinity of primes q for every prime p such that [p, q] is a Smarandache 
friendly pair? 

Definitions103:   
1. If the sum of any set of consecutive terms of a sequence is a divisor of the product 

of the first and the last number of the set then this pair is called a Smarandache 
under-friendly pair with respect to the sequence. 

2. If the sum of any set of consecutive terms of a sequence is a multiple of the 
product of the first and the last number of the set then this pair is called a 
Smarandache over-friendly pair with respect to the sequence. 

 
(35)  The Smarandache friendly prime pairs set 
 
Definition: 

The set of pairs of primes [p, q], where p < q, with the property that the product p*q is 
equal to the sum of all primes from p to q (p and q are included).  

                                                 
100 Majumdar, A.A.K., Wandering in the world of Smarandache numbers, InProQuest, 2010, Chapter 1(1.4): 
Smarandache prime product sequence. 
101 Claims on primorial primes, Turker Ozsari, Arxiv. 
102 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, Chapter 2: Smarandache sequences, Section 5: Smarandache friendly 
numbers and a few more sequences. 
103 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, Chapter 2: Smarandache sequences, Section 5: Smarandache friendly 
numbers and a few more sequences. 
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Example:  
[7, 53] is such a pair because 7*53 = 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 43 + 
47 + 53. 

The five known Smarandache friendly prime pairs (sequence A176914 in OEIS):  
[2, 5], [3, 13], [5, 31], [7, 53], [3536123, 128541727]. 

Notes:   
1. There are only five known Smarandache friendly prime pairs (they are known 

under the acronym SFPP), discovered by mathematicians Philip Gibbs and Felice 
Russo.  

2. It is not known if there is an infinity of Smarandache friendly prime pairs. 
3. It is not known if for every prime p there is a prime q such that [p, q] is a 

Smarandache friendly prime pair.104  
 
(36)  The 3n-digital subsequence 
 
Definition105: 

The sequence of numbers that can be partitioned into two groups such that the second is 
three times biger than the first. 

The first fifteen terms of the sequence (A019551 in OEIS):  
13, 26, 39, 412, 515, 618, 721, 824, 927, 1030, 1133, 1236, 1339, 1442, 1545. 

 
(37)  The 4n-digital subsequence 
 
Definition106: 

The sequence of numbers that can be partitioned into two groups such that the second is 
four times biger than the first. 

The first fifteen terms of the sequence (A019552 in OEIS):  
14, 28, 312, 416, 520, 624, 728, 832, 936, 1040, 1144, 1248, 1352, 1456, 1560. 

 
(38)  The 5n-digital subsequence 
 
Definition107: 

The sequence of numbers that can be partitioned into two groups such that the second is 
five times biger than the first. 

The first fifteen terms of the sequence (A019553 in OEIS):  
15, 210, 315, 420, 525, 630, 735, 840, 945, 1050, 1155, 1260, 1365, 1470, 1575. 

 
(39)  The crescendo and decrescendo subsequences 
 
The crescendo sequence: 

The type of sequence of sequences constructed in the following way:  
1,   
1, 2,   
1, 2, 3, … (sequence A002260 in OEIS). 

                                                 
104 For more questions about these pairs of primes see Russo, Felice, On a problem concerning the 
Smarandache friendly prime pairs, Smarandache Notions Journal; see also Gibbs, Philip, A fifth Smarandache 
friendly prime pair, Vixra. 
105 F.S., Considerations on new functions in number theory, Arxiv. 
106 F.S., Considerations on new functions in number theory, Arxiv. 
107 F.S., Considerations on new functions in number theory, Arxiv. 
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The descrescendo sequence: 
The type of sequence of sequences constructed in the following way:  
1,   
2, 1,   
3, 2, 1, … (sequence A004736 in OEIS). 

 
(40)  The crescendo and decrescendo pyramidal subsequences 
 
The crescendo pyramidal sequence: 

The type of sequence of sequences constructed in the following way:  
1,   
1, 2, 1, 
1, 2, 3, 2, 1, … (sequence A004737 in OEIS). 

The descrescendo pyramidal sequence: 
The type of sequence of sequences constructed in the following way:  
1,   
2, 1, 2,  
3, 2, 1, 2, 3… (sequence A004738 in OEIS). 

 
(41)  The crescendo and decrescendo symmetric subsequences 
 
The crescendo symmetric sequence: 

The type of sequence of sequences constructed in the following way:  
1, 1,  
1, 2, 2, 1, 
1, 2, 3, 3, 2, 1, … (sequence A004739 in OEIS). 

The descrescendo symmetric sequence: 
The type of sequence of sequences constructed in the following way:  
1, 1,  
2, 1, 1, 2,   
3, 2, 1, 1, 2, 3… (sequence A004737 in OEIS). 

 
(42)  The permutation subsequences 
 
Definition: 

The type of sequence of sequences constructed in the following way:  
1, 2,  
1, 3, 4, 2,   
1, 3, 5, 6, 4, 2… (sequence A004741 in OEIS).108 

 
(43)  The Smarandache bases of numeration sequences109 
 
The Smarandache prime base sequence110: 

                                                 
108 For formulas for the general term of these sequences of subsequences (40-43) see F.S., Considerations on 
new functions in number theory, Arxiv. 
109 For the properties of the natural numbers written in the following Smarandache bases of numeration see 
F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Definitions 11, 12, 14, 30, 31, 32.  
110 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 58. F.S., Only problems, 
not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 90. Studying this sequence, F.S. shows 
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On the set of natural numbers is defined the following infinite base: p0 = 1 and pk is the k-
th prime number for k ≥ 1.  
The first twelve terms of the sequence (A007924 in OEIS): 
0, 1, 10, 100, 101, 1000, 1001, 10000, 10001, 10010, 10100, 100000, 100001. 

The Smarandache square base sequence111: 
On the set of natural numbers is defined the following infinite base: sk = k^2 for k ≥ 0.  
The first twelve terms of the sequence: 
0, 1, 2, 3, 10, 11, 12, 13, 20, 100, 101, 102, 103, 110. 

The Smarandache cubic base sequence (A007094 in OEIS): 
On the set of natural numbers is defined the following infinite base: sk = k^3 for k ≥ 0.  
The first twelve terms of the sequence: 
0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13. 

The Smarandache factorial base sequence112: 
On the set of natural numbers is defined the following infinite base: : fk = k! for k ≥ 1.  
The first twelve terms of the sequence (A007623 in OEIS): 
0, 1, 10, 11, 20, 21, 100, 101, 110, 111, 120, 121. 

The Smarandache double factorial base sequence113: 
On the set of natural numbers is defined the following infinite base: : dfk = k!! 
The first twelve terms of the sequence (A019513 in OEIS): 
1, 10, 100, 101, 110, 200, 201, 1000, 1001, 1010, 1100, 1101. 

The Smarandache triangular base sequence114: 
On the set of natural numbers is defined the following infinite base: : tk = k*(k + 1)/2 for 
k ≥ 1.  
The first twelve terms of the sequence (A000462 in OEIS): 
1, 2, 10, 11, 12, 100, 101, 102, 110, 1000, 1001, 1002. 

 
(44)  The multiplicative sequence115 
 
Definition:  

The sequence obtained in the following way: if m1 and m2 are the first two terms of the 
sequence, then mk, for k ≥ 3, is the smallest number equal to the product of two previous 
distinct terms. 

Comment:  
All terms of rank greater than or equal to 3 are divisible by m1 and m2. 

The first twenty terms of the sequence for the particular case m1 = 2, m2 = 3:  
2, 3, 6, 12, 18, 24, 36, 48, 54, 72, 96, 108, 144, 162, 192, 216, 288, 324, 384, 432. 

Theorem116:  

                                                                                                                                                             
that any number can be written as a sum of prime numbers or as a sum of prime numbers plus 1. See also 
Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, p. 
33. 
111 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 59. The Sequence 60 
from the same book defines in an analogous way the m-power base sequence. 
112 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 61. 
113 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 62. 
114 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 63. The sequence 64 
from the same book defines the generalizerd base sequence. 
115 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Definition 26.  
116 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, Chapter 2: Smarandache sequences, Section 10: The sum of the 
reciprocals of the Smarandache multiplicative sequence. 
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The limit of the sum of the reciprocals of the terms of the multiplicative sequence exists 
for all initial terms m1 and m2. The sum of the reciprocals of the multiplicative sequence 
with initial terms m1 and m2 is S = 1/((m1 – 1)*(m2 – 1)) + 1/m1 + 1/m2. 

 
(45)  The non-multiplicative general sequence117 
 
Definition:  

The sequence obtained in the following way: let m1, m2 …, mk be the first k terms of the 
sequence, where k ≥ 2. Then mi, for i ≥ k + 1,  is the smallest number not equal to the 
product of k previous distinct terms. 
 

(46)  The non-arithmetic progression sequence118 
 
Definition:  

The sequence defined in the following way: if m1 and m2 are the first two terms of the 
sequence, then mk, for k ≥ 3, is the smallest number such that no 3-term arithmetic 
progression is in the sequence. Generalization: the same initial conditions, but with no i-
term arithmetic progression in the sequence, for a given i ≥ 3. 

 
(47)  The non-geometric progression sequence119 
 
Definition:  

The sequence defined in the following way: if m1 and m2 are the first two terms of the 
sequence, then mk, for k ≥ 3, is the smallest number such that no 3-term geometric 
progression is in the sequence. Generalization: the same initial conditions, but with no i-
term geometric progression in the sequence, for a given i ≥ 3. 

 
(48)  The “wrong numbers” sequence120 
 
Definition:  

The sequence of “wrong numbers” which are defined in the following way: the number n 
= a1a2…ak, consisted of at least two digits, with the property that the sequence a1, a2, …, 
ak, bk+1, bk+2, …(where bk+i is the product of the previous k terms, for any i ≥ 1), contains 
n as its term. 

Comment:  
F.S. conjectured that no number is wrong; therefore, this sequence is empty. 

 
(49)  The “impotent numbers” sequence121 

                                                 
117 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Definition 34.  
118 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Definition 35. F.S., Sequences of numbers involved in unsolved problems, 
Hexis, 2006, Sequence 232. For a study of this sequence, see Ibstedt, Henry, Computer analysis of number 
sequences, American Research Press, 1998, Chapter II: Recursive integer sequences. 
119 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Definition 43. F.S., Sequences of numbers involved in unsolved problems, 
Hexis, 2006, Sequence 217. 
120 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Definition 27.  
121 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Definition 28.  
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Definition:  

The sequence of “impotent numbers” which are defined in the following way: a number n 
those proper divisors product is less than n. 

Comment:  
The terms of this sequence are the primes and the squares of primes. 

The first twenty terms of the sequence (A000430 in OEIS): 
2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59. 

 
(50)  The “simple numbers” sequence122 
  
Definition:  

The sequence of “simple numbers” which are defined in the following way: a number n 
those proper divisors product is less than or equal to n.123 

Theorem124:  
The terms of this sequence can be only primes, squares of primes, cubes of primes or 
semiprimes. 

The first twenty terms of the sequence (A007964 in OEIS): 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25. 

 
(51)  The square product sequence125 
  
Definition:  

The sequence defined in the following way: Sn = 1 + s1*s2*…*sn, where sk is the k-th 
square number. 

The first nine terms of the sequence: 
2, 5, 27, 577, 14401, 518401, 25401601, 1625702401, 131681894401. 

Comment:  
F.S. raised the question: how many terms of this sequence are primes?  

Note:   
The sequence defined above (i.e. 1^2*2^2*3^2*…*n^2 + 1, where n ≥ 1) is sometimes 
called the Smarandache square product sequence of the first kind and named with the 
acronym SPS1(n) while the sequence defined as 1^2*2^2*3^2*…*n^2 – 1, where n ≥ 1, 
is called the Smarandache square product sequence of the second kind and named with 
the acronym SPS2(n).126 

 
(52)  The cubic product sequence127 
  
Definition:  

                                                 
122 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 23. 
123 For three different explicit representations for the n-th term of the sequence, see Vassilev-Missana, Mladen 
and Atanassov, Krassimir, Some Smarandache problems, Hexis, 2004, Chapter 1: On some Smarandache’s 
problems, Section 3: On the 15-th Smarandache’s problem. 
124 Ashbacher, C., Collection of problems on Smarandache notions, Erhus University Press, 1996, p. 20. 
125 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Problem 22. For a study of this sequence, see Ibstedt, Henry, Computer 
analysis of number sequences, American Research Press, 1998, Chapter II: Recursive integer sequences. 
126 See Majumdar, A.A.K., Wandering in the world of Smarandache numbers, InProQuest, 2010, Chapter 1: 
Some Smarandache sequences, Section 1.5: Smarandache square product sequence. 
127 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Definition 36 and Problem 23. 
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The sequence defined in the following way: Cn = 1 + c1*c2*…*cn, where ck is the k-th 
cubic number. 

The first nine terms of the sequence (A019514 in OEIS): 
2, 3, 13, 289, 34561, 24883201, 125411328001, 5056584744960001, 
1834933472251084800001. 

Comment:  
F.S. raised the question: how many terms of this sequence are primes?128   

Note:   
The square product and the cubic product sequences defined above were generalized 
resulting Smarandache higher power product sequence of the first kind respectively 
Smarandache higher power product sequence of the second kind named with the 
acronyms HPPS1(n) the one defined as 1^m*2^m*…*n^m + 1, where n ≥ 1, m > 3, 
respectively HPPS2(n) the one defined as 1^m*2^m*…*n^m – 1, where n ≥ 1, m > 3.129 

 
(53)  The factorial product sequence130 
  
Definition:  

The sequence defined in the following way: Fn = 1 + f1*f2*…*fn, where fk is the k-th 
factorial number. 

The first nine terms of the sequence (A019515 in OEIS): 
2, 9, 217, 13825, 1728001, 373248001, 128024064001, 65548320768001, 
47784725839872001. 

Comment:  
F.S. raised the question: how many terms of this sequence are primes?  

 
(54)  The Smarandache recurrence type sequences131 
 
1. The general term of the sequence is: 

The smallest number, strictly greater than the previous one, which is the sum of squares 
of two previous distinct terms of the sequence, for given first two terms. 
The first sixteen terms of the sequence for first two terms 1 and 2 (A008318 in OEIS): 
1, 2, 5, 26, 29, 677, 680, 701, 842, 845, 866, 1517, 458330, 458333, 458354, 459005. 

2. The general term of the sequence is: 
The smallest number which is the sum of squares of previous distinct terms of the 
sequence. 
The first sixteen terms of the sequence (A008319 in OEIS): 
1, 1, 2, 4, 5, 6, 16, 17, 18, 20, 21, 22, 25, 26, 27, 29. 

3. The general term of the sequence is: 
The smallest number, strictly greater than the previous one, which is not the sum of 
squares of two previous distinct terms of the sequence, for given first two terms. 

                                                 
128 For a study of primality of the terms of the Smarandache cubic product sequence and generally of the 
Smarandache power product sequences see Le, Maohua and Wu, Kejian, The primes in Smarandache power 
product sequences, Smarandache Notions Journal, vol. 9, no. 1-2-3, 1998. 
129 See Majumdar, A.A.K., Wandering in the world of Smarandache numbers, InProQuest, 2010, Chapter 1: 
Some Smarandache sequences, Section 1.6: Smarandache higher power product sequences. 
130 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Definition 37 and problem 24. 
131 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Definition 42.  F.S., Sequences of numbers involved in unsolved problems, 
Hexis, 2006, Sequences 194-202. See also Bencze, Mihály, Smarandache recurrence type sequences, 
Smarandache Notions Journal, vol. 11, no. 1-2-3, 2000. 
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The first sixteen terms of the sequence for first two terms 1 and 2 (A004439 in OEIS): 
1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, 16, 18, 19, 21. 

4. The general term of the sequence is: 
The smallest number which is not the sum of squares of previous distinct terms of the 
sequence. 
The first sixteen terms of the sequence (A008321 in OEIS): 
1, 2, 3, 6, 7, 8, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22. 

5. The general term of the sequence is: 
The smallest number, strictly greater than the previous one, which is the sum of cubes of 
two previous distinct terms of the sequence, for given first two terms. 
The first ten terms of the sequence for first two terms 1 and 2 (A008322 in OEIS): 
1, 2, 9, 730, 737, 389017001, 389017008, 389017729, 400315554, 400315561. 

6. The general term of the sequence is: 
The smallest number which is the sum of cubes of previous distinct terms of the 
sequence. 
The first sixteen terms of the sequence (A019511 in OEIS): 
1, 1, 2, 8, 9, 10, 512, 513, 514, 520. 

7. The general term of the sequence is: 
The smallest number, strictly greater than the previous one, which is not the sum of cubes 
of two previous distinct terms of the sequence, for given first two terms. 
The first sixteen terms of the sequence for first two terms 1 and 2 (A031980 in OEIS): 
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17. 

8. The general term of the sequence is: 
The smallest number which is not the sum of cubes of previous distinct terms of the 
sequence. 
The first sixteen terms of the sequence (A019511 in OEIS): 
1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18. 

 
(55)  The Smarandache partition type sequences132 
 
1. The general term of the sequence, a(n), is: 

The number of times in which n can be written as a sum of non-null squares, disregarding 
terms order.  
Example: a(9) = 4 because 9 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 = 
1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2  = 1^2 + 2^2 + 2^2 = 3^2. 
The first thirty terms of the sequence (A001156 in OEIS): 
1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 6, 6, 6, 8, 9, 10, 10, 12, 13, 14, 14, 16, 19, 20, 21, 23, 26. 

2. The general term of the sequence, a(n), is: 
The number of times in which n can be written as a sum of non-null cubes, disregarding 
terms order. 
The first thirty terms of the sequence (A003108 in OEIS): 
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5. 

 
(56)  The square residues sequence133 
  

                                                 
132 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Problem 15. F.S., Sequences of numbers involved in unsolved problems, 
Hexis, 2006, Sequences 203-215. 
133 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 63. See also 
See F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 75. 



 44

Definition:  
The general term of the sequence, a(n), is the largest square free number which divides n. 

The first twenty-five terms of the sequence (A007947 in OEIS): 
1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 6, 5. 

 
(57)  The cubic residues sequence134 
  
Definition:  

The general term of the sequence, a(n), is the largest cube free number which divides n. 
The first twenty-five terms of the sequence (A007948 in OEIS): 

1, 2, 3, 4, 5, 6, 7, 4, 9, 10, 11, 12, 13, 14, 15, 4, 17, 18, 19, 20, 21, 22, 23, 12, 25. 
 
(58)  The exponents of power 2 sequence135 
  
Definition:  

The general term of the sequence, e2(n), is the largest exponent of power 2 which divides 
n. 

The first thirty terms of the sequence (A007814 in OEIS): 
0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1. 

 
(59)  The exponents of power 3 sequence136 
  
Definition:  

The general term of the sequence, e3(n), is the largest exponent of power 3 which divides 
n. 

The first thirty terms of the sequence (A007949 in OEIS): 
0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 0, 1. 

 
(60)  The unary sequence137 
  
Definition:  

The general term of the sequence, u(n), is equal to 11…1, where the digit 1 is repetead pn 
times, pn being the n-th prime. 

The first seven terms of the sequence (A031974 in OEIS): 
11, 111, 11111, 1111111, 11111111111, 1111111111111, 11111111111111111. 

Note:  
F.S. raised the question: is there an infinite number of primes belonging to this 
sequence?138 

                                                 
134 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 64. See also 
F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 76; the Sequence 77 from 
this book defines in an analogous way the m-power residues sequences. For a study of this sequence, see 
Ibstedt, Henry, Computer analysis of number sequences, American Research Press, 1998, Chapter III: Non-
recursive sequences, Section 3: Smarandache m-power residues. 
135 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 66. See also 
F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 78. 
136 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 67. See also 
F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 79; the Sequence 80 from 
this book defines in an analogous way the exponents of power p sequences. For a study of these sequences, see 
Atanassov, Krassimir T., On some of the Smarandache’s problems, American Research Press, 1999, p. 38-49. 
137 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Problem 44. 
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(61)  The Smarandache periodic sequences139 
  
The subtraction periodic sequences140: 

Definition:  Let c be a positive integer; start with the positive integer n and let R(n) be 
its digital reverse. Put n1 be the absolute value of the number  (R(n) – c) 
and let R(n1) be its digital reverse and so on. It is obtained eventually a 
repetition. 

Exemple:  For c = 1 and n = 52 the sequence is: 52, 24, 41, 13, 30, 02, 19, 90, 08, 79, 
96, 68, 85, 57, 74, 46, 63, 35, 52, … 

Comment:  In the example above the repetition occurs after 18 steps, and the length of 
the repeating cycle is 18. 

The multiplication periodic sequences141: 
Definition:  Let c > 1 be a positive integer; start with the positive integer n, multiply 

each digit x of n by c and replace that digit by the last digit of c*x to give 
n1 and so on. It is obtained eventually a repetition. 

Exemple:  For c = 7 and n = 68 the sequence is: 68, 26, 42, 8468, … 
Comment:  Integers with digits that are all equal to 5 are invariant under the given 

operation after one iteration. 
The mixed composition periodic sequences142: 

Definition:  Let n be a two-digit number; add the digits and, if the sum is greater than 
10, add them again; also take the absolute value of their difference: these 
are the first and second digits of n1; repeat the operation. 

Exemple:  For n = 75 the sequence is: 75, 32, 51, 64, 12, 31, 42, 62, 84, 34, 71, 86, 
52, 73, 14, 53, 82, 16, 75, … 

Comment:  There are no invariants in this case. 
The two-digit periodic sequence143: 

                                                                                                                                                             
138 For a study of primality of the terms of the Smarandache unary sequence see Le, Maohua and Wu, Kejian,  
A note on the primes in Smarandache power product sequences, Smarandache Notions Journal, vol. 9, no. 1-2-
3, 1998. 
139 F.S. defines (see Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 238) the 
general periodic sequence as follows: let S be a finite set, and f a function defined for all elements of S with 
values in S; then the general term a(n) of this sequence is defined as: a(1) = f(s), where s is an element of S; 
a(2) = f(a(1)) = f(f(s)) and so on.  F.S. noted that there will always be a periodic sequence whenever is repetead 
the composition of the function f with itsealf more times than card(S), accordingly to the box principle of 
Dirichlet. See Ibstedt, Henry, Smarandache continued fractions, in Seleacu, V., Bălăcenoiu, I. (editors), 
Smarandache Notions (Book series), vol. 10, American Research Press, 1999, for a study about the relation 
between Smarandache periodic sequences, Smarandache continued fractions and quadratic equations.  
140 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Theorem 31. For a study of this sequence, see Ibstedt, Henry, Computer 
analysis of number sequences, American Research Press, 1998, Chapter IV: Periodic sequences, Section 4: 
The Smarandache subtraction periodic sequence. 
141 For a study of this sequence, see Ibstedt, Henry, Computer analysis of number sequences, American 
Research Press, 1998, Chapter IV: Periodic sequences, Section 5: The Smarandache multiplication periodic 
sequence. 
142 For a study of this sequence, see Ibstedt, Henry, Computer analysis of number sequences, American 
Research Press, 1998, Chapter IV: Periodic sequences, Section 6: The Smarandache mixed composition 
periodic sequence. 
143 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequences 239-244 (F.S. also 
defines here the n-digit periodic sequence and studies the 3-digit, 4-digit, 5-digit and 6-digit periodic 
sequences). For a study of this sequence, see Ibstedt, Henry, Computer analysis of number sequences, 
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Definition:  Let n1 be an integer of at most two digits and R(n1) its digital reverse; its’s 
defined n2 as the absolute value of the number n1 – R(n1), n3 as the 
absolute value of the number n2 – R(n2) and so on; if the number n has one 
digit only, is considered its reverse as n*10 (for example 5, which is 05, 
reversed will be 50). 

Comment:  This sequence is periodic, except the case when the two digits are equal. 
The iteration always produces a loop of length 5, which starts on the 
second or the third term of the sequence, and the period is 9, 81, 63, 27, 45 
or a cyclic permutation thereof. 

 
(62)  The Smarandache pseudo-primes sequences144 
  
The pseudo-primes of first kind sequence: 

Definition:  A number is pseudo-prime of first kind if some permutation of its digits is 
a prime number, including the identity permutation. 

The first fifteen terms of the sequence (A007933 in OEIS): 
2, 3, 5, 7, 11, 13, 14, 16, 17, 19, 20, 23, 29, 30, 31. 

The pseudo-primes of second kind sequence:  
Definition:  A number is pseudo-prime of second kind if is composite and some 

permutation of its digits is a prime number. 
The first fifteen terms of the sequence (A007935 in OEIS): 

14, 16, 20, 30, 32, 34, 35, 38, 50, 70, 74, 76, 91, 92, 95. 
The pseudo-primes of third kind sequence:  

Definition:  A number is pseudo-prime of third kind if its reversal, when leading zeros 
are omitted, is prime.  

The first fifteen terms of the sequence (A095179 in OEIS): 
14, 16, 20, 30, 32, 34, 35, 38, 50, 70, 74, 76, 91, 92, 95. 

Note:  F.S. conjectured that there exist infinite many pseudo-primes of third kind 
which are primes. 

 
(63)  The Smarandache pseudo-squares sequences145: 
  
The pseudo-square of first kind sequence 

Definition:  A number is pseudo-square of first kind if some permutation of its digits is 
a perfect square, including the identity permutation. 

The first fifteen terms of the sequence (A007936 in OEIS): 
1, 4, 9, 10, 16, 18, 25, 36, 40, 46, 49, 52, 61, 63, 64. 

The pseudo-square of second kind sequence 
Definition:  A number is pseudo-square of second kind if is composite and some 

permutation of its digits is a perfect square. 
The first fifteen terms of the sequence (A007937 in OEIS): 

10, 18, 40, 46, 52, 61, 63, 90, 94, 106, 108, 112, 136, 148, 160. 
The pseudo-square of third kind sequence 

                                                                                                                                                             
American Research Press, 1998, Chapter IV: Periodic sequences, Section 2: The two-digit Smarandache 
periodic sequence, and Section 3: The Smarandache n-digit periodic sequence. 
144 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequences 81-83. 
145 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequences 86-88. The Sequences 
89-91 from this book define, in an analogous way, the pseudo-cubes of first, second and third kind and the 
Sequences 92-94 defines the pseudo-m-powers of the first, second and third kind. 
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Definition:  A number is pseudo-square of third kind if some nontrivial permutation of 
its digits is a perfect square. 

The first fifteen terms of the sequence (A007938 in OEIS): 
10, 18, 40, 46, 52, 61, 63, 90, 94, 100, 106, 108, 112, 121, 136. 
 

(64)  The Smarandache pseudo-factorials sequences146: 
  
The pseudo-factorials of first kind sequence 

Definition:  A number is pseudo-factorial of first kind if some permutation of its digits 
is a factorial number, including the identity permutation. 

The first fifteen terms of the sequence (A007926 in OEIS): 
1, 2, 6, 10, 20, 24, 42, 60, 100, 102, 120, 200, 201, 204, 207. 

The pseudo-factrorials of second kind sequence 
Definition:  A number is pseudo-factorial of second kind if is non-factorial and some 

permutation of its digits is a factorial number. 
The first fifteen terms of the sequence: 

10, 20, 42, 60, 100, 102, 200, 201, 204, 207, 210, 240, 270, 402, 420. 
The pseudo-factorials of third kind sequence: 

Definition:  A number is pseudo-factorial of third kind if some nontrivial permutation 
of its digits is a factorial number. 

The first fifteen terms of the sequence (A007927 in OEIS): 
10, 20, 42, 60, 100, 102, 200, 201, 204, 207, 210, 240, 270, 402, 420. 

Conjecture: 
F.S. conjectured that there are no pseudo-factorials of third kind to be also factorial 
numbers, which means that the pseudo-factorils of the second kind set and the pseudo-
factorials of the third kind set coincide. 

 
(65)  The Smarandache pseudo-divisors sequences147: 
  
The pseudo-divisors of first kind sequence 

Definition:  A number is a pseudo-divisor of first kind of n if some permutation of its 
digits is a divisor of n, including the identity permutation. 

The first fifteen terms of the sequence: 
1, 10, 100, 1, 2, 10, 20, 100, 200, 1, 3, 10, 30, 100, 300. 

The pseudo-divisors of second kind sequence 
Definition:  A number is pseudo-divisor of second kind of n if is a non-divisor of n and 

some permutation of its digits is a divisor of n. 
The first fifteen terms of the sequence: 

10, 100, 10, 20, 100, 200, 10, 30, 100, 300, 10, 20, 40, 100, 200. 
The pseudo-divisors of third kind sequence: 

Definition:  A number is a pseudo-divisor of third kind of n if some nontrivial 
permutation of its digits is a divisor of n. 

                                                 
146 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequences 95-97. 
147 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequences 98-100. The Sequences 
101-103 from the same book define the pseudo-odd numbers of the first kind (some permutation of digits is 
odd number, including the identity permutation), of the second and of the third kind; the Sequence 104 defines 
the pseudo-triangular numbers (some permutation of digits is a triangular number); the Sequences 105-107 
define the pseudo-even numbers of the first kind (some permutation of digits is even number, including the 
identity permutation), of the second and of the third kind. The Sequences 108-113 define in an analogous way 
the pseudo-multiples of first, second and third kind. 
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The first fifteen terms of the sequence: 
10, 100, 10, 20, 100, 200, 10, 30, 100, 300, 10, 20, 40, 100, 200. 

Properties: 
Any integer has an infinity of pseudo-divisors of first kind and of the third kind because 1 
divides any integer. 

 
(66)  The Smarandache almost primes sequences148: 
  
The almost primes of first kind sequence 

Definition:  Let a(1) ≥ 2 and, for n ≥ 1, a(n+1) is the smallest number that is not 
divisible by any of the previous terms of the sequence a(1), a(2), …, a(n). 

Example for a(1) = 10: 
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 27, 29, 31, 35, 37, 41, … 

Comment:  If one starts by a(1) = 2 it obtains the complete prime sequence and only 
it. If one starts by a(1) > 2, it obtains after a rank r, where a(r) = p(a(1))^2, 
with p(x) the strictly superior prime part of x, i.e. the largest prime strictly 
less than x, the prime sequence: between a(1) and a(r), the sequence 
contains all prime numbers of this interval and some composite numbers; 
from a(r+1) and up, the sequence contains all prime numbers greater than 
a(r) and no composite numbers. 

The almost primes of second kind sequence 
Definition:  Let a(1) ≥ 2 and, for n ≥ 1, a(n+1) is the smallest number that is coprime 

with all of the previous terms of the sequence a(1), a(2), …, a(n). 
Example for a(1) = 10: 

10, 11, 13, 17, 19, 21, 23, 29, 31, 37, 41, 43, 47, 53, 57, 61, 67, 71, 73, ...  
Comment:  This second kind sequence merges faster to the prime numbers than the 

first kind sequence. 
 
(67)  The square roots sequence149 
  
Definition:  

The general term of the sequence, sq(n), is the superior integer part of square root of n. 
The first thirty terms of the sequence (A000196 in OEIS): 

0, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5. 
Comment:  

This sequence is the natural sequence, where each number is repetead 2*n + 1 times, 
because between n^2 (included) and (n + 1)^2 (excluded) there are (n + 1)^2 – n^2 
different numbers. 

 
(68)  The cubical roots sequence150 
  
Definition:  

The general term of the sequence, cq(n), is the superior integer part of cubical root of n. 
The first thirty terms of the sequence (A048766 in OEIS): 

0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3. 
Comment:  

                                                 
148 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequences 84-85. 
149 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 117. 
150 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 118. 
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This sequence is the natural sequence, where each number is repetead 3*n^2 + 3*n + 1 
times, because between n^3 (included) and (n + 1)^3 (excluded) there are (n + 1)^3 – n^3 
different numbers. 

 
(69)  The m-power roots sequence151 
  
Definition:  

The general term of the sequence, mq(n), is the superior integer part of m-power root of n. 
Comment:  

This sequence is the natural sequence, where each number is repetead (n + 1)^m – n^m 
times. 

 
(70)  The no-prime-digit sequence152 
  
Definition:  

The terms of this sequence contain no digits which are primes. 
The first thirty-five terms of the sequence (A019516 in OEIS): 

0, 1, 4, 6, 8, 9, 10, 11, 1, 1, 14, 1, 16, 1, 18, 19, 0, 1, 4, 6, 8, 9, 0, 1, 4, 6, 8, 9, 40. 
Comment:  

F.S. raised the question if there is any number which occurs infinitely many times in this 
sequence (for instance 1, or 4, or 6, or 11). Igor Shparlinski showed that, if n has already 
occurred, then, for instance, n3, n33, n333 etc. gives infinitely many repetitions of the 
number. 

 
(71)  The no-square-digit sequence153 
  
Definition:  

The terms of this sequence contain no digits which are squares. 
The first thirty terms of the sequence (A031976 in OEIS): 

2, 3, 5, 6, 7, 8, 2, 3, 5, 6, 7, 8, 2, 2, 22, 23, 2, 25, 26, 27, 28, 2, 3, 3, 32, 33, 3, 35, 36, 37. 
 
(72)  The Smarandache prime-digital subsequence154 
  
Definition:  

The terms of this sequence are primes that contain only digits which are also primes. 
The first twenty terms of the sequence (A019546 in OEIS): 

2, 3, 5, 7, 23, 37, 53, 73, 223, 227, 233, 257, 277, 337, 353, 373, 523, 557, 577, 727. 
Comments:  

1. Charles Ashbacher155 conjectured that this sequence is infinite. Henry Ibstedt 
proved that this conjecture is true.156 

                                                 
151 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 119. For a study of this 
sequence, see Atanassov, Krassimir T., On some of the Smarandache’s problems, American Research Press, 
1999, p. 58-61. 
152 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 219. 
153 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 220. 
154 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 235. This sequence is 
sometimes named with the acronym SPDS.  
155 Ashbacher, Charles, Collection of problems on Smarandache notions, Erhus University Press, 1996, 
Conjecture 5. 
156 Ibstedt, Henry, Computer analysis of number sequences, American Research Press, 1998, Chapter II: 
Recursive integer sequences, Serction 4: The Smarandache prime-digital sub-sequence. 
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2. C. Ashbacher157 raised the question, which he related to the problem of infinity of 
the set SPDS, how many repunit primes158 exist. 

3. C. Ashbacher159 also conjectured that the limit of the sequence SPDSN(n)/π(n) is 
0 as n tends to infinity, where SPDSN(n) represents the number of elements of 
SPSD(n) not exceeding n and π(n) represents the number of primes not exceeding 
n. 

 
(73)  The Smarandache prime-partial-digital sequence160 
  
Definition:  

The sequence of prime numbers which admit a deconcatenation into a set of primes. 
Exemple:  

The number 241 belongs to this sequence because admits the deconcatenation into the set 
of numbers {2, 41} which are both primes. 

The first twenty terms of the sequence (A019549 in OEIS): 
23, 37, 53, 73, 113, 137, 173, 193, 197, 211, 223, 227, 229, 233, 241, 257, 271, 277, 283, 
293. 

Comments:  
Charles Ashbacher conjectured that this sequence is infinite; because SPPDS includes 
SPDS, the proof that SPDS is infinite implies that SPPDS is also infinite, and Henry 
Ibstedt proved that SPDS is indeed infinite.161 

 
(74)  The square-partial-digital subsequence162 
  
Definition:  

The sequence of square integers which admit a deconcatenation into a set of square 
integers.  

Exemple:  
The number 256036 (= 506^2) belongs to this sequence because admits the 
deconcatenation into the set of numbers {256 (= 16^2), 0, 36 (= 6^2)}, which are all three 
perfect squares. 

Comment:  
 Charles Ashbacher proved that SSPDS is infinite.163 

                                                 
157 Ashbacher, Charles, Collection of problems on Smarandache notions, Erhus University Press, 1996, 
Unsolved problem 3. 
158 Primes that contain only digit 1. That are only 5 such primes known, having 2, 19, 23, 317 respectively 
1031 digits 1 (sequence A004023 in OEIS); a necessary but not sufficient condition for a repunit to be prime is 
that the number of its digits (of 1) to be prime. 
159 Ashbacher, Charles, Collection of problems on Smarandache notions, Erhus University Press, 1996, 
Unsolved problem 4. The conjecture was proved: see Shang, Songye; Su, Juanli, On the Smarandache prime-
digital subsequence sequences, Scientia Magna, Dec 1, 2008. 
160 Ashbacher, Charles, Collection of problems on Smarandache notions, Erhus University Press, 1996, 
Definition 32. This sequence is sometimes named with the acronym SPPDS. This sequence could as well be 
defined as the sequence of primes formed by concatenating other primes and treated to the chapter regarding 
concatenated sequences, but from obvious reasons (is related with the previous treated sequence) we treated it 
here. 
161 For a study of this sequence, see Ibstedt, Henry, Computer analysis of number sequences, American 
Research Press, 1998, Chapter I: Partition sequences. 
162 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Definition 50. F.S., Sequences of numbers involved in unsolved problems, 
Hexis, 2006, Sequence 234. This sequence is sometimes named with the acronym SSPDS. 
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Questions:  
1. The number 441 belongs to SSPDS and its square 194481 also belongs to the 

SSPDS. Can another example of integers m, m^2, m^4, all belonging to SSPDS, 
be found? 

2. It is relatively easy to find two consecutive squares in SSPDS, e.g. 144 (= 12^2) 
and 169 (= 13^2). Does the SSPDS contain three or more consecutive squares as 
well? What is the maximum length? 

 
(75)  The Erdős-Smarandache numbers sequence164 
  
Definition:  

The sequence of  Erdős-Smarandache numbers which are defined in the following way: 
solutions of the diophantine equation P(n) = S(n), where P(n) is the largest prime factor 
which divides n, and S(n) is the Smarandache function. 

The first twenty-five terms of the sequence: 
2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 37. 

 
(76)  The Goldbach-Smarandache table sequence165 
  
Definition:  

The general term of the sequence, t(n), is the largest even number such that any other 
even number not exceeding it is the sum of two of the first n odd primes.  

The first twenty  terms of the sequence (A007944 in OEIS): 
6, 10, 14, 18, 26, 30, 38, 42, 42, 54, 62, 74, 74, 90, 90, 90, 108, 114, 114, 134. 

Comments:  
1. This sequence helps to better understand Goldbach’s Conjecture166: if t(n) is 

unlimited, then the conjecture is true; if t(n) is constant after a certain rank, then 
the conjecture is false.  

2. The sequence also gives how many times an even number is written as a sum of 
two odd primes, and in what combinations. 

Problems167:  
1. All of the values known from this sequence are congruent to 2 modulo 4. Is that 

true for every term in the sequence? 
2. How many primes does it take to represent all even numbers less than 2*n as 

sums of two primes from that set? 
 
(77)  The Smarandache-Vinogradov table sequence168 
  

                                                                                                                                                             
163 For a study of this sequence, see Ibstedt, Henry, Computer analysis of number sequences, American 
Research Press, 1998, Chapter I: Partition sequences. Here is also a study of the Smarandache cube-partial-
digital subsequence. 
164 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Problem 44. 
165 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 121. 
166 Which states that every number that is greater than 2 is the sum of three primes; note that Golbach 
considered the number 1 to be a prime – the majority of mathematicians from today don’t; note also that the 
conjecture is equivalent with the statement that all positive even integers greater than 4 can be expressed as the 
sum of two primes. 
167 Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, 
Chapter 1: Some comments and problems on Smarandache notions, p. 20. 
168 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 122. 
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Definition:  
The general term of the sequence, v(n), is the largest odd number such that any odd 
number greater than or equal to 9 not exceeding it is the sum of three of the first n odd 
primes.  

The first twenty  terms of the sequence (A007962 in OEIS): 
9, 15, 21, 29, 39, 47, 57, 65, 71, 93, 99, 115, 129, 137, 143, 149, 183, 189, 205, 219. 

Comments:  
1. This sequence helps to better understand Goldbach’s Conjecture: if v(n) is 

unlimited, then the conjecture is true; if v(n) is constant after a certain rank, then 
the conjecture is false.  

2. Vinogradov proved in 1937 that any sufficiently large odd number is a sum of 
three primes. Mathematicians J.R. Chen şi T.Z. Wang showed in 1989 that the 
number is enough to be greater than 10^43000. 

3. The sequence also gives in how many different combinations an odd number is 
written as a sum of three odd primes, and in what combinations. 

4.  The general term of the sequence, v(n), is smaller than or equal to 3*pn, where pn 
is the n-th odd prime. 

5. The table is also generalized for the sum of m primes and how many times a 
number is written as a sum of m primes (m > 2). 

Problems169:  
1. Examine the congruence of the terms of this sequence and determine if there is a 

pattern. 
2. How many primes are needed to represent all odd numbers smaller than 3*n as 

sums of three primes? 
 
(78)  The Smarandache-Vinogradov sequence170 
  
Definition:  

Let G = {g1, g2, …gk, …} be an ordered set of positive integers with a given property G. 
Then the corresponding G add-on sequence is defined through formula: 

 SG = {ai: a1 = g1, a = ak*10^(1 + log10 (gk)) + gk, k ≥ 1}. 
Note: The sequence is deduced from the Smarandache-Vinogradov table. 
 
(79)  The Smarandache paradoxist numbers sequence171 
  
Definition:  

The sequence of numbers (called “Smarandache paradoxist numbers”) which don’t 
belong to any of the Smarandache defined sequences of numbers. 

Dilemma:  

                                                 
169 Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, 
Chapter 1: Some comments and problems on Smarandache notions, p. 20. 
170 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 123. Kashihara defines 
different sequences under the names Goldbach-Smarandache and Vinogradov-Smarandache, respectivelly 
Smarandache-Goldbach and Smarandache-Vinogradov (note the different order in listing of the names): see 
Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, p. 
19-21. 
171 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 124.  
See also in the same book sequences 125-126 which define The non-Smarandache numbers and The paradox 
of Smarandache numbers. 
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If a number k doesn't belong to any of the Smarandache defined numbers, then k is a 
Smarandache paradoxist number, therefore k belongs to a Smarandache defined sequence 
of numbers (because Smarandache paradoxist numbers is also in the same category) – 
contradiction. Is the Smarandache paradoxist number sequence empty?172 
 

(80)  Sequences involving the Smarandache function173 
  
Definition 1:  

Let {an} be the sequence defined in the following way: a0 = 1, a1 = 2 and an+1 = aS(n) + 
S(an) for n > 1, where S(n) is the Smarandache function174. 

Question 1:  
Are there infinitely many pairs of integers (m, n), with m ≠ n, such that am = an? 

 Conjecture: There are infinitely many such pairs. 
Question 2:  
 Is there a number M such that an < M for all n > 0? 

Theorem: There is no such number M. 
Definition 2:  

An A-sequence is an integer sequence 1 ≤ a1 < a2 <… such that no element ai is the sum 
of a set of distinct elements of the sequence that does not contain ai. 

Question 3:  
Is it possible to construct an A-sequence a1, a2,… such that S(a1), S(a2),… is also an A-
sequence? 
Theorem: There are infinitely many such A-sequences. 

Question 4:  
For how many values of k is there a set of numbers n, n + 1, n + 2, n + 3,…, n + k such that S(n), 
S(n + 1),…, S(n + k) is a complete system of residues modulo k + 1?  
Conjecture: The numbers of such integers k is finite. 
Theorem: There is no limit to the size of n where a1, a2,…, an is a complete system of 
residue systems modulo n and S(a1), S(a2),…, S(an) is also a complete system of residues 
modulo n.175 
Theorem: If there is a sequence of primes p1, p2,…, pk such that the primes are all in arithmetic 
progression, then S(p1), S(p2),…, S(pk) is also in arithmetic progression.176 

 
(81)  The Smarandache perfect sequence177 
  
Definition:  

                                                 
172 Another paradox, about the natural numbers, is the “interesting numbers paradox”: if exists a set of 
uninteresting natural numbers, than one is the smaller one from them, an enough quality to make this number 
interesting. For instance, the number 11630 was the smaller integer which didn’t appear in any of the 
sequences from OEIS in june 2009 (see Nathaniel Johnston, 11630 is the first uninteresting number); now, it 
appears in 6 sequences from OEIS, and another number is “the smallest uninteresting number”. 
173 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 
1998, p. 15-41. 
174 The Smarandache function is defined infra, Part Two, Chapter I, Section (1). 
175 The proof is based on Dirichlet’s Theorem: let d  > 2 and a ≠ 0 be two numbers relatively prime to each 
other. Then the sequence a, a + d, a + 2*d, a + 3*d,… contains an infinite numbers of primes. 
176 The longest arithmetic progression of primes known to date has 26 terms.  
177 Ibstedt, H., Mainly natural numbers – a few elementary studies on Smarandache sequences and other 
number problems, American Research Press, 2003, Chapter V: The Smarandache partial perfect additive 
sequence. 
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A Smarandache perfect fp sequence is defined in the following way: if fp is a p-ary 
relation on {a1, a2, a3, …} and fp(ai, ai+1, ai+2, …, ai+p-1) = fp(aj, aj+1, aj+2, …, aj+p-1) for all 
ai, aj and all p > 1, then {an} is called a Smarandache perfect fp sequence. 

Note: 
If the defining relation is not satisfied for all ai, aj or all p then {an} may qualify as a 
Smarandache partial perfect fp sequence. 

 
(82)  The partial perfect additive sequence178 
  
Definition:  

A particular case of Smarandache partial perfect sequence, defined in the following way: 
a2*k+1 =ak+1 – 1, a2*k+2 = ak+1 + 1 for k ≥ 1, with a1 = a2 = 1. 

 
(83)  The Smarandache A-sequence179 
  
Definition:  

An infinite Smarandache sequence a(n) of positive integers 1 ≤ a(1) ≤ a(2) ≤ a(3) ≤… is 
called an A-sequence if a(k) cannot be expressed as the sum of two or more distinct 
earlier terms of the sequence. 

 
(84)  The Smarandache B2-sequence 
  
Definition:  

An infinite Smarandache sequence b(n) of positive integers 1 ≤ b(1) ≤ b(2) ≤ b(3) ≤… is 
called an B2-sequence if all pairwise sums b(i) + b(j), i ≤ j, are distinct. 

 
(85)  The Smarandache C-sequence 
  
Definition:  

An infinite Smarandache sequence c(n) of positive integers 1 ≤ c(1) ≤ c(2) ≤ c(3) ≤…  is 
said to be a nonaveraging sequence or a C-sequence if it contains no three terms in 
arithmetic progression. That is, c(i) + c(j) ≠ c(k) for any three distinct terms c(i), c(j) and 
c(k) forming the sequence. 

 
(86)  The Smarandache uniform sequences180 
  
Definition:  

Let n be an integer not equal to 0 and d1, d2, …, dr digits in a base B (of course, r < B). 
Then the multiples of n, written with digits d1, d2, …, dr only (but all r of them), in base 
B, increasingly ordered, are called the Smarandache uniform sequence. 

Examples (in base 10):  

                                                 
178 Ibstedt, H., Mainly natural numbers – a few elementary studies on Smarandache sequences and other 
number problems, American Research Press, 2003, Chapter V: The Smarandache partial perfect additive 
sequence. 
179 The sequences treated in the sections (83)-(85) are defined by Felice Russo; see R., Felice, A set of new 
Smarandache functions, sequences and conjectures in number theory, American Research  Press, 2000, 
Chapter II: A set of new Smarandache-type notions in number theory. The author presents in this book, 
Chapter III: A set of new Smarandache sequences, yet a lot of Smarandache type sequences: Smarandache 
repetead digit sequence with 1-endpoints, Smarandache alternate consecutive and reverse sequence etc. 
180 Smith, Sylvester, A set of conjectures on Smarandache sequences, Smarandache Notions Journal. 
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1. Multiples of 7 written with digit 1 only: 
 111111, 111111, 111111, 111111, 111111, 111111,  111111, 111111, 111111… 

 2. Multiples of 7 written with digit 2 only: 
 222222, 222222222222, 222222222222222222, 222222222222222222222222… 
3. Multiples of 79365 written with digit 5 only: 
 555555, 555555555555, 555555555555555555, 555555555555555555555555… 

Note:  
For some cases, the Smarandache uniform sequence may be empty (impossible): e.g. the 
multiples of 79365 written with digit 6 only (because any multiple will end in 0 or 5). 

 
(87)  The Smarandache operation sequences181 
  
Definition:  

Let E be an ordered set of elements, E = {e1, e2, …} and O a set of binary operations 
well-defined for these elements. Then: a1 is an element of E and an+1 = 
min{e1O1e2O2…Onen+1} > an, for n > 1, where all Oi are operations belonging to O, is 
called the Smarandache operation sequence.  

Example:  
Let E be the natural numbers set and O be formed by the four arithmetic operations: 
addition, subtraction, multiplication and division. Then a1 = 1 and an+1 = 
min{1O12O2…O9899} > an, for n > 1, where all Oi are elements of {+, –, *, /}, chosen in 
a convenient way. 

 
(88)  The repeatable reciprocal partition of unity sequence182 
  
Definition:  

For n > 0, the Smarandache repeatable reciprocal partition of unity for n, noted with the 
acronym SRRPS(n), is the set of all sets of n natural numbers such that the sum of the 
reciprocals is 1, algebraic formulated SRRPS(n) = {x: x = (a1, a2, …, an), where the sum 
from r = 1 to r = n  of the numbers 1/ar is equal to 1}. 

Examples:  
If we note with fRP(n) the order of the set SRRPS(n), we have: 
1. SRRPS(1) = {(1)}, fRP(n) = 1; 
2. SRRPS(2) = {(2, 2)}, fRP(2) = 1; 
3. SRRPS(3) = {(3, 3, 3), (2, 3, 6), (2, 4, 4)}, fRP(3) = 3; 
4. SRRPS(4) = {(4, 4, 4, 4), (2, 4, 6, 12), (2, 3, 7, 42), (2, 4, 5, 20), (2, 6, 6, 6), (2, 4, 

8, 8), (2, 3, 12, 12), (4, 4, 3, 6), (3, 3, 6, 6), (2, 3, 10, 15), (2, 3, 9, 18)}, fRP(4) = 
14. 

Theorem183:  
Let m be a member of SRRPS(n), say m = ak, from (a1, a2, …, an) and by definition the 
sum from k = 1 to k = n of the numbers 1/ak is equal to 1. Then m contributes [(τ(m) + 
1)/2] elements to SRRPS(n + 1), where τ(m) is the number of divisors of m. 

 
(89)  The distinct reciprocal partition of unity sequence184 

                                                 
181 Smith, Sylvester, A set of conjectures on Smarandache sequences, Smarandache Notions Journal. 
182 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, Chapter 1: Smarandache partition functions, Section 1: Smarandache 
partition sets, sequences and functions. 
183 For the proof of the theorem see Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and 
new ideas on number theory and Smarandache sequences, Hexis, 2005, p. 14-15. 
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Definition:  

For n > 0, the Smarandache distinct reciprocal partition of unity set, noted with the 
acronym SDRPS(n), is the set SRRPS(n) where the element of each set of size n must be 
unique, algebraic formulated SDRPS(n) = {x: x = (a1, a2, …, an), where the sum from r = 
1 to r = n  of the numbers 1/ar is equal to 1 and a = a < = > i = j}. 

Examples:  
If we note with fDP(n) the order of the set SDRPS(n), we have: 
1. SDRPS(3) = {(2, 3, 6)}, fDP(3) = 1; 
2. SDRPS(4) = {(2, 4, 6, 12), (2, 3, 7, 42), (2, 4, 5, 20), (2, 3, 10, 15), (2, 3, 9, 18)}, 

fDP(4) = 5. 
Definition:  

The Smarandache distinct reciprocal partition of unity sequence is the sequence of 
numbers fDP(n). 

Theorem185:  
The following inequality is true: fDP(n) ≥ Σ + (n^2 – 5*n + 8)/2, where Σ is the sum from 
k = 3 to k = n – 1 of the numbers fDP(k) and n > 3. 

 
(90)  The Smarandache Pascal derived sequences186 
  
Definition:  

Starting with any sequence Sb = {b1, b2, …}, called the base sequence, a Smarandache 
Pascal derived sequence Sd = {d1, d2, …} is defined as follows: d1 = b1, d2 = b1 + b2, d3 = 
b1 + 2*b2 + b3, d4 = b1 + 3*b2 + 3*b3 + b4, … 

Examples:  
1. Let Sb be the set of positive integers {1, 2, 3, 4, …}; then Sd = {1, 3, 8, 20, …}. 

Let Tn be the general term of the sequence: 
Properties:  
(i) Tn = 4*(Tn-1 – Tn-2) for n > 2; 
(ii) Tn = (n + 1)*2^(n – 2). 

2. Let Sb be the set of odd integers {1, 3, 5, 7, …}; then Sd = {1, 4, 12, 32, …}.  
3. Let Sb be the set of Bell numbers187 {1, 1, 2, 5, 15, 52, 203, …}. Then Sd is 

identically with Sb.188 
4. Let Sb be the set of Fibonacci numbers {1, 1, 2, 3, 5, 8, 13, …}; then Sd = {1, 2, 5, 

13, 34, 89, 233…}. Let Sd be the base sequence; then Sdd = {1, 3, 10, 35, 125, 
450, 1625, 5875, 21250, …}. 
Property: T2*n-1 ≡ T2*n ≡ 0 (mod 5^n). 

 

                                                                                                                                                             
184 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, Chapter 1: Smarandache partition functions, Section 1: Smarandache 
partition sets, sequences and functions. 
185 For the proof of the theorem see Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and 
new ideas on number theory and Smarandache sequences, Hexis, 2005, p. 12. 
186 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, Chapter 2: Smarandache sequences, Section 2: Smarandache Pascal 
derived sequences. 
187 Bell numbers, named after mathematician Eric Temple Bell, are the natural numbers which satisfy the 
following relation of recurrence expressed with the binomial coefficients: B(0) = 1, B(1) = 1 and B(n + 1) is 
equal to the sum of the first n terms, each one multiplicated with C(n, k), where k takes values from 0 to n. 
188 The Bell numbers sequence is identically with the Smarandache factor partitions sequence (SFP) for the 
squarefree numbers.  
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(91)  The Smarandache sigma divisor prime sequence189 
  
Definition:  

The sequence of the primes p with the property that p divides the sum of all primes less 
than or equal to p. 

The five known terms of the sequence (A007506 in OEIS): 
 2, 5, 71, 369119, 415074643. 
Examples:  
 (i) The  number 5 is an element of this sequence because 5 divides 2 + 3 + 5 = 10. 
 (ii) The number 71 is an element of this sequence because 71 divides 2 + 3 +…+ 67 +  

71 = 639. 
Note: There are not any other elements known (all the primes less than 10^12 were checked) 

beside these five ones. 
Question: 
 Is this sequence infinite? 
 
(92)  The Smarandache smallest number with n divisors sequence190 
  
Definition:  

The sequence of numbers which are the smallest numbers with exactly n divisors. 
The first twenty terms of the sequence (A005179 in OEIS): 
 1, 2, 4, 6, 16, 12, 64, 24, 36, 48, 1024, 60, 4096, 192, 144, 120, 65536, 180, 262144, 240. 
Conjectures:  

1. The Tn + 1 sequence contains infinitely many primes (where Tn is the general 
term of the Smarandache smallest number with n divisors sequence). 

2. The number 7 is the only Mersenne prime in the sequence Tn + 1. 
3. The Tn + 1 sequence contains infinitely many perfect squares. 

 
(93)  The Smarandache summable divisor pairs set191 
  
Definition:  

The set of ordered pairs [m, n] with the property that τ(m) + τ(n) = τ(m + n). 
Examples of Smarandache summable divisor pairs:  

[2, 10], [3, 5], [4, 256], [8, 22]. 
Conjectures:  
 1. There are infinitely many SSDPs. 
 2. For every integer m there exists an integer n such that [m, n] is a SSDP. 
 
(94)  The Smarandache integer part of x^n sequences192 
  
Definition 1 :  

The Smarandache integer part of π^n is the sequence of numbers:  

                                                 
189 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 87. 
190 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 87. 
191 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 88. 
192 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 88. 
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[π^1], [π^2], [π^3], … 
 The first thirteen terms of the sequence (001672 in OEIS):  
 1, 3, 9, 31, 97, 306, 961, 3020, 9488, 29809, 93648, 294204, 924269. 
Definition 2 :  

The Smarandache integer part of e^n is the sequence of numbers:  
[e^1], [e^2], [e^3], … 

 The first thirteen terms of the sequence (000149 in OEIS):  
 1, 2, 7, 20, 54, 148, 403, 1096, 2980, 8103, 22026, 59874, 162754, 442413. 
 
(95)  The Smarandache sigma product of digits natural sequence 193 
  
Definition: 

The n-th term of this sequence is defined as the sum of the products of the digits of all the 
numbers from 1 to n. 

The first twenty terms of the sequence (061076 in OEIS):  
 1, 3, 6, 10, 15, 21, 28, 36, 45, 45, 46, 48, 51, 55, 60, 66, 73, 81, 90, 90. 
Subsequence 1: The Smarandache sigma product of digits odd sequence: 
 The first twenty terms of the sequence (061077 in OEIS):  
  1, 4, 9, 16, 25, 26, 29, 34, 41, 50, 52, 58, 68, 82, 100, 103, 112, 127, 148, 175. 
Subsequence 2: The Smarandache sigma product of digits even sequence: 
 The first twenty terms of the sequence (061078 in OEIS):  
  2, 6, 12, 20, 20, 22, 26, 32, 40, 40, 44, 52, 64, 80, 80, 86, 98, 116, 140, 140. 
 
(96)  The Smarandache least common multiple sequence 194 
  
Definition: 

The n-th term of this sequence is the least common multiple of the natural numbers from 
1 to n. 

The first fifteen terms of the sequence (003418 in OEIS):  
 1, 1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 27720, 27720, 360360, 360360. 
 
(97)  The Smarandache reverse auto correlated sequences 195 
  
Definition: 

Let {a1, a2, …} be a sequence; then the n-th term bn of the Smarandache reverse auto 
correlated sequence {b1, b2, …} is defined in the following way: bn is the sum from k = 1 
to k = n of the numbers an*an-k+1.  

The first three terms of the sequence:  
b1 = a1^2, b2 = 2*a1*a2, b3 = a2^2 + 2*a1*a3. 

 
(98)  The Smarandache forward reverse sum sequence196 
  

                                                 
193 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 88-89. 
194 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 88-89. 
195 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 94. 
196 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 114. 
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Definition: 
The n-th term of the sequence Tn  is equal to Tn-1 + R(Tn-1), where R(Tn-1) is the number 
formed reversing the digits of Tn-1. 

The first fifteen terms of the sequence (A001127 in OEIS):  
1, 2, 4, 8, 16, 77, 154, 605, 1111, 2222, 4444, 8888, 17776, 85547, 160105. 

Conjectures: 
 1. There are infinitely many palindromes in this sequence. 
 2. The number 16 is the only square in this sequence. 
 
(99)  The Smarandache reverse multiple sequence197 
  
Definition: 

The sequence of numbers that are multiples of their reversals; palindromes and multiples 
of ten are considered trivial and are not included. 

The first ten terms of the sequence (A031877 in OEIS):  
8712, 9801, 87912, 98901, 879912, 989901, 8799912, 9899901, 87128712, 87999912. 

Properties: 
 1. This sequence is infinite. 

2. There are two families of numbers in this sequence, one derived from 8712 and 
one derived from 9801; each family is constructed by placing 9’s in the middle. 

3. The number formed by concatenation of two terms of this sequence derived from 
the same family is also a member of that family. 

 
(100)  The Smarandache symmetric perfect power sequences 198 
  
Definition: 

The sequence of numbers that are simultaneously m-th power and palindromic. 
Smarandache symmetric perfect square sequence:  

{1, 4, 9, 121, 484, 14641, …} 
Smarandache symmetric perfect cube sequence:  

{1, 8, 343, 1331, …} 
Theorem: 

The Smarandache symmetric perfect m-th power sequence has infinitely many terms for 
m = 1, 2, 3 and 4. 

Conjecture: 
The Smarandache symmetric perfect m-th power sequence has infinitely many terms for 
all values of m. 

 
(101)  The Smarandache Fermat additive cubic sequence199 
  
Definition: 

                                                 
197 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 114. 
198 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 124. 
199 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 127. According to the authors, “the name of Fermat is included in the 
description to relate it to the fact that though the sum of two cubes can not yield a third cube, the sum of more 
than two cubes can be a third cube (3^3 + 4^3 + 5^3 = 6^3)”. 
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The terms of the sequence are the perfect cubes that have the property that the sum of the 
cubes of their digits is also a perfect cube. 

The first four terms of the sequence (A061212 in OEIS):  
1, 8, 474552, 27818127. 

Examples:  
(i) 474552 = 78^3 and 4^3 + 7^3 + 4^3 + 5^3 + 5^3 + 2^3 = 729 = 9^3. 
(ii) 27818127 = 303^3 and the sum of cubes of digits equals 1728 =12^3. 

Theorems:  
1. The Smarandache Fermat additive cubic sequence contains an infinite number of 

terms. 
2. The number (10^(n + 2) – 4)^3 is a member of the Smarandache Fermat additive 

cubic sequence when n can be expressed in the form 4*((10^(3*k – 1)/27) – 1, 
where k positive integer. The sum of the cubes of the digits will then equal 
(6*10^k)^3. 

 
(102)  The Smarandache patterned sequences 
  
Definition: 

Sequences of numbers which follow a certain pattern, obtained through a certain 
arithmetic operation from a root sequence of numbers which also follow a certain 
pattern.200 

Smarandache patterned perfect square sequences201: 
bn = 169, 17689, 1776889, 177768889, … is obtained from the root sequence: 
an = 13, 133, 1333, 13333, … (bn = an^2); 
bn = 1156, 111556, 11115556, 1111155556, … is obtained from the root sequence: 
an = 34, 334, 3334, 3334, … (bn = an^2); 

Smarandache patterned perfect cube sequences202: 
bn = 1003303631331, 1000330036301331, 1000033000363001331, … is obtained from: 
an = 10011, 100011, 1000011, 1000011,… (bn = an^3); 
bn = 912673, 991026973, 999100269973, 999910002699973, … is obtained from: 
an = 97, 997, 9997, 99997,… (bn = an^3). 

Smarandache patterned fourth power sequences203: 
bn = 96059601, 996005996001, 9996000599960001, … is obtained from: 
an = 99, 999, 9999, 99999,… (bn = an^4). 

 
(103)  The Smarandache prime generator sequence204 

                                                 
200 Our definition is vaque; for the original definition of these sequences see Murthy, Amarnath, Exploring some new 
ideas on Smarandache type sets, functions and sequences, Smarandache Notions Journal, vol. 11, no. 1-2-3, 2000.  
201Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 110. Obviously the sequences presented here are just few examples. 
In the cited book, the authors give more examples and formulas for the general term of each from these 
sequences. 
202Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 121. 
203Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 140. The authors give examples for Smarandache patterned fifth 
power sequences, Smarandache patterned sixth power sequences, Smarandache patterned seventh power 
sequences and Smarandache patterned eighth power sequences also, together with formulas for the general 
term and open problems. 
204 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 143. 
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Note: 

Are considered the recursive sequences of numbers formed in the following way: T1 is a 
prime and Tn+1 = k*Tn + 1, where k is the smallest number yielding a prime.205 

Examples: 
 1. For T1 = 2, the sequence is (A061092 in OEIS): 
  2, 3, 7, 29, 59, 709, 2837, 22697, 590123, 1180247, … 
 2. For T1 = 5, the sequence is (A059411 in OEIS): 
  5, 11, 23, 47, 283, 1699, 20389, 244669, 7340071, …  
Definition: 

Starting with the first prime, 2, the first prime not included in the sequence which starts 
with T1 = 2 is 5. Then starting with 5, the first prime not included in the sequence which 
starts with T1 = 5 is 13. Then starting with 13 the process is repeated. The Smarandache 
prime generator sequence is constructed using the first terms of these sequences. 

The first twenty terms of the Smarandache prime generator sequence (A061303 in OEIS):  
2, 5, 13, 17, 19, 31, 37, 41, 43, 61, 67, 71, 73, 79, 89, 97, 101, 109, 113, 127. 

Conjecture: 
The Smarandache prime generator sequence is finite. 

 
(104)  The Smarandache LCM ratio sequences 
  
Definition: 

Let lcm(x1, x2, …, xt) denote the least common multiple of positive integers x1, x2, …, xt. 
Let r be a positive integer, r > 1. For any positive integer n, let T(r, n)  = lcm(n, n + 1,…, 
n + r – 1)/lcm(1, 2, …, r), then the sequences SLR(r) = {T(r, n)} is called Smarandache 
LCM ratio sequences of degree r. 

Theorems206: 
1. T(2, n) = n*(n + 1)/2; 
2. T(3, n) = n*(n + 1)*(n + 2)/6 if n is odd and  

T(3, n) = n*(n + 1)*(n + 2)/12 if n is even; 
3. T(4, n) = n*(n + 1)*(n + 2)*(n + 3)/24 if n is not congruent to 0(mod 3) and  

T(4, n) = n*(n + 1)*(n + 2)*(n + 3)/72 if n is congruent to 0(mod 3); 
4. T(6, n) = n*(n + 1)*…*(n + 5)/7200 if n ≡ 0, 15 mod 20; 
 T(6, n) = n*(n + 1)*…*(n + 5)/720 if n ≡ 1, 2, 6, 9, 13, 14, 17, 18 mod 20; 

  T(6, n) = n*(n + 1)*…*(n + 5)/3600 if n ≡ 5, 10 mod 20 and 
  T(6, n) = n*(n + 1)*…*(n + 5)/1440 if n ≡  3, 4, 7, 8, 11, 12, 16, 19 mod 20. 
 
 
 
 
 
 
 
 
 
 

                                                 
205 It has been proved that for every prime p there is a prime of the form k*p + 1. 
206 For the proof of the Theorems 1-3 see Le, Maohua, Two formulas for Smarandache LCM ratio sequences, 
Smarandache Notions Journal, vol. 14, 2004; for the proof of theorem 4 and other theorems see Ting, Wang,  
Two formulas for Smarandache LCM ratio sequences, Scientia Magna, vol. 1, no. 1, 2005. 
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PART TWO 
Smarandache type functions and constants 

 
 
Chapter I. Smarandache type functions 
 
(1) The Smarandache function207 
 
Definition:  

The function S(n) defined on the set of positive integers with values in the set of positive 
integers with the property that S(n) is the smallest number so that S(n)! is divisible by 
n.208 

Example:  
S(8) = 4 because 1!, 2!, 3! Are not divisible by 8 but 4! is divisible by 8.  

Definition:  
The numbers generated by this function are called Smarandache numbers. 

The first thirty Smarandache numbers (A002034 in OEIS)209:  
1, 2, 3, 4, 5, 3, 7, 4, 6, 5, 11, 4, 13, 7, 5, 6, 17, 6, 19, 5, 7, 11, 23, 4, 10, 13, 9, 7, 29, 5. 

Properties:   
1. Max {p: p prime and p divides n} ≤ S(n) ≤ n for any positive integer n. 
2. S(m*n) does not always equal S(m)*S(n): the Smarandache function is not 

multiplicative. 
Theorems210:   

1. A characterization of a prime number: Let p be an integer greater than 4. Then p 
is prime if and only if S(p) = p. 

2. A formula to calculate the number of primes less than or equal to n: If n is an 
integer, n ≥ 4, then π(n), the number of prime numbers less than or equal to n, is 
equal to one less than the sum, from k = 2 to k = n, of the numbers m, where m is 
the smallest integer greater than or equal to S(k)/k. 

3.  If p and q are distinct primes, then S(p*q) = max{p, q}. 
4. Let n = p1*p2*…*pk, where all pi are distinct primes; then S(n) = max{p1, p2, …, 

pk}. 
5. If p is prime, then S(p^2) = 2*p. 
6. If p is prime, then S(p^k) = n*p, where n ≤ k. 
7. Let p be an arbitrary prime and n ≥ 1. Then, it is possible to find a number k such 

that S(p^k) = n*p. 
8. For any integer n ≥ 0, it is possible to find another integer m such that S(m) = n!. 

                                                 
207 The research paper presenting for the first time this function, A function in the number theory , was 
published by Florentin Smarandache in 1980. Since then, hundreds of articles have been written about the 
properties of the Smarandache function. For a history of this function see Dumitrescu, Constantin, A brief 
history of the Smarandache function, Smarandache Function Journal, vol. 2-3, 1993. See also Ashbacher, 
Charles, An introduction to the Smarandache function, Erhus University Press, 1995. 
208 See also supra, Part One, Chapter II, Section (1): The Smarandache Quotient sequence. 
209 For a computer algorithm for the calculation of S(n), see Ibstedt, Henry, Computer analysis of number 
sequences, American Research Press, 1998, Chapter III: Non-recursive sequences, Section 2: The 
Smarandache function S(n). 
210 For the proof of the Theorems 1-2, see Ruiz, S.M. and Perez, M., Properties and problems related to the 
Smarandache type functions, Arxiv. For the proof of Theorems 3-11, see Ashbacher, Charles, An introduction 
to the Smarandache function, Erhus University Press, S(p^k) 1995, p. 8-14, 30-32. 
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9. Let Sk(n) be used to represent k iterations of the function S, i.e. S(S(…S(n)…)). 
Then: if n = 1, Sk(n) is undefined for k > 1; if n > 1, Sk(n) = m, where m is 4 or 
prime, for all k sufficiently large. 

10. There is no number k such that, for every number n > 1, Sk(n) = m, where m is a 
fixed point of the function S. 

11. If m > 2 is a fixed point of the function S, then there are infinitely many n such 
that Sk(n) = m. 

Problems211:   
1. Study the Dirichlet series: sum from n = 1 to n = ∞ of the numbers S(n)/n^s. 
2. Let OS(n) be the number of integers 1 ≤ k ≤ n such that S(k) is odd and ES(n) be 

the number of integers 1 ≤ k ≤ n such that S(k) is even. Determine the limit when 
n tends to ∞ of the number OS(n)/ES(n). 

Definition:  
The series defined as the sum, for n ≥ 2, of the numbers 1/S(n)^m are called 
Smarandache harmonic series.212 

 
(2) The Smarandache double factorial function 
 
Definition:  

The function Sdf(n) defined on the set of positive integers with values in the set of 
positive integers with the property that Sdf(n) is the smallest number so that Sdf(n)!! is 
divisible by n. 

The first twenty-five values of the function Sdf(n):  
1, 2, 3, 4, 5, 6, 7, 4, 9, 10, 11, 6, 13, 14, 5, 6, 17, 12, 19, 10, 7, 22, 23, 6, 15. 

Theorems213:  
1. Sdf(p) = p, where p is any prime number. 
2. For any even squarefree number n, Sdf(n) = 2*max{p1, p2 , …, pk}, where p1, p2 , 

…, pk are the prime factors of n. 
3. For any composite squarefree odd number n, Sdf(n) = max{p1, p2 , …, pk}, where 

p1, p2 , …, pk are the prime factors of n. 
4. The series defined as the sum from n = 1 to n = ∞ of the numbers 1/Sdf(n) 

diverges. 
5. The series defined as the sum from n = 1 to n = ∞ of the numbers Sdf(n)/n 

diverges. 
6. The Sdf function is not additive, that is Sdf(n + m) ≠ Sdf(m) + Sdf(n) for gcd(m, 

n) = 1. 
7. The Sdf function is not multiplicative, that is Sdf(n*m) ≠ Sdf(m)*Sdf(n) for 

gcd(m, n) = 1. 
8. Sdf(n) ≤ n. 
9. Sdf(n) ≥ 1 for n ≥ 1. 
10. 0 ≤ Sdf(n)/n ≤ 1 for n ≥ 1. 

 Problem:   
Given any n ≥ 1, how many times does n appear in this sequence? 

                                                 
211 Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, 
p. 15. 
212 For a study of these series see Tabirca, Sabin and Tabirca, Tatiana, The convergence of Smarandache 
harmonic series, Smarandache Notions Journal, vol. 9, no. 1-2-3, 1998 and also Luca, Florian, On the 
divergence of the Smarandache harmonic series, Smarandache Notions Journal, vol. 10, no. 1-2-3, 1999. 
213 R., Felice, A set of new Smarandache functions, sequences and conjectures in number theory, American 
Research  Press, 2000, Chapter IV: An introduction to the Smarandache double factorial function. 
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(3) The Smarandache near-to-primorial function214 
 
Definition:  

The function Sntp(n) defined on the set of positive integers with values in the set of 
primes with the property that Sntp(n) is the smallest prime such that either p# – 1, p# or 
p# + 1 is divisible by n.215 

Note:  Sntp(n) is undefined for squareful integers. 
  
(4) The Smarandache-Kurepa function216 
 
Definition217:  

The function SK(p) defined on the set of primes with values in the set of positive integers 
with the property that SK(p) is the smallest number so that !SK(p) is divisible by p, 
where !SK(p) = 0! + 1! + 2! + … + (p – 1)!. 

The first twenty values of the function Smarandache-Kurepa (A049041 in OEIS):  
2, 4, 6, 6, 5, 7, 7, 12, 22, 16, 55, 54, 42, 24, 25, 86, 97, 133, 64, 94, 72. 

 
(5) The Smarandache-Wagstaff function218 
 
Definition219:  

The function SW(p) defined on the set of primes with values in the set of positive 
integers with the property that SW(p) is the smallest number so that W(SW(p)) is 
divisible by p, where W(p) = 1! + 2! + … + p!. 

The first twenty values of the function Smarandache-Wagstaff:  
2, 4, 5, 12, 19, 24, 32, 19, 20, 20, 7, 57, 6, 83, 15, 33, 38, 9, 23, 70. 

 
(6) The Smarandache ceil functions of n-th order 
 
Definition:  

The function Sk(n) defined on the set of positive integers with values in the set of positive 
integers with the property that Sk(n) is the smallest number so that Sk(n)^k is divisible by 
n.220 

The first fifteen values of the Smarandache ceil function of the second order S2(n):  

                                                 
214 For the properties of this function see Mudge, M.R., The Smarandache near-to-primorial (SNTP) function, 
and Asbacher, Charles, A note on the Smarandache near-to-primorial function, both articles in Smarandache 
Notions Journal, vol. 7, no. 1-2-3, 1996. 
215 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Problem 8. 
216 See Mudge, M.R., Introducing the Smarandache-Kurepa and the Smarandache-Wagstaff functions, 
Smarandache Notions Journal, vol. 7, no. 1-2-3, 1996. 
217 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Problem 4. 
218 See Mudge, M.R., Introducing the Smarandache-Kurepa and the Smarandache-Wagstaff functions, 
Smarandache Notions Journal, vol. 7, no. 1-2-3, 1996. 
219 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Problem 5. 
220 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Problem 6. See also Ibstedt, H., Surphing on the ocean of numbers – a few 
Smarandache notions and similar topics, Erhus University Press, Vail, 1997, Chapter II: On Smarandache 
functions, Section 3: The Smarandache ceil function. 
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2, 4, 3, 6, 10, 12, 5, 9, 14, 8, 6, 20, 22, 15, 12. 
The first fifteen values of the Smarandache ceil function of the third order S3(n):  

2, 2, 3, 6, 4, 6, 10, 6, 5, 3, 14, 4, 6, 10, 22.221 
 
(7) The Smarandache primitive functions 
 
Definition222:  

The function Sp(n) defined on the set of positive integers with values in the set of positive 
integers with the property that Sp(n)! is the smallest number so that Sp(n)! is divisible by 
p^n, where p is prime.223 

Example:  
S3(4) = 9, because 9! is divisible by 3^4, and this is the smallest number with this 
property . 

Note:  These functions help us compute Smarandache function. 
 
(8) The Smarandache functions of the first kind 
 
Definition224:  

The functions Sn defined on the set of positive integers with values in the set of positive 
integers in the following way:  
(i) if n = u^r (whith u = 1 or u = p being a prime number), then Sn(a) = k, where k is 

the smallest positive integer such that k! is a multiple of u^(r*a); 
(ii) if n = p(1)^r(1)*p(1)^r(2)*…*p(t)^r(t), then Sn(a) = max {Sp(j)^r(j)(a)}, where 1 ≤ j 

≤ t. 
 

(9) The Smarandache functions of the second kind 
 
Definition225:  

The functions Sk defined on the set of positive integers with values in the set of positive 
integers in the following way: Sk(n) = Sn(k) for k positive integer, where Sn are the 
Smarandache functions of the first kind. 

 
(10) The Smarandache functions of the third kind 
 
Definition226:  

The functions Sa(n)(b(n)), where Sa(n) is the Smarandache function of the first kind and the 
sequences a(n) and b(n) are different from the following situations: 
(i) a(n) = 1 and b(n) = n for n positive integer; 
(ii) a(n) = n and b(n) = n for n positive integer. 

                                                 
221 For the first few values of the Smarandache ceil functions of fourth, fifth and sixth order see Begay, 
Anthony, Smarandache ceil functions, Smarandache Notions Journal. 
222 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Theorem 11. 
223 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Problem 6. 
224 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Theorem 12. 
225 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Theorem 13. 
226 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Theorem 14. 
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(11) The pseudo-Smarandache function 
 
Definition227:  

The function Z(n) defined on the set of positive integers with values in the set of positive 
integers with the property that Z(n) is the smallest number so that the number 1 + 2 + … 
+ Z(n) is divisible by n.  

The first thirty pseudo-Smarandache numbers (A011772 in OEIS):  
1, 3, 2, 7, 4, 3, 6, 15, 8, 4, 10, 8, 12, 7, 5, 31, 16, 8, 18, 15, 6, 11, 22, 15, 24, 12, 26, 7, 28, 
15, 30, 63, 11, 16, 14, 8, 36, 19, 12, 15. 

Properties:   
1. Z(n) ≥ 1 for any n natural. 
2. It is not always the case that Z(n) < n. 
3. Z(m + n) does not always equal Z(m) + Z(n): the pseudo-Smarandache function is 

not additive. 
4. Z(m*n) does not always equal Z(m)*Z(n): the pseudo-Smarandache function is 

not multiplicative. 
Theorems228: 
 1. If  p is a prime greater than 2, then Z(p) = p – 1. 

2. If x equals any natural number, p equals a prime number greater than 2, and b 
equals p^x, then Z(b) = b – 1. 

 3. If x equals 2 to any natural power, then Z(x) = 2*x – 1. 
 4. Z(p^k) = p^k – 1 for any prime p greater than 2. 
 5. If n is composite, then Z(n) = max{Z(m): m divides n}. 

6. The series defined as the sum from n = 1 to n = ∞ of the numbers 1/Z(n) is 
divergent. 

7. Abs{Z(n + 1) – Z(n)} is unbounded. 
9. Given any integer k, k ≥ 2, the equation Z(k*n) = n has an infinite number of 

solutions.  
10. Given any fixed integer k, k ≥ 2, the equation k*Z(n) = n has an infinite number 

of solutions. 
11. Given any integer k, k ≥ 2, the equation Z(n + 1)/Z(n) = k has solutions. 
12. The ratio Z(2*n)/Z(n) is unbounded above. 

 
(12) The pseudo-Smarandache function of first kind 
 
Definition229:  

                                                 
227 The pseudo-Smarandache function was defined by K. Kashihara (who mentioned that he thought to a 
function analogous with the Smarandache function, with similar definition but where multiplication is replaced 
by summation). See also Ibstedt, H., Surphing on the ocean of numbers – a few Smarandache notions and 
similar topics, Erhus University Press, Vail, 1997, Chapter II: On Smarandache functions, Section 4: The 
Smarandache pseudo function Z(n). 
228 For the proof of theorems 1-6, see K. Kashihara, Comments and topics on Smarandache notions and 
problems, Erhus University Press, 1996, Chapter 2: The pseudo-Smarandache function and also Gorski, David, 
The pseudo-Smarandache function, Smarandache Notions Journal. For the proof of theorems 7-8 see 
Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 
1998, p. 55-56. For the proof of Theorems 9-10 see Majumdar, A.A.K., Wandering in the world of 
Smarandache numbers, InProQuest, 2010, Chapter 4: The pseudo Smarandache function, Section 4.4.: 
Miscellaneous topics.  
229The pseudo-Smarandache functions of first and second kind were defined by A.S. Muktibodh and S.T. 
Rathod, Pseudo-Smarandache functions of first and second kind.  
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The function Z1(n) defined on the set of positive integers with values in the set of positive 
integers with the property that Z1(n) is the smallest number so that the number 1^2 + 2^2 
+ … + Z1(n)^2 is divisible by n. 

The first fifteen values of the function Z1(n):  
1, 3, 4, 7, 2, 4, 3, 15, 13, 4, 5, 8, 6, 3, 4. 

Properties:   
1. Z1(n) = 1 only if n = 1. 
2. Z1(n) ≥ 1 for any n natural.  
3. Z1(p) ≤ p for p prime.  
4. If Z1(p) = n and p ≠ 3, then p > n. 

Theorem230:  If p is prime, p ≥ 5, then Z1(p) = (p – 1)/2. 
 
(13) The pseudo-Smarandache function of second kind 
 
Definition:  

The function Z2(n) defined on the set of positive integers with values in the set of positive 
integers with the property that Z1(n) is the smallest number so that the number 1^3 + 2^3 
+ … + Z1(n)^3 is divisible by n. 

The first fifteen values of the function Z2(n):  
1, 3, 2, 3, 4, 3, 6, 7, 2, 4, 10, 3, 12, 7, 5. 

 
(14) The Smarandache multiplicative one function231 
 
Definition:  

The function f defined on the set of positive integers with values in the set of positive 
integers with the property that, for any a and b with gcd(a, b) = 1, f(a*b) = max{f(a), 
f(b)}, i.e. it reflects the main property of the Smarandache function. 

Examples:  
Few functions that are S-multiplicative: the Smarandache function defined as S(n) = 
min{k: n divides k!} and the Erdős function defined as f(n) = max{p: p prime, p divides 
n}. 

 
(15) The inferior and the superior f–part of x232 
 
Definition:  

The strictly increasing functions f defined on the set of natural numbers with values in the 
set of natural numbers defined in the following way: if x is an element of the set of real 
numbers, then the inferior f–part of x is the smallest k such that f(k) ≤ x < f(k + 1) and the 
superior f–part of x is the smallest k such that f(k) < x ≤ f(k + 1). 

                                                 
230 For the proof of this theorem, see Mukthibodh, A.S. and Rathod, S.T., Pseudo-Smarandache functions of 
first and second kind, p. 5. 
231 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Definition 2. This function is also met under the name Smarandache-
multiplicative function or S-multiplicative function: see F.S., Considerations on new functions in number 
theory, Arxiv, F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 312, 
Tabirca, Sabin, About Smarandache-multiplicative functions, Smarandache Notions Journal, vol. 11, no. 1-2-3, 
2000. 
232 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Definition 3. See also F.S., Sequences of numbers involved in unsolved 
problems, Hexis, 2006, Sequences 36-37. 
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Note:  Particular cases of this function are: inferior/superior prime part, inferior/superior square 
part, inferior/superior factorial part etc.233  

 
(16) The inferior and the superior fractional f–part of x234 
 
Definition:  

The strictly increasing functions f defined on the set of natural numbers with values in the 
set of natural numbers defined in the following way: if x is an element of the set of real 
numbers, then the inferior fractional f–part of x is the number x – f(x), where f(x) is the 
inferior f–part of x, defined above, and the superior fractional f–part of x is the number 
f(x) – x, where f(x) is the superior f–part of x, defined above. 

Note:  Particular cases of this function are: fractional prime part, fractional square part, 
fractional cubic part, fractional factorial part etc. 

 
(17) The Smarandache complementary functions 
 
Definition235:  

The strictly increasing function g defined on the set A with values in the set A defined in 
the following way: let “~” be a given internal law on A. Then we say that f, where f is a 
function also defined on the set A with values in set A, is complementary with respect to 
the function g and the internal law “~” if f(x) is the smallest k such that there exists z, 
where z belongs to the set A, so that x ~ k = g(z).  

Note:  Particular cases of this function are: square complementary function, cubic 
complementary function, m-power complementary function, prime complementary 
function etc.236 

 
(18) The functional Smarandache iteration of first kind 
 
Definition237:  

Let f be a function defined on the set A with values in the set A defined in the following 
way: f(x) ≤ x for all x and min {f(x)} ≥ m0 ≠ –∞. Let f have p ≥ 1 fix points m0 ≤ x1 ≤ x2 
≤ … ≤ xp [the point x is called fix is f(x) = x]. Then SI1f(x) is the smallest number of 
iterations k such that f(f(…f(x)…)), iterated k times, is constant. 

Example:   
Let n > 1 be  an integer and τ(n) be the number of positive divisors of n. Then SI1τ(n) is 
the smallest number of iterations k such that τ(τ(...τ(n)...)), iterated k times, is equal to 2, 
because  τ(n) < n for n > 2 and the fix points of the function τ are 1 and 2. Thus SI1τ(6) =  
3, because τ(τ(τ(6))) = τ(τ(4)) = τ(3) = 2 = constant. 

 

                                                 
233 See supra, Part One, Chapter II, the homonymous sequences.  
234 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Definition 4. See also F.S., Sequences of numbers involved in unsolved 
problems, Hexis, 2006, Sequences 46-51. 
235 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Definition 5. 
236 See supra, Part One, Chapter II, the following sequences: The square complements sequence, The cube 
complements sequence,  The m-power complements sequence, The prime additive sequence. 
237For the definitions of functional Smarandache iterations of the first, second and third kind see F.S., 
Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, Xiquan 
Publishing House, 2000, Definitions 6, 7, 8. See also Ruiz, S.M. and Perez, M., Properties and problems 
related to the Smarandache type functions, Arxiv. 
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(19) The functional Smarandache iteration of second kind 
 
Definition:  

Let g be a function defined on the set A with values in the set A such that g(x) > x for all 
x and let b > x. Then SI2g(x,b) is the smallest number of iterations k such that 
g(g(…g(x)…)), iterated k times, is greater than or equal to b. 

Example:   
Let n > 1 be  an integer and σ(n) be the number of positive divisors of n. Then SI2σ(n,b) 
is the smallest number of iterations k such that σ(σ(...σ(n)...)), iterated k times, is greater 
than or equal to b, because σ(n) > n for n > 1. Thus SI2σ(4,11) = 3, because σ(σ(σ(4))) = 
σ(σ(7)) = σ(8) = 15 ≥ 11. 

 
(20) The functional Smarandache iteration of third kind 
 
Definition:  

Let h be a function with values in the set A such that h(x) < x for all x and let b < x. Then 
SI3h(x,b) is the smallest number of iterations k such that h(h(…h(x)…)), iterated k times, 
is smaller than or equal to b. 

Example:   
Let n be  an integer and gd(n) be the greatest positive divisor of n less than n. Then gd(n) 
< n for n > 1. Thus SI3gd(60,3) = 4, because gd(gd(gd(gd(60)))) = gd(gd(gd(30))) = 
gd(gd(15)) = gd(5) = 1 ≤ 3. 

 
(21) The Smarandache prime function238 
 
Definition:  

Let P be a function defined on the set of natural numbers with values in the set {0, 1}. 
Then P(n) = 0 if p is prime and P(n) = 1 otherwise. 

Example:   
P(2) = P(3) = P(5) = P(7) = P(11) =…= 0 whereas P(0) = P(1) = P(4) = P(6) = ... = 1. 

Generalization:  
Let Pk, where k ≥ 2, be a function defined on the set of natural numbers with values in the 
set {0,1}. Then Pk(n1, n2,…, nk) = 0 if n1, n2,…, nk are all prime numbers and Pk(n1, n2,…, 
nk) = 1 otherwise. 

 
(22) The Smarandache coprime function239 
 
Definition:  

                                                 
238 For a deeper study of this function and of the following one see Ruiz, S.M., Applications of Smarandache 
functions, and prime and coprime functions, American Research Press, 2002. For theorems on this function 
and on the following one, see Vassilev-Missana, Mladen and Atanassov, Krassimir, Some Smarandache 
problems, Hexis, 2004, Chapter 1: On some Smarandache’s problems, Section 11: On four prime and coprime 
functions. 
239 This function and the previous one are met, in the paper F.S., Considerations on new functions in number 
theory, Arxiv, under the abreviations S-prime function and S-coprime function. In the book F.S., Sequences of 
numbers involved in unsolved problems, Hexis, 2006, Sequences 285-286, these two functions are analogously 
defined but called Anti-prime function and Anti-coprime function. In the book Collected Papers, vol. II, 
Moldova State University, Kishinev, 1997, p. 137, they are simply called Prime function and Anti-prime 
function. 
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Let Pk, where k ≥ 2, be a function defined on the set of natural numbers with values in the 
set {0,1}. Then Pk(n1, n2,…, nk) = 0 if n1, n2,…, nk are coprime  numbers and Pk(n1, n2,…, 
nk) = 1 otherwise. 
 

(23) The smallest power function 
 
Definition:  

SP(n) is the smallest number m such that m^k is divizible by n, where k ≥ 2 is given. 
The first twenty values of the function SP(n) for k = 2 (sequence A019554 in OEIS):  

1, 2, 3, 2, 5, 6, 7, 4, 3, 10, 11, 6, 13, 14, 15, 4, 17, 6, 19, 10. 
Properties240:  

1. If p is prime, then SP(p) = p. 
2. If r is squarefree, then SP(r) = r. 
3. If (p1^s1)*… *(pk^sk) and all si ≤ pi, then SP(n) = n. 

 
(24) The residual function241 
 
Definition:  

Let L be a function defined on the set of integers with values in the set of integers. Then 
L(x, m) = (x + C1)…(x + CF(m)), m = 2, 3, 4, …, where Ci, 1 ≤ i ≤ F(m), forms a reduced 
set of residues mod m, m ≥ 2, x is an integer, and F is Euler’s totient. 

Example:   
For x = 0 is obtained the following sequence (A001783 in OEIS): L(m) = C1…CF(m), 
where m =  2, 3, 4, …: 
1, 2, 3, 24, 5, 720, 105, 2240, 189, 3628800, 385, 479001600, 19305, 896896, 2027025... 

Property242:   
The following congruence is true: (x + C1)…(x + CF(m)) ≡ x^F(m) – 1 (mod m). 

Comment:   
The residual function is important because it generalizes the classical theorems by 
Wilson, Fermat, Euler, Wilson, Gauss, Lagrange, Leibnitz, Moser, and Sierpinski all 
together. 

 
(25) The Smarandacheian complements243 
 
Definition:  

Let g be a strictly increasing function defined on the set A and let “~” be an internal 
given law on A. Then the function f defined on the set A with values in the set A is a 
smarandacheian complement with respect to the function g and the internal law “~” if 
f(x) is the smallest k such that there exist a z in A so that x ~ k = g(z). 
 

                                                 
240 For more properties of this function, see F.S., Considerations on new functions in number theory, Arxiv. 
241 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 35. For lemmas and 
theorems regarding this function see F.S., A numerical function in the congruence theory, Arxiv. 
242 For the proof of this property, see Kashihara, K., Comments and topics on Smarandache notions and 
problems, Erhus University Press, 1996, Chapter 1: Some comments and problems on Smarandache notions, p. 
11. 
243 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 52. The Sequences 53-
57 from the same book define the following notions: The square complements sequence; The cube 
complements sequence; The m-power complements sequence; The double factorial complements sequence; The 
prime additive complements sequence, which are treated supra, Part one, Chapter II.  
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(26) The increasing repetead compositions244 
 
Definition:  

Let g be a function defined on the set of natural numbers with values in the set of natural 
numbers, such that g(n) > n for all natural n. An increasing repetead composition related 
to g and a given positive number m is defined in the following way: the function Fg 
defined on the set of natural numbers with values in the set of natural numbers, Fg(n) = k, 
where k is the smallest integer such that g(…g(n)…) ≥ m (where g is composed k times). 

Note:  
 F.S. suggest the study of Fs, where s is the function that associates to each positive 

integer n the sum of its positive divisors. 
 
(27) The decreasing repetead compositions 
 
Definition:  

Let g be a non-constant function defined on the set of natural numbers with values in the 
set of natural numbers, such that g(n) ≤ n for all natural n. A decreasing repetead 
composition related to g is defined in the following way: the function Fs defined on the 
set of natural numbers with values in the set of natural numbers, Fs(n) = k, where k is the 
smallest integer such that g(…g(n)…) = constant (where g is composed k times). 

Note:  
 F.S. suggest the study of Fd, where d is the function that associates to each positive 

integer n the number of its positive divisors. Same for π(n), the number of primes not 
exceeding n, p(n), the largest prime factor of n and ω(n), the number of distinct prime 
factors of n. 

 
(28) The back and forth factorials (the Smarandacheials)245 
 
Definition:  

Let n > k ≥ 1 be two integers. Then the Smarandacheial is defined as !n!k = Π, where Π 
is the product for 0 < abs{n – k*i} ≤ n of the numbers (n – k*i). 

Example:   
In the case k = 1 is obtained:  
!n!1 = n*(n – 1)*(n – 2)*…*1*(– 1)*( – 2)*…*(– n + 2)*( – n + 1)*( – n) = (– 1)^n*n!^2; 
Thus !5! = 5*(5 – 1)*(5 – 2)*(5 – 3)*(5 – 4)*(5 – 6)*(5 – 7)*(5 – 8)*(5 – 9)*(5 – 10) = -
14400. 
The sequence is: 4, -36, 576, -14400, 518400, -25401600, 1625702400, -131681894400, 
13168189440000, -1593350922240000, 229442532802560000 (…). 

Notes:   
In the case k = 2 is obtained !n!2 = (-1)^((n + 1)/2)*(n!!)^2 for n odd and !n!2 = (-
1)^(n/2)*(n!!)^2 for n even. The sequence is: 9, 64, -225, -2304, 11025, 147456, -
893025, -14745600, 108056025, 2123366400 (…). 

                                                 
244 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 151.  
245 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 290. See also Back and 
forth factorials, Arizona State University, Special Collections (article available on Vixra), where F.S. defines 
the Smarandacheial and the generalized Smarandacheial. See also F.S., Sequences of numbers involved in 
unsolved problems, Hexis, 2006, Sequences 316-325, for the definition of the back and forth summants, a 
function related to Smarandacheials and Bencze, Mihály, Smarandache summands, Smarandache Notions 
Journal. 
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In the case k = 3 is obtained the sequence: -8, 40, 324, 280, -2240, -26244, -22400, 
246400, 3779136, 3203200, -44844800 (…). 
In the case k = 4 is obtained the sequence: -15, 144, 105, 1024, 945, -14400, -10395, -
147456, -135135, 2822400, 2027025 (…). 
In the case k = 5 is obtained the sequence: -24, -42, 336, 216, 2500, 2376, 4032, -52416, -
33264, -562500, -532224, -891072, 16039296 (…). 

 
(29) The Smarandache infinite products246 
 
Definition:  

Let a(n) be any from the Smarandache type sequences and functions. Then the infinite 
product is defined as the product from n = 1 to n = ∞ of the numbers 1/a(n). 

Note:  Many of these infinite products lead to interesting constants. 
 
(30) The Smarandache-simple function247 
 
Definition:  

Sp(n) = min{m: m natural, p^n divides m!), defined for fixed primes p. 
Properties248:  

1. For any prime p and any positive integer k, let Sp(k) denote the smallest positive 
integer such that p^k  divides Sp(k)! Then, for any p and k, p divides Sp(k). 

2. In the conditions mentioned in the above property, k*(p – 1) < Sp(k) ≤ k*p. 
 
(31) The duals of few Smarandache type functions249 
 
Definition:  

József Sándor defined the dual arithmetic functions as follows: Leg g be a function 
defined on the set of positive integers with values in the set of non-null integers having 
the property that for each n ≥ 1 there exists at least a k ≥ 1 such that g(k) divides n. 

A dual of Smarandache function:  
Putting in the definition above g(k) = k! is obtained a dual of Smarandache function, 
denoted by S*; then S*(n) = max{m: m natural, m! divides n). 

A dual of pseudo-Smarandache function:  
Putting in the definition above g(k) = k*(k + 1)/2 is obtained a dual of pseudo-
Smarandache function, denoted by Z*; then Z*(n) = max{m: m natural, m*(m + 1)/2 
divides n). 

A dual of Smarandache-simple function:  
Is denoted by Sp* and Sp*(n) = max{m: m natural, m! divides p^n). 

A dual of Smarandache ceil  function250:  
Is denoted by Sk* and Sk*(n) = max{m: m natural, m^k divides n).251 

                                                 
246 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 314.  
247 Sándor, József, On additive analogues of certain arithmetic functions, Smarandache Notions Journal, vol. 
14, 2004. 
248 Le, Maohua, On Smarandache simple functions, in Seleacu, V., Bălăcenoiu, I. (editors), Smarandache 
Notions (Book series), vol. 10, American Research Press, 1999. 
249 Sándor, József, On additive analogues of certain arithmetic functions, Smarandache Notions Journal, vol. 
14, 2004, Sándor, József, On certain generalizations of the Smarandache function, Smarandache Notions 
Journal, vol. 11, no. 1-2-3, 2000, Sándor, József, On a dual of pseudo-Smarandache function, Smarandache 
Notions Journal, vol. 13, no. 1-2-3, 2002. 
250 It was introduced by Lu Yaming, see On a dual function of the Smarandache ceil function, in Wenpeng, 
Zhang, et al. (editors), Research on  Smarandache problems in number theory (vol. 2), Hexis, 2005. 
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(32) Generalizations of Smarandache function 
 
Note:  

The Smarandache function is the well known function that gives a criterion for primality 
and is related with many other functions, i.e. the function S(n) defined on the set of 
positive integers with values in the set of positive integers with the property that S(n) is 
the smallest number so that S(n)! is divisible by n. Many mathematicians constructed 
analogously defined functions252: 

Definition 1253:   
Let f be an arithmetical function defined on the set of positive integers with values in the 
set of positive integers with the property that for each positive integer n there exist at 
least a positive integer k such that n divides f(k). Let Ff be a function defined on the set of 
positive integers with values in the set of positive integers with the property that Ff(n) = 
min{k: k natural, n divides f(k)}. Since every subset of natural numbers is well ordered, 
is clearly that  Ff(n) ≥ 1 for all n positive integers. 
Examples:   
(i) Let id(k) = k  for all k ≥ 1. Then Fid(n) = n; 
(ii) Let f(k) = k!. Then F!(n) = S(n), the Smarandache function; 
(iii) Let f(k) = k*(k + 1)/2. Then Ff(n) = Z(n), the pseudo-Smarandache function; 
(iiii) Let f(k) = pk!, where pk denotes the k-th prime number. Then Ff(n) = min{k: k 

positive integer, n divides pk!}. 
Note:  
Analogously are defined the functions Fφ and Fσ, where φ is the Euler’s totient and σ the 
divisor function. 

Definition 2:   
Let A be a nonvoid set of the set of natural numbers, having the property that for each n ≥ 
1 there exists k belonging to A such that n divides k!. Then is introduced the following 
function: SA(n) = min{k: k belongs to A, n divides k!}. 
Examples:   
(i) Let A be equal to the set of positive integers; then SN(n) ≡ S(n), the Smarandache 

function; 
(ii) Let A be equal to the set of odd positive integers; it’s obtained a new 

Smarandache type function; 
(iii) Let A be equal to the set of even positive integers; it’s obtained a new 

Smarandache type function; 
(iiii) Let A be equal to the set of prime numbers P; then SP(n) = min{k: k belongs to P, 

n divides k!}.254 
 
(33) The Smarandache counter255 
                                                                                                                                                             
251 See supra, this chapter, Section (6) for the definition of Smarandache ceil functions of n-th order. 
252 We present here just few of them. See also Hungenbühler, Norbert and Specker, Ernst, A generalization of 
the Smarandahe function to several variables, Integers: Electronic Journal of Combinatorial Number Theory, 
6(2006).    
253 See Sándor, József, On certain generalizations of the Smarandache function, Smarandache Notions Journal, 
vol. 11, no. 1-2-3, 2000, for the functions defined here by Definitions 1 and 2. 
254 For more about this function, see infra, Part four, Chapter I: Theorems on the Smarandache type function 
P(n).  
255 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 
1998, p. 8-9. See also Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus 
University Press, 1996, p. 24. 
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Definition:  

The Smarandache counter C(a, b), for any a decimal digit and b integer, is the number of 
times a appears as a digit in b. 

Note: 
 F.S. raised the following question: what is the value of C(1, n!) and C(1, n^n)? 
 
(34) The pseudoSmarandache totient function256 
 
Definition:  

Zt(n) is the smallest integer m such that the sum from k = 1 to k = m of the numbers φ(k) 
is divisible by n. 

Theorems:  
1. Zt(n) is not additive and not multiplicative. 
2. Zt(n) > 1 for n > 1. 
3. The series defined as the sum from n = 1 to n = ∞ of the numbers 1/Zt(n) 

diverges. 
4. The series defined as the sum from n = 1 to n = ∞ of the numbers Zt(n)/n 

diverges. 
5. The series defined as the sum from k = 1 to k = Zt(n) of the numbers φ(k) is 

greater than or equal to n. 
6. Zt(n) is greater than or equal to floor(π*(n/3)^(1/2)), where the floor function 

floor(x) designates the largest integer smaller than or equal to x. 
7. It is not always the case that Zt(n) < n. 
 

(35) The pseudoSmarandache squarefree function257 
 
Definition:  

Zw(n) is the smallest integer m such that m^n is divisible by n, that is the value of m such 
that m^n/n is an integer. 

Theorems:  
1. Zw(p) = p, where p is any prime number. 
2. Xw(p^a*q^b*s^c*…) = p*q*s*…, where p, q, s are distinct primes. 
3. Zw(n) = n if and only if n is squarefree. 
4. Zw(n) ≤ n. 
5. Zw(n) ≥ 1 for n ≥ 1. 
6. Zw(p^k) = p for k ≥ 1 and p any prime. 
7. The series defined as the sum from n = 1 to n = ∞ of the numbers 1/Zw(n) 

diverges. 
8. The series defined as the sum from n = 1 to n = ∞ of the numbers Zw(n)/n 

diverges. 

                                                 
256 This function, analogous to the pseudoSmarandache function, is defined by Felice Russo: see R., Felice, A 
set of new Smarandache functions, sequences and conjectures in number theory, American Research  Press, 
2000, Chapter I: On some new Smarandache functions in number theory, Section I.1.: PseudoSmarandache 
totient function. 
257 This function, analogous to the pseudoSmarandache function, is defined by Felice Russo: see R., Felice, A 
set of new Smarandache functions, sequences and conjectures in number theory, American Research  Press, 
2000, Chapter I: On some new Smarandache functions in number theory, Section I.2.: PseudoSmarandache 
squarefree function. 
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9. The function Zw(n) is multiplicative, that is if gcd(m, n) = 1 then Zw(m*n) = 
Zw(m)*Zw(n). 

10. The function Zw(n) is not additive, that is that Zw(m + n) ≠ Zw(m) + Zw(n). 
 
(36) The Smarandache Zeta function258 
 
Definition:  

Sz(s) is the sum from n = 1 to n = ∞ of the numbers 1/a(n)^s, where s natural. 
 
(37) The Smarandache sequence density 
 
Definition:  

Sδ is the limit when n tends to ∞ of the number A(n)/n, where A(n) is the number of 
terms not exceeding n in a Smarandache sequence a(n), strictly increasing and composed 
of nonnegative integers. 

 
(38) The Smarandache generating function 
 
Definition:  

Sf(x) is the sum of the numbers a(n)*x^n. 
 
(39) The Smarandache totient function 
 
Definition:  

St(n) is equal to φ(a(n)), that is the number of positive integers smaller than or equal to 
a(n) which are relatively prime to a(n). 

 
(40) The Smarandache divisor function 
 
Definition:  

Sd(n) is equal to τ(a(n)), that is the number of positive divisors of a(n), where a(n) is any 
Smarandache sequence. 

 
(41) The additive analoque of few Smarandache functions259 
 
Definition 1:  

The additive analogue of the Smarandache function is defined as S(x) = min{m:  m 
natural, x ≤ m!}, where x belongs to the set of real numbers, x > 1. 

Definition 2:  

                                                 
258 The functions treated in the Sections (36)-(40) are defined by Felice Russo: see R., Felice, A set of new 
Smarandache functions, sequences and conjectures in number theory, American Research  Press, 2000, 
Chapter II: A set of new Smarandache-type notions in number theory. Here, the author defines yet many other 
functions like Smarandache continued radical, Smarandache Euler-Mascheroni sum, Smarandache-
Chebyshev function, Smarandache Gaussian sum, Smarandache Dirichlet beta function, Smarandache Mobius 
function, Smarandache Mertens function, Smarandache Dirichlet eta function, Smarandache Dirichlet lambda 
function etc. 
259 Sándor, József, Geometric theorems, diophantine equations, and arithmetic functions, American Research 
Press, 2002, p. 171. See also Sándor, József, On an additive analoque of the function S, Notes Number Th. 
Discr. Math. 7(2001), no. 3; Sándor, József, On additive analoques of certain arithmetic functions, 
Smarandache Notions Journal, vol. 14, 2004; Yuan, Yi and Wenpeng, Zhang, Mean value of the additive 
analoque of Smarandache function, Scientia Magna, vol. 1, no. 1, 2005. 
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The additive analogue of the dual of the Smarandache function260 is defined as S*(x) = 
max{m:  m natural, m! ≤ x}, where x belongs to the set of real numbers, x > 1. 

Properties:  
1. S(x) = S*(x) + 1, if k! < x < (k + 1)!, where k ≥ 1 and S(x) = S*(x), if x = (k + 1)!, 

where k ≥ 1, therefore S*(x) + 1 ≥ S(x) ≥ S*(x). 
2. S*(x) is surjective and an increasing function. 

Theorem:  
S(x) is asymptotically equal to (log x)/(log log x), when x tends to ∞. 

Definition 3:  
The additive analogue of the Smarandache simple function261 [which is defined for fixed 
primes p as Sp(n) = min{m: m natural, p^n divides m!)}] is defined as Sp(x) = min{m:  m 
natural, p^x ≤ m!}, where x belongs to the set of real numbers, x > 1. 

Definition 4:  
The additive analogue of the dual of Smarandache simple function262 [which is defined 
for fixed primes p as Sp*(n) = max{m: m natural, m! divides p^n)}] is defined as Sp*(x) = 
max{m:  m natural, m! ≤ p^x}, where x belongs to the set of real numbers, x > 1. 

 
(42) The Smarandache P and S persistence of a prime263 
 
Definition 1:  

Let X be any n-digits prime number, X = x1x2x3…xn. Reiterating the operation X + 
x1*x2*x3*…*xn, is eventually obtained a composite number; the number of steps required 
for X to collapse into a composite number is called the Smarandache P-persistence of the 
prime X. 
Examples:  
1. For X = 43 is obtained 43 + 4*3 = 55, a composite number, so the Smarandache 

P-persistence of the prime 43 is 1 (only one step was required to obtain a 
composite number).  

2. For X = 23 is obtained 23 + 2*3 = 29, then, reiterating, 29 + 2*9 = 47 and 47 + 
4*7 = 75, a composite number, so the Smarandache P-persistence of the prime 23 
is 3 (three steps were required to obtain a composite number). 

Definition 2: 
Let X be any n-digits prime number, X = x1x2x3…xn. Reiterating the operation X +  x1 + 
x2 + x3 + …+ xn, is eventually obtained a composite number; the number of steps 
required for X to collapse into a composite number is called the Smarandache S-
persistence of the prime X. 
Example:  

For X = 277 is obtained 277 + 2 + 7 + 7 = 293, a prime number; reiterating the 
operation is obtained 293 + 2 + 9 + 3 = 307, also a prime, 307 + 3 + 0 + 7 = 317, 
also a prime, and eventually 317 + 3 + 1 + 7 = 328, finally a composite number, 
so the Smarandache S-persistence of the prime 277 is 4 (four steps were required 
to obtain a composite number). 

 
(43) Smarandache type multiplicative functions264 
 

                                                 
260 See supra, this chapter, Section (31) for the definition of the dual of the Smarandache function. 
261 See supra, this chapter, Section (30) for the definition of the Smarandache simple function. 
262 See supra, this chapter, Section (31) for the definition of the dual of the Smarandache simple function. 
263 Russo, Felice, The Smarandache P and S peristence of a prime, Smarandache Notions Journal. 
264 Bottomley, Henry, Some Smarandache-type multiplicative functions, Smarandache Notions Journal. 
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Note:  
The following functions are multiplicative in the sense that, for any two coprime positive 
integers a, b, the following relation is true: f(a*b) = f(a)*f(b). 

Definitions:  
1. Am(n) is the number of solutions to the equation x^m ≡ 0(mod n); 
2. Bm(n) is the largest m-th power dividing n; 
3. Cm(n) is the m-th root of the largest m-th power dividing n; 
4. Dm(n) is the m-th power free part of n; 
5. Em(n) is the smallest number x, x > 0, such that n*x is a perfect m-th power 

(Smarandache m-th power complements); 
6. Fm(n) is the smallest m-th power divisible by n divided by the largest m-th power 

which divides n; 
7. Gm(n) is the m-th root of the smallest m-th power divisible by n divided by the 

largest m-th power which divides n; 
8. Hm(n) is the smallest m-th power divisible by n; 
9. Jm(n) is the m-th root of the smallest m-th power divisible by n (Smarandache ceil 

function of m-th order); 
10. Km(n) is the largest m-th power-free number dividing n (Smarandache m-th 

power residues); 
11. Lm(n) is the number obtained dividing n by the largest squarefree divisor of n. 

First few values, for m = 2,  of the functions above265:  
 Am(n):  1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, …  (sequence A000188); 
 Bm(n):  1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 4, 1, 1, 1, 16, 1, 9, 1, …   (sequence A008833); 

Cm(n):  1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, …  (sequence A000188); 
Dm(n): 1, 2, 3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, …   (sequence A007913); 
Em(n): 1, 2, 3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, …  (sequence A007913); 
Fm(n): 1, 4, 9, 1, 25, 36, 49, 4, 1, 100, 121, 9, 169, 196, …   (sequence A055491); 
Gm(n): 1, 2, 3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, …  (sequence A007913); 
Hm(n): 1, 4, 9, 4, 25, 36, 49, 16, 9, 100, 121, 36, 169, 196, …  (sequence A053143); 
Jm(n): 1, 2, 3, 2, 5, 6, 7, 4, 3, 10, 11, 6, 13, 14, 15, 4, 17, 6, …  (sequence A019554); 
Km(n): 1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, … (sequence A007947); 
Lm(n): 1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, …  (sequence A003557). 

Comment:  
Between the functions defined above are the following relashinships: Bm(n) = Cm(n)^m; n 
= Bm(n)* Dm(n); Fm(n) = Dm(n)* Em(n); Fm(n) = Gm(n)^m; Fm(n); Hm(n) = n* Em(n); 
Hm(n) = Bm(n)* Fm(n); Hm(n) = Jm(n)^m; n = Km(n)* Lm(n). 

 
(44) The Smarandache factor partition function266 
 
Definition:  

Let α1, α2, …, αr be a set of natural numbers and p1, p2, …, p3 a set of arbitrary primes. 
The Smarandache factor partition (SFP) of α1, α2, …, αr, f(α1, α2, …, αr), is defined as the 
number of ways in which the number n = p1^α1* p2^α2*…* p2^α2 can be expressed as the 
product of its’ divisors. 

                                                 
265 The first values of all these functions, for m = 2, 3 and 4, are listed in OEIS. 
266 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, Chapter 1: Smarandache partition functions, Section 4: Generalizations 
of partition function, introduction of the Smarandache factor partition. In this book (Chapter 1) the authors 
introduced yet other Smarandache type functions like Smarandache star function and raised a lot of open 
problems and conjectures on the factor/reciprocal partition theory. 
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Example:  
For the set of primes, (2, 3), f(1, 2) = 4 as n = 2^1*3^2 = 18 and n = 18 = 2*9 = 3*6 = 
2*3*3. 

Theorem267:  
Definition: For a positive integer n let τ(n) and f(n) be the number of distinct divisors 
and the Smarandache factor partitions respectively. If n is the smallest number 
satisfying τ(n) = f(n) = r for some r, then n is called a Balu number. 

 Enunciation: The number 36 is the largest Balu number (in other words, the three Balu 
numbers known to date, i.e. 1, 16, 36, are the only three Balu numbers).268  

 
(45) Smarandache fitorial and supplementary fitorial functions269 
 
Definition:  
 The Smarandache fitorial, denoted by FI(n), is defined as the product of all the numbers 

relatively prime to and less than n. 
Examples:  
 FI(6) = 1*5 = 5; FI(7) = 6! = 620; FI(12) = 1*5*7*11 = 385. 
Definition:  
 The Smarandache fitorial, denoted by FI(n), is defined as the product of all the numbers 

relatively prime to and less than n. 
Examples:  
 FI(6) = 1*5 = 5; FI(7) = 6! = 620; FI(12) = 1*5*7*11 = 385. 
Definition:  
 The Smarandache supplementary fitorial, denoted by SFI(n), is defined as the product of 

all the numbers less than or equal to n which are not relatively prime to n. 
Examples:  
 SFI(6) = 2*3*4*6 = 144; SFI(7) = 7; SFI(12) = 2*3*4*6*8*9*10*12 = 1244160. 
Properties:  
 1. FI(n)*SFI(n) = n!; 
 2. SFI(p) = p and Fi(p) = (p – 1)! if and only if p is prime. 
Theorem270:  
 For large values of n, SFI(2^n)/FI(2^n) ≈ (π/2)^(1/2). 
 
(46) The Smarandache reciprocal function271 
 
Definition:  
 The function Sc(n) defined in the following way: Sc(n) = x, where x + 1 does not divide 

n! and, for every y < x, y divides n!. 
                                                 
267 For the proof of the theorem see Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and 
new ideas on number theory and Smarandache sequences, Hexis, 2005, Chapter 2: Smarandache sequences, 
Section 1: On the largest Balu numberand some SFP equations. 
268 Maohua Le proved before that there are only finitely many Balu numbers; see Le, Maohua, On the Balu 
numbers, Smarandache Notions Journal, vol. 12, no. 1-2-3, 2001. 
269 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, Chapter 3: Miscellaneous topics, Section 8: Smarandache fitorial and 
supplementary fitorial functions.  
270 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 172. 
271 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, Chapter 3: Miscellaneous topics, Section 10: Smarandache reciprocal 
function and an elementary inequality. 
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Theorem272:  
 If Sc(n) = x and n ≠ 3, then x + 1 is the smallest prime greater than n. 
 
(47) The sumatory function associated to Smarandache function273 
 
Definition:  
 The sumatory function F(n) associated to Smarandache function is defined as the sum of 

the numbers S(d), where S is the Smarandache function and d divides n. 
 
 
Chapter II. Constants involving the Smarandache function 
 
(1) The first constant of Smarandache274 
 
Definition:  

Let S(n) be the Smarandache function, i.e. the smallest integer such that S(n)! is divisible 
by n. Then the series defined as the sum from n = 2 to n = ∞ of the numbers 1/S(n)! is 
convergent to a number s1 between 0.000 and 0.717. 

Note:   
The fact that the sum is convergent is proved using the following theorem: for n > 10, 
S(n)! > n.275 

 
(2) The second constant of Smaraendache276 
 
Definition:  

Let S(n) be the Smarandache function. Then the series defined as the sum from n = 2 to n 
= ∞ of the numbers S(n)/n! is convergent to an irrational number s2. 

Theorem:   
The sum that defines the second constant of Smarandache is convergent.277 

 
 (3) The third constant of Smarandache278 
 

                                                 
272 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 175. 
273 Andrei, M., et al., Some considerations concerning the sumatory function associated to Smarandache 

function,  
Smarandache Notions Journal, vol. 7, no. 1-2-3, 1996. 
274 For the definitions of the first, second, third and fourth constant of Smarandache see F.S., Definitions,  
solved and unsolved problems, conjectures, and theorems in number theory and geometry, Xiquan Publishing 
House, 2000, Theorems 15, 16, 17, 18. See also Sándor, József, On the irrationality of certain constants 
related to the Smarandache function, in Seleacu, V., Bălăcenoiu, I. (editors), Smarandache Notions (Book 
series), vol. 10, American Research Press, 1999, for the comments about the proof of irrationality of few 
constants of Smarandache. See Cojocaru, Ion and Cojocaru, Sorin, The first constant of Smarandache, 
Smarandache Notions Journal, vol. 7, no. 1-2-3, 1996. 
275 For the proof of this theorem, see Ashbacher, C., Smarandache Sequences, stereograms and series, Hexis, 
Phoenix, p. 95. 
276 See Cojocaru, Ion and Cojocaru, Sorin, The second constant of Smarandache, Smarandache Notions 
Journal, vol. 7, no. 1-2-3, 1996. 
277 For the proof of this theorem, see Ashbacher, C., Smarandache Sequences, stereograms and series, Hexis, 
Phoenix, p. 103. 
278 See Cojocaru, Ion and Cojocaru, Sorin, The third and fourth constants of Smarandache, Smarandache 
Notions Journal, vol. 7, no. 1-2-3, 1996. 
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Definition:  
Let S(n) be the Smarandache function. Then the series defined as the sum from n = 2 to n 
= ∞ of the numbers  1/S(2)*S(3)*…*S(n)  is convergent to a number s3 between 0.71 
and 1.01. 

Theorem:   
The sum that defines the third constant of Smarandache is convergent.279 

 
(4) The fourth constant of Smarandache 
 
Definition:  

Let S(n) be the Smarandache function. Then the series defined as the sum from n = 2 to n 
= ∞ of the numbers  n^x/S(2)*S(3)*…*S(n), where x ≥ 2, is convergent to a number s4.  

Note:  
The number s4 is different for different values of x, so it designates a set of constants. 

Theorem280:   
The sum that defines the fourth constant of Smarandache is convergent for any value of x 
≥ 2. 

 
(5) Other Smarandache constants281 
 
Theorems282:  Let Sn be the Smarandache function. Then: 

1. The series defined as the sum from n = 2 to n = ∞ of the numbers ((–1)^(n – 
1))*(Sn/n!) is convergent to an irrational number s5. 

2. The series defined as the sum from n = 2 to n = ∞ of the numbers Sn/(n + 1)! is 
convergent to an irrational number s6 greater than e^(-3/2) and smaller than 1/2. 

3. The series defined as the sum from n = k to n = ∞ of the numbers Sn/(n + k)!, 
where k is a natural number, is convergent to a number s7. 

4. The series defined as the sum from n = k to n = ∞ of the numbers Sn/(n – k)!, 
where k is a nonzero natural number, is convergent to a number s8. 

5. The series defined as the sum from n = 2 to n = ∞ of the numbers 1/Σ, where Σ is 
the sum from i = 2 to i = n of the numbers Si!/i, is convergent to a number s9. 

6. The series defined as the sum from n = 2 to n = ∞ of the numbers 
1/(Sn*Sn!^(1/x)), where x > 1, is convergent to a number s10. 

7. The series defined as the sum from n = 2 to n = ∞ of the numbers 1/(Sn*(Sn – 
1)!^(1/x)), where x > 1, is convergent to a number s11. 

8. Let f be a function defined on the set of positive integers with values in the set of 
real numbers which satisfies the condition f(n) ≤ c/((τ(n!))*n^x – τ((n – 1)!)), 
where c and x are given constants, greater than 1, and τ(n) is the number of 
positive divisors of n. Then the series defined as the sum from 1 to ∞ of the 
numbers f(S(n)) is convergent to a number s12. 

                                                 
279 For the proof of this theorem, see Ashbacher, C., Smarandache Sequences, stereograms and series, Hexis, 
Phoenix, p. 105. 
280 For the proof of this theorem, see Ashbacher, C., Smarandache Sequences, stereograms and series, Hexis, 
Phoenix, p. 107. 
281 Many Smarandache constants are defined in F.S., Definitions, solved and unsolved problems, conjectures, 
and theorems in number theory and geometry, Xiquan Publishing House, 2000, Theorems 15-30.  
282 For the proof of these theorems see Ashbacher, C., Smarandache Sequences, stereograms and series, 
Hexis, Phoenix, p. 109-118. For even more theorems about constants involving Smarandache function see the 
same book, p. 119-132. 
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9. The series defined as the sum from n = 1 to n = ∞ of the numbers 1/Π^n, where Π 
is the product from k = 2 to k = n of the numbers Sk!, is convergent to a number 
s13. 

10. The series defined as the sum from n = 1 to n = ∞ of the numbers 
1/(Sn!*(Sn!)^(1/2)*(log Sn)^p), where p > 1, is convergent to a number s14. 

11. The series defined as the sum from n = 1 to n = ∞ of the numbers (2^n)/S(2^n)! is 
convergent to a number s15. 

12. The series defined as the sum from n = 1 to n = ∞ of the numbers Sn/(n^(p + 1)), 
where p is a real number greater than 1,  is convergent to a number s16 (when 0 ≤ 
n ≤ 1, the series diverges). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
\ 
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PART THREE 
Conjectures on Smarandache notions and conjectures on number theory due 

to Florentin Smarandache 
 
 
Chapter I. Conjectures on Smarandache notions  
 
(1) Conjectures on Smarandache function 
 
Conjecture 1 (Tutescu’s Conjecture283): 

The diophantine equation S(n) = S(n + 1) has no solutions. This conjecture was checked 
up to n = 10^9.284 

Conjecture 2 (Radu’s Conjecture): 
The diophantine equation S(n) + S(n + 1) = S(n + 2) has infinitely many solutions. 

Conjecture 3285:  
There are infinitely many pairs of Fibonacci numbers (Fi, Fj) such that S(Fi) = Fj. 
Note: If Fi is prime, then clearly (Fi, Fi) is a solution but it is not known if there are 

infinitely many Fibonacci numbers that are also primes.  
 
(2) Conjectures on pseudo-Smarandache function286 
 
Conjecture 1: 

The diophantine equation Z(x) = Z(x + 1) has no solutions. 
Conjecture 2: 

For any given positive number r there exists an integer s, such that the absolute value of 
Z(s) – Z(s + 1) is greater than r.  

Conjecture 3: 
Abs{Z(n + 1)/Z(n)} is unbounded. 

Conjecture 4: 
There are infinitely many integers n such that Z(τ(n)) = τ(Z(n)), where τ(n) is the number 
of positive divisors of n. 

Conjecture 5: 
Let Zk(n) represent the repeated application of the pseudo-Smarandache function k times 
Z(Z(…Z(n)…)); question: are there any integers n such that there is not some k for which Zk(n) = 
3? Conjecture: there is no value of n for which the repeated application of the pseudo-
Smarandache does not lead to 3. 

 
(3) Conjectures on Smarandache double factorial function287 
 

                                                 
283 Tutescu, L., On a conjecture concerning the Smarandache function, Abstracts of Papers presented to the 
Amer. Math. Soc., 17, 583, 1996. For Conjectures 1-2 see also Ruiz, S.M. and Perez, M., Properties and 
problems related to the Smarandache type functions, Arxiv. 
284According to article Smarandache function  from the on-line math encyclopedia Wolfram Math World.  
285 Ashbacher, Charles, An introduction to the Smarandache function, Erhus University Press, 1995, p. 41. 
286 For the first two conjectures, see F.S., Definitions, solved and unsolved problems, conjectures, and 
theorems in number theory and geometry, Xiquan Publishing House, 2000, Problem 29. For Conjectures 3-5, 
see Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research 
Press, 1998, p. 55, 76, 78. 
287 See Russo, Felice, A set of new Smarandache functions, sequences and conjectures in number theory, 
American Research  Press, 2000, Chapter IV: An introduction to the Smarandache double factorial function. 
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Conjecture 1: 
The sum from n = 1 to n = ∞ of the numbers Sdf(n) is asymptotically equal to a*n^b 
where a and b are close to 0.8834… and 1.759… respectively. 

Conjecture 2: 
The sum from n = 1 to n = ∞ of the numbers 1/Sdf(n) is asymptotically equal to a*n^b 
where a and b are close to 0.9411… and 0.49… respectively. 

Conjecture 3: 
The function Sdf(n)/n is not distributed uniformly in the interval [0, 1]. 

Conjecture 4: 
For any arbitrary real number r > 0, there is some number n ≥ 1 such that Sdf(n)/n < r. 

Conjecture 5: 
The equations Sdf(n + 1)/Sdf(n) = k respectively Sdf(n)/Sdf(n + 1) = k , where k is any 
positive integer and n > 1 for the first equation don’t admit solutions. 

 
(4) Conjecture involving irrational and transcendental numbers 
 
Enunciation:   

Let a(n) be a Smarandache sequence, different from u(n) = 1…1, where 1 is repetead pn 
times, where pn is the n-th prime. Then the concatenation 0.a(1)a(2) …a(n)… is an 
irrational number and, even more, 0.a(1)a(2) …a(n)… is a transcendental number.288 

 
(5) Conjecture on Smarandache function average289 
 
Enunciation:   

Let SA be the Smarandache function average. Then SA(n) = 2*n/ln n, for n > 1. 
Note:   S. Tabirca and T. Tabirca proved that SA(n) ≤ 3*n/8 + 1/4 + 2/n for n > 5 and SA(n) ≤  

21*n/72 + 1/12 – 2/n for n > 23.  
 
(6) Conjecture on pseudo-Smarandache function and palindromes290 
 
Enunciation:   

Let Z(n) be the pseudo-Smarandache function.291 There are some palindromic numbers n 
such that Z(n) is also palindromic: Z(909) = 404, Z(2222) = 1111. Let Zk(n) = 
Z(Z(Z(…(n)…))), where function Z is executed k times and Z0(n) is, by convention, n. 
What is the largest value of Z(n) such that, for some n,  Zk(n) is a palindrome for all k = 
0, 1, 2, …, m? 

Note:   A number is called palindromic number or palindrome if it reads the same forwards and 
 backwards. 
Conjecture:    

                                                 
288 See infra, Part Four, Chapter 1, Section (11): Theorem on the Smarandache concatenated power decimals, 
for the proof of irrationality of few such numbers. See also Luca, Florian, On the Smarandache irrationality 
conjecture, Smarandache Notions Journal, vol. 11, no. 1-2-3, 2000, for the proof of irrationality of other such 
types of numbers. 
289 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Problem 28. See also Finch, Steven R., The average value of the 
Smarandache function, in Seleacu, V., Bălăcenoiu, I. (editors), Smarandache Notions (Book series), vol. 10, 
American Research Press, 1999. 
290 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Theorem 1. 
291 The smallest number Z(n) such that 1 + 2 + 3 + …+ Z(n) is divisible by n.  
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Charles Ashbacher conjectured that there is no a largest value of Z(n) such that, for some 
n, Zk(n) is a palindrome for all k = 0, 1, 2, …, m. 

 
(7) Conjecture on Smarandache deconstructive sequence292 
 
Enunciation:   

The Smarandache deconstructive sequence contains infinitely many primes. 
 
(8) Conjectures on Smarandache odd sequence293 
 
Conjecture 1:   

Except for the trivial case of n = 1, there are no numbers in the Smarandache odd 
sequence that are also Fibonacci numbers. 

Conjecture 2:   
Except for the trivial case of n = 1, there are no numbers in the Smarandache odd 
sequence that are also Lucas numbers. 

 
(9) Conjectures on Smarandache even sequence294 
 
Note:   

Up through the number 2468101214161820222426283032, just one element of even 
sequence (ES) was found to be twice a prime (2468101214 = 2*1234050607). 

Conjecture 1:   
There are other values of n such that ES(n) = 2*p for p a prime. 

Conjecture 2:   
The only number in the Smarandache even sequence and a Fibonacci number is the 
trivial case of n = 2. 

Conjecture 3:   
The only number in the Smarandache even sequence and a Lucas number is the trivial 
case of n = 2. 

 
 
Chapter II. Conjectures on primes due to Smarandache 
 
(1) Generalizations of Andrica’s Conjecture295 
 
Enunciation:  

                                                 
292 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 
1998, p. 11. 
293 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 
1998, p. 12. 
294 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 
1998, p. 13. 
295 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Problem 1. F.S., Six conjectures which generalize or are related to Andrica’s 
Conjecture, Arxiv. Also see Perez, M.L., Five Smarandache conjectures on primes,  Smarandache Notions 
Journal.  Also see R., Felice, A set of new Smarandache functions, sequences and conjectures in number 
theory, American Research  Press, 2000, Chapter V: On some Smarandache conjectures and unsolved 
problems. For more about the conjecture named after mathematician Dorin Andrica [which states that, for pn 
the n-th prime number, the inequality (pn+1)^(1/2) – (pn)^(1/2) < 1 holds] see the articles Andrica’s Conjecture 
and Smarandache constants from the on-line math encyclopedia Wolfram Math World. 
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The equation pn+1^x – pn^x = 1, where pn is the n-th prime, has a unique solution between 
0.5 and 1; the maximum solution occurs for n = 1, i.e. 3^x – 2^x = 1 when x = 1 and the 
minimum solution occurs for n = 31, i.e. 127^x – 113^x = 1 when x = 0.567148… = a0. 
Thus, Andrica’s conjecture An = pn+1^(1/2) – pn^(1/2) < 1 is generalised to: 
(i)  Bn = pn+1^a – pn^a < 1, where a < a0; 
(ii)   Cn = pn+1^(1/k) – pn^(1/k) < 2/k, where k ≥ 2; 
(iii) Dn = pn+1^a – pn^a < 1/n, where a < a0 and n big enough, n = n(a), holds for 

infinitely many consecutive primes. Questions: is this still available for a < a0 < 
1? Is there any rank n0 depending on a and n such that this relation is verified for 
all n ≥ n0? 

(iiii) pn+1/pn ≤ 5/3, and the maximum occurs at n = 2.296 
Note: The number 0.567148130202017714646846875533482564586790249388… is called the 

Smarandache constant.297 
 
(2) Generalizations of Goldbach’s and de Polignac’s Conjectures298 
 
A.Odd numbers 
1. Any odd integer n can be expressed as a combination of three primes as follows: 

(i)  As a sum of two primes minus another prime: n = p + q – r, where p, q, r are all 
prime numbers (do not include the trivial solution: p = p + q – q when p is prime. 
Questions: Is this conjecture equivalent with Goldbach's Conjecture (any odd 
integer greater than or equal to 9 is the sum of three primes)? Is the conjecture 
true when all three prime numbers are different? In how many ways can each odd 
integer be expressed as above? 

(ii) As a prime minus another prime and minus again another prime: n = p – q – r, 
where p, q, r are all prime numbers. Questions: Is this conjecture equivalent with 
Goldbach's Conjecture? Is the conjecture true when all three prime numbers are 
different? In how many ways can each odd integer be expressed as above? 
(Vinogradov proved in 1937 that every sufficiently large odd number k is the sum 
of three odd primes). 

2. Any odd integer n can be expressed as a combination of five primes as follows: 
(i)  As a sum of four primes minus another prime: n = p + q + r + t – u, where p, q, r, 

t, u are all prime numbers (do not include the solution u equal to one of other four 
primes). Questions: Is the conjecture true when all five prime numbers are 
different? In how many ways can each odd integer be expressed as above? 

(ii) As a sum of three primes minus another two primes: n = p + q + r – t – u, where p, 
q, r, t, u are all prime numbers (do not include the solutions t or u equal to one of 

                                                 
296 This conjecture (iiii) has been proved to be true by Jozsef Sandor, On a conjecture of Smarandache on 
prime numbers, Smarandache Notions Journal. 
297 For more decimals of the Smarandache constant see the sequence A038458 in OEIS. 
298 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Problem 2. Also see Perez, M.L., More Smarandache conjectures on primes' 
summation, Smarandache Notions Journal. Also see R., Felice, A set of new Smarandache functions, sequences 
and conjectures in number theory, American Research  Press, 2000, Chapter V: On some Smarandache 
conjectures and unsolved problems. For more about the two conjectures named after mathematicians Christian 
Goldbach [which states that every number that is greater than 2 is the sum of three primes; note that Golbach 
considered the number 1 to be a prime – the majority of mathematicians from today don’t; note also that the 
conjecture is equivalent with the statement that all positive even integers greater than 4 can be expressed as the 
sum of two primes] and Alphonse de Polignac [which states that every even number is the difference of two 
consecutive primes in infinitely many ways] see the articles de Polignac’s Conjecture and Golbach Conjecture 
from the on-line math encyclopedia Wolfram Math World.  
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other three primes). Questions: Is the conjecture true when all five prime numbers 
are different? In how many ways can each odd integer be expressed as above? 

(iii) As a sum of two primes minus another three primes: n = p + q – r – t – u, where p, 
q, r, t, u are all prime numbers (do not include the solutions r, t or u equal to one 
of other two primes). Questions: Is the conjecture true when all five prime 
numbers are different? In how many ways can each odd integer be expressed as 
above? 

(iiii) As a prime minus another four primes: n = p – q – r – t – u, where p, q, r, t, u are 
all prime numbers (do not include the solution p equal to one of other four 
primes). Questions: Is the conjecture true when all five prime numbers are 
different? In how many ways can each odd integer be expressed as above? 

 
B. Even numbers 
1. Any even integer n can be expressed as a combination of two primes as follows: 

(i)  As a difference of two primes: n = p – q, where p, q are both prime numbers. 
Questions: Is it equivalent with Goldbach conjecture that every even number 
greater than 4 is the sum of two odd primes? In how many ways can each even 
integer be expressed as above? 

2. Any even integer n can be expressed as a combination of four primes as follows: 
(i)  As a sum of three primes minus another prime: n = p + q + r – t, where p, q, r, t 

are all primes. Questions: Is the conjecture true when all four prime numbers are 
different? In how many ways can each odd integer be expressed as above? 

(ii)  As a sum of two primes minus another two primes: n = p + q – r – t, where p, q, r, 
t are all primes. Questions: Is the conjecture true when all four prime numbers are 
different? In how many ways can each odd integer be expressed as above? 

(iii)  As a prime minus a sum of three primes: n = p – q – r – t, where p, q, r, t are all 
primes. Questions: Is the conjecture true when all four prime numbers are 
different? In how many ways can each odd integer be expressed as above? 

 
  C. General conjecture 
  Let k ≥ 3, and 1 ≤ s < k, be integers.  Then: 

(i)  If k is odd, any odd integer can be expressed as a sum of k – s primes (first set) 
minus a sum of s primes (second set), such that the primes of the first set is 
different from the primes of the second set. Questions: Is the conjecture true when 
all k prime numbers are different? In how many ways can each odd integer be 
expressed as above?  

(ii) If k is even, any even integer can be expressed as a sum of k – s primes (first set) 
minus a sum of s primes (second set), such that the primes of the first set is 
different from the primes of the second set. Questions: Is the conjecture true when 
all k prime numbers are different? In how many ways can each even integer be 
expressed as above? 

 
(3) Conjecture on Gaussian primes299 
 
Definition:  

Let ω numbers be a + b*ω, where ω is a complex n-th root of unity, ω^(n – 1) + ω^(n – 
2)+...+ 1 = 0, which enjoy unique factorization. The units are: ±1, ±ω, ±ω^2,…, ±ω^(n – 
1). 

                                                 
299 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 59. 
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Conjecture: 
The configurations of ω primes are symmetric of the 2n regular polygon. 

Note: 
This is a generalization of Einstein's integers. 

 
(4) Conjecture on the difference between two primes300 
 
Enunciation:   

There are not, for any even integer n, two primes those difference is equal to n. 
 
(5) Conjecture on a  Silverman problem301 
 
Notes:  
1. Daniel Silverman raised the problem if the product from n = 1 to n = m of the numbers 

(pn + 1)/(pn – 1), where pn is the n-th prime, is an integer for any other value of m beside 
the values 1, 2, 3, 4, 8. 

2. F.S. conjectured that the number Rm, where Rm is the product from n = 1 to n = m of the 
numbers (pn + k)/(pn – k), is an integer for a finite number of values of m and there is an 
infinite number of values of k for which no Rm is an integer. 

 
(6) Conjecture on twin primes involving the pseudo-twin primes302 
 
Enunciation:   

Let p be a positive integer. Then p and p + 2 are twin primes if and only if (p – 1)!*((1/p 
+ 2/(p + 2)) + 1/p + 1/(p + 2) is an integer. 

Definition:   
Let p be a positive integer. Then p and p + 2 are pseudo-twin primes if and only if ((p – 
1)! + 1)/p + ((p + 1)! + 1)/(p + 2) is an integer. 

Note:   
If p and p + 2 are classic twin primes, then they are also pseudo-twin primes, for by 
Wilson's Theorem, both the first and second terms are integers. 

Problem:   
Are there pseudo-twin primes that are not classic twin primes? 

 
 
Chapter III. Conjectures on Diophantine equations due to Smarandache 
 
(1) Generalization of Catalan’s Conjecture303 
 
Enunciation:  

                                                 
300 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 44. 
301 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 61. 
302 Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, 
p. 22. 
303 F.S., Only Problems, not Solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 54. F.S., 
Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 138, Prime equation conjecture. 
For more about the Catalan’s Conjecture see the article Catalan’s Conjecture from the on-line math 
encyclopedia Wolfram Math World. For a study of the diophantine equation proposed by F.S. see See Ibstedt, 
H., Surphing on the ocean of numbers – a few Smarandache notions and similar topics, Erhus University 
Press, Vail, 1997, Chapter IV: Diophantine equations. 



 88

Let k be a non-zero integer. There are only a finite number of solutions in integers p, q, x, 
y, each greater than 1, of the equation x^p – y^q = k. 

Notes:  
1. Eugène Charles Catalan conjectured in nineteenth century that the only solution 

of the diophantine equation x^p – y^q = 1 is the solution [x, y, p, q] = [3, 2, 2, 3]. 
2. J.W.S. Cassels conjectured in 1953 that, if exist, there are only a finite number of 

solutions in integers of the equation x^p – y^q = 1. Robert Tijdeman proved this 
in 1976. 

3. Preda Mihăilescu proved the Catalan’s Conjecture in 2002.   
 
(2) Conjecture proved by Florian Luca304 
 
Enunciation:   

Let a, b, c be three integers with a*b ≠ 0. Then the equation a*x^y + b*y^x = c*z^n, with 
x, y, z ≥ 2 and gcd(x, y) ≥ 1, has finitely many solutions [x, y, z, n]. 

 
(3) Conjecture on diophantine equation y = 2*x1*x2*…*xn + 1 
 
Enunciation305:    

Let n be integer, n ≥ 2. The diophantine equation y = 2*x1*x2*…*xn + 1 has an infinity 
of solutions of primes. 

Examples:  691 = 2*3*5*23 + 1, where k = 4 or 647 = 2*17*19 + 1, where k = 3. 
Problems306:  

1. Find all n such that pm = p1*p2*...*pn + 1, where all are prime and m > n. 
2. Is there a solution for the m = 2*n, m = n^2  and m = n*(n + 1)/2 cases? 
3. Find the solution of y = 2*x1*x2*…*xk + 1 for all k such that the product 

x1*x2*…*xk is the smallest. Does this equation have a solution for all k natural 
numbers? 

 
 
Chapter IV. Other conjectures due to Smarandache 
 
(1) Conjecture on an Erdős’ open problem 307 
 
Description:  

In one of his books, Paul Erdős proposed the following problem: “The integer n is called 
a barrier for an arithmetic function f if m + f(m) ≤ n for all m < n. Question: are there 
infinitely many barriers for x*ω(n), for some x greater than 0 (where ω(n) is the number 

                                                 
304 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Problem 20. See also Luca, Florian, Products of factorials in Smarandache 
type expressions and Luca, Florian, Perfect powers in Smarandache type expressions, both articles in 
Smarandache Notions Journal, vol. 8, no. 1-2-3, 1997. 
305 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 34. F.S., 
Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 139, Generalized prime equation 
conjecture. For a study of the diophantine equation proposed by F.S. see See Ibstedt, H., Surphing on the 
ocean of numbers – a few Smarandache notions and similar topics, Erhus University Press, Vail, 1997, 
Chapter IV: Diophantine equations. 
306 Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, 
p. 23. 
307 F.S., On an Erdős’ open problem, in Collected Papers, vol. I (second edition), InfoLearnQuest, 2007. 
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of distinct prime factors of n)?”. Based on some results regarding this question (four 
lemmas), F.S. conjectured that there is a finite number of barriers, for all x > 0. 

Lemma 1:  
If x > 1, there are two barriers only: n = 1 and n = 2 (trivial barriers). 

Lemma 2:  
There is an infinity of numbers which can not be barriers for x*ω(n), for any x > 0. 

Lemma 3:  
For all x between 0 (exclusive) and 1 (inclusive) there are nontrivial barriers for x*ω(n). 

Lemma 4:  
Let n be a number between 1 (inclusive) and p1*…*pr*pr+1 (inclusive) and x between 0 
(exclusive) and 1 (inclusive). Then n is a barrier if and only if R(n) is verified for m 
belonging to the set {n – 1, n – 2, …, n – r + 1}. 
 

(2) Conjecture on the difference between a cube and a square308 
 
Enunciation:   

There are infinitely many numbers that cannot be expressed as the difference between a 
cube and a square (in absolute value). These numbers are called Smarandache bad 
numbers. 

Examples:   
1. The following numbers can be written as the difference between a cube and a 

square (so they are not Smarandache bad numbers): 1 = abs{2^3 – 3^2}; 2 = 
abs{3^3 – 5^2}; 3 = abs{1^3 – 2^2}; 4 = abs{5^3 – 11^2}; 8 = {1^3 – 3^2} etc. 

2. The following numbers are probable Smarandache bad numbers: 5, 6, 7, 10, 13, 
14 etc. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
308 Bencze, Mihály, Smarandache relashionships and subsequences, Smarandache Notions Journal. 
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PART FOUR 
Theorems on Smarandache notions and theorems on number theory due to 

Florentin Smarandache 
 
 
Chapter I. Theorems on Smarandache type notions  
 
(1) Theorems on Smarandache function 
 
Theorem 1309:  

Let NS(k), k ≥ 1, be a generic expression for sequences of integers expressed in 
functional form.310 Let NS(k) = k*(k + 1)/2, the k-th triangular number. Then, there are 
infinitely many integers k such that S(SN(k)) = k. 

Theorem 2311:  
There is no composite number k such that S(k*(k + 1)/2) = k. 

Theorem 3312:  
It is not possible to find a number n such that S(n)*S(n + 1) = n. 

Theorem 4313:  
Given the values of the Smarandache function S(1) = 0, S(2) = 2, S(3) = 3, S(4) = 4, S(5) 
= 5,…, construct the number r by concatenating the values in the following way: 
0.02345…The number r is irrational. 

Theorem 5314:  
 Let p be any prime number; then S((p^p)^n) = p^(n + 1) – p^n + p. 
Theorem 6315:  
 The following inequalities are true for a, b, n positive integers: 

(i) S(a*b) ≤ S(a) + S(b); 
(ii) S(a*b) ≤ a*S(b); 
(iii) S(n^2) ≤ 2*S(n) ≤ n for n > 4, n even. 

Theorem 7316:  
The series defined as the sum from n ≥ 1 of the numbers x^n/S(1)*S(2)*…*S(n) 
converges absolutely for every x. 

Theorem 8317:  
Let S(m) = min{k: k natural, m divides k!} be the Smarandache function,  let k = 1, 2, …, 
n and ak and bk belonging to set of non-null natural numbers. Then we have the following 

                                                 
309 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 
1998, p. 37-38. 
310 For example, Fibonacci numbers,  Lucas numbers, triangular numbers can be placed in functional form. 
311 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 
1998, p. 38. 
312 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 
1998, p. 43. 
313 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 
1998, p. 59. 
314 Ruiz, S.M., A result obtained using Smarandache function, in Seleacu, V., Bălăcenoiu, I. (editors), 
Smarandache Notions (Book series), vol. 10, American Research Press, 1999. 
315 Sándor, József, On an inequality for the Smarandache function, in Seleacu, V., Bălăcenoiu, I. (editors), 
Smarandache Notions (Book series), vol. 10, American Research Press, 1999. 
316 Luca, Florian, On a series involving S(1)*S(2)*…*S(n), in Seleacu, V., Bălăcenoiu, I. (editors), 
Smarandache Notions (Book series), vol. 10, American Research Press, 1999. 
317 Bencze, Mihály, A new inequality for the Smarandache function, in Seleacu, V., Bălăcenoiu, I. (editors), 
Smarandache Notions (Book series), vol. 10, American Research Press, 1999. 
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inequality: S(Π) ≤ Σ, where Π is the product from k = 1 to k = n of the numbers (ak!)^bk 
and Σ is the sum from k = 1 to k = n of the numbers ak*bk. 

Theorem 8318:  
Let S(m) = min{k: k natural, m divides k!} be the Smarandache function. Then we have 
the following inequality: S(Π) ≤ Σ, where Π is the product from k = 1 to k = m of the 
numbers mk and Σ is the sum from k = 1 to k = m of the numbers S(mk). 

Theorem 9319:  
The following inequality is true, for p prime and n natural: (p – 1)*n + 1 ≤ S(p^n) ≤ p*n. 

Theorem 10:  
The following statement is true, for p prime and n natural: S(p^n) = p*(n – m) for a 
particular m, where 0 ≤ m ≤ [(n – 1)/p]. 

Theorem 11320:  
The following inequality is true: S(p^a) ≤ S(q^a) for p ≤ q primes and a nonnegative 
integer. 

Theorem 12:  
The following inequality is true: S(n) ≤ S(n – S(n)). 

Theorem 13:  
The following inequality is true: S(p^x) ≤ S(p^y), for p prime and x ≤ y, where x, y, 
nonnegative integers. 

Theorem 14:  
The following inequality is true: S(p^a)/(p^a) ≤ S(p^(a + 1))/((p^(a + 1)), for a 
nonegative integer. 

Theorem 15:  
The following inequality is true: S(m*n) ≤ m*S(n) for all positive integers m, n. 

Theorem 16:  
The following inequality is true: max{S(m), S(n)} ≤ m*S(n) for all positive integers m, n. 

Theorem 17:  
The following inequality is true: S(m*n) ≥ max{S(m), S(n)} for all positive integers m, n. 

Theorem 18:  
The following inequality is true: S((m!)^n)) ≤ m*n for all positive integers m, n. 

Theorem 19:  
The following inequality is true: S(p! ± 1) > S(p!) for p prime. 

Theorem 20:  
The inferior limit, when n tends to ∞, from S(n)/n is equal to 0 and the superior limit, 
when n tends to ∞, from S(n)/n is equal to 1. 

Theorem 21:  
The inferior limit, when n tends to ∞, from S(n + 1)/S(n) is equal to 0 and the superior 
limit, when n tends to ∞, from S(n + 1)/S(n) is equal to +∞. 

Theorem 22:  
The inferior limit, when n tends to ∞, from [S(n + 1) – S(n)] is equal to -∞ and the 
superior limit, when n tends to ∞, from [S(n + 1) – S(n)] is equal to +∞. 

Theorem 23:  
The inferior limit, when n tends to ∞, from S(σ(n))/n, where σ(n) is the divisor function, 
is equal to 0.  

                                                 
318 Bencze, Mihály, An inequality for the Smarandache function, in Seleacu, V., Bălăcenoiu, I. (editors), 
Smarandache Notions (Book series), vol. 10, American Research Press, 1999. 
319 For the proof of the Theorems 9-10, see Grønås, Pål, A  note on S(p^r), Smarandache Function Journal, vol. 
2-3, 1993. 
320 For Theorems 11-25, see Sándor, József, Geometric theorems, diophantine equations, and arithmetic 
functions, American Research Press, 2002, p. 123-134. 



 92

Theorem 24:  
The inferior limit, when n tends to ∞, from S(φ(n))/n, where φ(n) is the Euler’s totient, is 
equal to 0.  

Theorem 25:  
The inferior limit, when n tends to ∞, from S(S(n))/n is equal to 0 and max{S(S(n))/n: n 
natural} is equal to 1. 

Theorem 26321:  
The positive integer n is a solution of equation S(n)^2 + S(n) = k*n, where k is a fixed 
positive integer, if and only if one of the following conditions is satisfied: 
(i) n = 1 for k = 2; 
(ii) n = 4 for k = 5; 
(iii) n = p*(p + 1) for k = 1, where p is a prime with p > 3; 
(iiii) n = p*(p + 1)/k for k > 1, where p is a prime with p ≡ -1(mod k). 

 
Theorem 27322:  

For any positive nitger k, k ≥ 1, the equation S(m1) + S(m2) +…+S(m) = S(m1 + m2 
+…+mk) has an infinity of positive integer solutions. 

 
(2) Theorems on Smarandache function of a set 
 
Definition323:  

Let A be a nonvoid set of positive integers having the following property: for each n ≥ 1, 
there exist at least a k belonging to A such that n divides k!. Then the Smarandache 
function of a set is defined as SA(n) = min{k: k belongs to A, n divides k!}. When A = P 
= set of prime numbers, the arithmetic function obtained is P(n) = min{p: p prime, n 
divides p!}.324 When A = Q = set of squares, the arithmetic function obtained is Q(n) = 
min{m^2: n divides (m^2)!}. 

Theorem 1325: 
 Let p be prime such that m^2 < p < (m + 1)^2. Then Q(p) = (m + 1)^2. 
Theorem 2: 
 Let p be prime and k positive integer. Then Q(p^k) = ([(k*p)^(1/2)] + 1)^2 for p > k. 
Theorem 3: 
 If p < q are primes, then Q(p*q) = ([q^(1/2)] + 1)^2. 
 
(3) Theorems on pseudo-Smarandache function 
 
Theorem 1326:  

Given the values of the pseudo-Smarandache function Z(1) = 1, Z(2) = 3, Z(3) = 2, Z(4) 
= 7, Z(5) = 4,…, construct the number r by concatenating the values in the following 
way: 0.13274…The number r is irrational. 

                                                 
321 Chen, Rongi and Le, Maohua, On the functional equation S(n)^2 + S(n) = k*n, Smarandache Notions Journal, 
vol. 11, no. 1-2-3, 2000. 
322 Yaming, Lu, On the solutions of an equation involving the Smarandache function, Scientia Magna, vol. 2, 
no. 1, 2006. 
323 Sándor, József, Geometric theorems, diophantine equations, and arithmetic functions, American Research 
Press, 2002, p. 152. 
324 See infra, this chapter, Section 5. 
325 For Theorems 1-3, see Sándor, József, Geometric theorems, diophantine equations, and arithmetic 
functions, American Research Press, 2002, p. 152-153. 
326 For the proof of the Theorems 1-7, see Ashbacher, C., Pluckings from the tree of Smarandache sequences 
and functions, American Research Press, 1998, p. 59-74. 
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Theorem 2: 
 There are infinitely many solutions to the equation Z(n) = S(n). 
Theorem 3: 

The series defined as the sum from k = 1 to k = ∞ of the numbers 1/(Z(n) +S(n)) is 
divergent. 

Theorem 4: 
 There are infinitely many integers n such that Z(n) = φ(n), where φ is Euler’s totient. 
Theorem 5: 

There are infinitely many composite integers n such that Z(n) = φ(n). 
Theorem 6: 

There are infinitely many solutions to the expression Z(n) + φ(n) = n. 
Theorem 7: 

The only solutions to the equation Z(n) + τ(n) = n, where n > 0 and τ(n) is the number of 
positive divisors of n, are 1, 8 and 9. 

Theorem 8327: 
The alternating iteration Z(…(φ(Z(φ(n)))…) ultimately leads to one of the following five 
2-cycles: 2 - 3, 8 - 15, 128 - 255, 32768 - 65535, 2147483648 - 4294967295.  

Theorem 9328: 
The following inequality is true: Z(n) > τ(n) for all integers n > 120. 

Theorem 10: 
The equation Z(n) + φ(n) = τ(n) has no solution. 

Theorem 11: 
The following inequality is true: Z(n) + φ(n) > τ(n) for any integer n, n ≥ 1. 

Theorem 12: 
The equation Z(n) + τ (n) = n has the only solution n = 56. 

Theorem 13: 
The only solutions of the equation Z(n) = σ(n) are n = 2^k, where k ≥ 1 and σ(n) is the 
divisor function. 

Theorem 14: 
The equation Z(S(n)) = Z(n) has an infinite number of solutions. 

Theorem 15: 
The equation S(Z(n)) = S(n) has an infinite number of solutions. 

Theorem 16: 
The equation S(Z(n)) = Z(n) has an infinite number of solutions. 

Theorem 17: 
The equation Z(S(n)) = S(n) has no solution. 

Theorem 18329: 
If we note with ΔS,Z(n) the absolute value of the number S(Z(n)) – Z(S(n)), then the 
following statements are true: the inferior limit, when n tends to ∞, of the number ΔS,Z(n) 
is smaller than or equal to 1;  the superior limit, when n tends to ∞, of the number ΔS,Z(n) 
is equal to +∞. 

 
(4) Theorems on Smarandache double factorial function 

                                                 
327 Ibstedt, H., Mainly natural numbers – a few elementary studies on Smarandache sequences and other 
number problems, American Research Press, 2003, Chapter IV: The alternating iteration of the Euler φ 
function followed by the Smarandache Z function. 
328 For the proof of the Theorems 9-17 see Majumdar, A.A.K., Wandering in the world of Smarandache 
numbers, InProQuest, 2010, Chapter 4: The pseudo Smarandache function, Section 4.4.: Miscellaneous topics. 
329 Sándor, József, Geometric theorems, diophantine equations, and arithmetic functions, American Research 
Press, 2002, p. 156. 
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Theorem 1330:  

The equation Sdf(n)/n = 1has an infinite number of solutions. 
Theorem 2:  

The even (odd respectively) numbers are invariant under the application of Sdf function, 
namely Sdf(even) = even and Sdf(odd) = odd. 

Theorem 3:  
The diophantine equation Sdf(n) = Sdf(n + 1) doesn’t admit solutions. 

Theorem 4331:  
The equation Sdf(n) + φ(n) = n, where φ is Euler’s totient, has only four positive integer 
solutions, they are 8, 18, 27 and 125. 

 
(5) Theorems on Smarandache type function P(n)332 
 
Definition:  

P(n) is the function defined analogously with Smarandache function in the following 
way: let P be equal to the set of prime numbers; then P(n) = min{k: k belongs to P, n 
divides k!} 

Theorem 1:  
For each prime p one has P(p) = p, and, if n is squarefree, then P(n) is equal to the 
greatest prime divisor of n. 

Theorem 2:  
One has the inequality P(p^2) ≥ 2*p + 1. If q = 2*p + 1 is prime, then P(p^2) = q. More 
generally, P(p^m) ≥ m*p + 1 for all primes p and all integers m. there is equality, if m*p 
+ 1 is prime. 

Theorem 3:  
One has, for all n, m ≥ 1, S(n) ≤ P(n) ≤ 2*S(n) – 1 and P(n*m) ≤ 2*(P(n) + P(m)) – 1, 
where S(n) is the Smarandache function. 

 
(6) Theorem on Smarandache type function C(n)333 
 
Definition:  

C(n) is the function defined analogously with Smarandache function in the following 
way: let C(n, k) be the binomial coefficient, i.e. C(n, k) = n*(n – 1)*…*(n – k + 
1)/1*2*…*k = n!/(k!*(n – k)!)) for 1 ≤ k ≤ n; then C(n) = max{k: 1 ≤ k < n – 1, n divides 
C(n, k)} 

Theorem:  
C(n) is the greatest totient334 of n which is less then or equal to n – 2. 

 

                                                 
330 See, for Theorems 1-3, Russo, Felice, A set of new Smarandache functions, sequences and conjectures in 
number theory, American Research  Press, 2000, Chapter IV: An introduction to the Smarandache double 
factorial function. 
331 Yuan, Xia, On the Smarandache double factorial function, in Wenpeng, Zhang (editor), Research on number 
theory and Smarandache notions (Proceedings of the sixth international conference on number theory and 
Smarandache notions), Hexis, 2010. 
332 See Sándor, József, On certain generalizations of the Smarandache function, Smarandache Notions Journal, 
vol. 11, no. 1-2-3, 2000, where this function is defined; also see supra, Part Two, Chapter I, Section (32): 
Generalizations of Smarandache function. 
333 Sándor, József, Geometric theorems, diophantine equations, and arithmetic functions, American Research 
Press, 2002, p. 169. 
334 A totient of n is a number k such  that gcd(k, n) = 1. 
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(7) Theorems on a dual of Smarandache function335 
 
Definition:  

The dual of the Smarandache function S*(n) is defined as S*(n) = max{m: m natural, m! 
divides n). 

Theorem 1336:  
 For any integer n, n ≥ 1, the following inequality is true: 1 ≤ S*(n) ≤ S(n) ≤ n. 
Theorem 2:  

For any integer n, n ≥ p, where p is any prime, p > 2, the following equality is true: S*(n! 
+ (p – 1)!) = p – 1. 

Theorem 3:  
For any integer n and a, where 1 ≤ a ≤ n, the following inequality is true: S*(n*(n – 
1)*…*(n – a + 1) ≥ a. 

Theorem 4:  
For any integer n, n ≥ 1, the following statement is true: S*((2*n)!*(2*n + 2)!) is equal to 
2*n + 2, if 2*n + 3 is a prime and is greater than or equal to 2*n + 3, if 2*n + 3 is not a 
prime. 

Theorem 5:  
 For any integer n, n ≥ 1, the following inequality is true: S*((2*n + 1)!*(2*n + 3)!) ≥ 2*(n 
 + 2). 
 
(8) Theorems on a dual of pseudo-Smarandache function337 
 
Definition:  

A dual of the pseudo-Smarandache function, Z*(n), is the function defined in the 
following way: Z*(n) = max{m: m natural, m*(m + 1)/2 divides n). 

Theorem 1338:  
Let q be a prime such that p = 2*q – 1 is a prime too. Then Z*(p*q) = p. 

Theorem 2:  
For all n ≥ 1 the following inequality is true: 1 ≤ Z*(n) ≤ Z(n). 

Theorem 3:  
All solutions of equation Z*(n) = Z(n) can be written in the form n = r*(r + 1)/2, where r 
is a non-null natural number. 

Theorem 4:  
For all n the following inequality is true: Z*(n) ≤ ((8*n + 1)^(1/2) – 1)/2. 

Theorem 5:  
For all a, b ≥ 1 the following inequality is true: Z*(a*b) ≥ max{Z*(a), Z*(b)}. 

Theorem 6:  
For any integer k, k ≥ 1, the following equality is true: Z*(k*(k + 1)/2)) = k. 

Theorem 7:  

                                                 
335 See supra, Part Two, Chapter I, Section (31) for the definitions of the duals of few Smarandache type 
functions. 
336 For the proof of Theorems 1-5 see Majumdar, A.A.K., Wandering in the world of Smarandache numbers, 
InProQuest, 2010, Chapter 3: The Smarandache function, Section 3.2.1: The Smarandache dual function. 
337 See supra, Part Two, Chapter I, Section (31) for the definitions of the duals of few Smarandache type 
functions. 
338 For the proof of the Theorems 1-7 see Sándor, József, On a dual of pseudo-Smarandache function, 
Smarandache Notions Journal, vol. 13, no. 1-2-3, 2002 and Majumdar, A.A.K., Wandering in the world of 
Smarandache numbers, InProQuest, 2010, Chapter 4: The pseudo Smarandache function, Section 4.3.1: The 
pseudo Smarandache dual function. 
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For any p prime, p ≥ 3, and k integer, k ≥ 1, the following statement is true: Z*(p^k) is 
equal to 2 if p = 3 and is equal to 1 if p ≠ 3. 

 
(9) Theorems on Smarandache ceil function339 
 
Definition:  

The ceil function, denoted Sk(n), is the function defined on the set of positive integers 
with values in the set of positive integers with the property that Sk(n) is the smallest 
number so that Sk(n)^k is divisible by n. 

Theorem 1:  
Sk(n) is a multiplicative function. 

Theorem 2:  
Sk+1(n) divides Sk(n). 

Theorem 3:  
There exists k so that Sk(n!) = p#, where p is the largest prime dividing n and p# denotes 
the product all of primes less than or equal to p. 

 
(10) Theorems on Smarandache sequences 
 
Theorem 1340:  

There are no integers m, n and k such that SPS(n) = m^k.341 
Theorem 2342:  

The fixed points of SSC(n) are 1 and all numbers where every prime factor is to the first 
power.343 

Theorem 3344:  
There is no quadruple (m, m + 1, m + 2, m + 3) such that all four are fixed points of 
SSC(n). 

Theorem 4345:  
If the number p = 123456…k belongs to SCS, where p is prime, then k ≡ 1(mod 3).346 

Theorem 5347:  
For any positive integer n, n > 1, Sn (where Sn denotes the Smarandache n-ary sieve) 
contains infinitely many composite numbers. 

Theorem 6348:  

                                                 
339 See, for the enunciation and proof of the Theorems 1-3, Ibstedt, H., Surphing on the ocean of numbers – a 
few Smarandache notions and similar topics, Erhus University Press, Vail, 1997, Chapter II: On Smarandache 
functions, Section 3: The Smarandache ceil function. See also supra, Part Two, Chapter I, Section (6): The 
Smarandache ceil functions of n-th order. 
340 Ashbacher, C., Collection of problems on Smarandache notions, Erhus University Press, 1996, p. 8. 
341 SPS is an acronym for Smarandache permutation sequence, i.e. the sequence 12, 1342, 135642, 
13578642…; see supra, Part One, Chapter I, Section (14). 
342 Ashbacher, C., Collection of problems on Smarandache notions, Erhus University Press, 1996, p. 10. 
343 SSC is an acronym for Smarandache square complements, i.e. the sequence 1, 2, 3, 1, 5, 6, 7…; see supra, 
Part One, Chapter II, Section (10). 
344 Ashbacher, C., Collection of problems on Smarandache notions, Erhus University Press, 1996, p. 11. 
345 Ashbacher, C., Collection of problems on Smarandache notions, Erhus University Press, 1996, p. 56. 
346 SCS is an acronym for Smarandache consecutive sequence, i.e. the sequence 1, 12, 123, 1234…; see supra, 
Part One, Chapter I, Section (1). 
347 Le, Maohua, On the Smarandache n-ary sieve, in Seleacu, V., Bălăcenoiu, I. (editors), Smarandache 
Notions (Book series), vol. 10, American Research Press, 1999. For the definition of the Smarandache n-ary 
sieve sequence see supra, Part one, Chapter II, Section (29).  
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For any positive integer m, m > 1, there exist infinitely many m-powers which are 
Smarandache pseudo-m-powers of third kind. 

Theorem 7349:  
The density of GSPs in positive integers is approximatively 0.11. 

Theorem 8350:  
There are no numbers in the Smarandache odd sequence there are also Fibonacci or 
Lucas numbers, except for the cases OS(1) = F(1) = F(2) = L(1) = 1, OS(2) = F(7) = 13. 

Theorem 10351:  
There are no numbers in the Smarandache even sequence that are also Fibonacci  or 
Lucas numbers, except for the case ES(1) = F(3) = 2. 

Theorem 11352:  
There are no terms in the Smarandache prime product sequence that are squares or higher 
powers of an integer greater than 1.  

Theorem 12:  
There are no numbers in the Smarandache prime product sequence there are also 
Fibonacci  or Lucas numbers, except for the cases PPS(1) = F(4) = L(2) = 3 and PPS(2) = 
L(4) = 7. 

Theorem 13353:  
There are no terms in the Smarandache square product sequence that are squares, cubes 
or higher powers of an integer greater than 1.  

Theorem 14:  
There are no numbers in the Smarandache square product of the first kind and of the 
second kind sequences there are also Fibonacci  or Lucas numbers, except for the cases 
SPS1(1) = F(3) = 2, SPS1(2) = F(5) = 5, respectively SPS2(2) = F(4) = L(2) = 3. 

Theorem 15354:  
There are no terms in the Smarandache higher power product sequences that are squares 
of an integer greater than 1.  

Theorem 16:  
If we define with 1^m*2*m*…*n^m + 1 the Smarandache higher power product 
sequence of the first kind, then: if m is not a number of the form m = 2^k for some 
integer k ≥ 1, then the sequence HPPS1(n) contains only one prime, namely HPPS1(1) = 
2. 

Theorem 17:  
If we define with 1^m*2*m*…*n^m – 1 the Smarandache higher power product 
sequence of the second kind, then: if both m and 2^m – 1 are primes, then the sequence 
HPPS2(n) contains only one prime, namely HPPS2(2) = 2^m – 1; otherwise, the sequence 
contains no prime. 

                                                                                                                                                             
348 Le, Maohua, On Smarandache pseudo-powers of third kind, in Seleacu, V., Bălăcenoiu, I. (editors), 
Smarandache Notions (Book series), vol. 10, American Research Press, 1999. For the definition of the 
Smarandache pseudo-m-powers of the third kind see supra, Part one, Chapter II, Section (63).  
349 Ashbacher, Charles and Neirynck Lori, The density of generalized Smarandache palindromes, 
Smarandache Notions Journal. For the definition of Generalized Smarandache Palindromes (GSPs) see supra, 
Part One, Chapter I, Section (22). 
350 For the proof of the Theorems 8-19 see Majumdar, A.A.K., Wandering in the world of Smarandache 
numbers, InProQuest, 2010, Chapter 1: Some Smarandache sequences. 
351 For the definitons of Smarandache odd and even sequences, see supra, Part One, Chapter I, Sections (3)-
(4). 
352 For the definition of Smarandache prime product sequence, see supra, Part One, Chapter II, Section (33). 
353 For the definition of Smarandache square product sequence, see supra, Part One, Chapter II, Section (51). 
354 For the definition of Smarandache higher power  product sequences, see supra, Part One, Chapter II, 
Section (52). 
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Theorem 18355:  
There are no terms in the Smarandache consecutive sequence CS(n) and Smarandache 
reverse sequence RS(n) that are Fibonacci and Lucas numbers, except for the cases CS(1) 
= F(1) = F(2) = L(1) = 1 and CS(3) = L(10) = 123 respectively RS(1) = F(1) = F(2) = 
L(1) = 1 and RS(2) = F(8) = 21. 

Theorem 19356:  
There are no terms in the Smarandache symmetric sequence SS(n) that are Fibonacci and 
Lucas numbers, except for the cases SS(1) = F(1) = F(2) = L(1) = 1 and SS(2) = L(5) = 
11. 

Theorem 20357:  
The series defined as the sum from n = 1 to n = ∞ of the numbers CS(n)/RS(n) is 
divergent. 

Theorem 21358:  
If we note with a(n) the inferior factorial part of the positive integer n and with b(n) the 
superior factorial part of n359, the the following statement is true: the series I, defined as 
the sum from n = 1 to n = ∞ of the numbers 1/a(n)^α, and S, defined as the sum from n = 
1 to n = ∞ of the numbers 1/b(n)^α, for α any positive real number, are convergent if α > 
1 and divergent if α ≤ 1. 

Theorem 22360:  
If we note with a(n) the square complements (of n) sequence361, then the equation Σ = 
a(n*(n + 1)/2), where Σ is the sum from k = 1 to k = n of the numbers a(k), has only three 
solutions, they are 1, 2 and 3. 
 

(11) Theorem on the Smarandache concatenated power decimals362 
 
Definition:  

For any positive integer k is defined the Smarandache concatenated k-power decimal αk 
as follows: α1 = 0.12345678910111213…, α2 = 0.149162536496481100…, α3 = 
0.182764125216343…  

Enunciation:  
For any positive integer k, αk is an irrational number. 

 
(12) Theorem on Smarandache function and perf ect numbers363 
 
Enunciation:  

                                                 
355 For the definitons of Smarandache consecutive and reverse sequences, see supra, Part One, Chapter I, 
Sections (1)-(2). 
356 For the definiton of Smarandache symmetric sequence, see supra, Part One, Chapter I, Section (10). 
357 Majumdar, A.A.K., Wandering in the world of Smarandache numbers, InProQuest, 2010, Chapter 1: Some 
Smarandache sequences, Section 1.12: Series involving Smarandache sequences. 
358 Jie, Li, On the inferior and superior factorial part sequences, in Wenpeng, Zhang (editor), Research on  
Smarandache problems in number theory (Collected papers), Hexis, 2004. 
359 See supra, Part One, Chapter 2, Sections (25)-(26) for the definitions of inferior/superior factorial part of 
n. 
360 Zhanhu, Li, On an equation for the square complements, Scientia Magna, vol. 2, no. 1, 2006. 
361 See supra, Part One, Chapter 2, Section (10) for the definition of square complements sequence. 
362 Guo, Yongdong and Le, Maohua, Smarandache concatenated power decimals and their irrationality, 
Smarandache Notions Journal, vol. 9, no. 1-2-3, 1998. 
363 Ruiz, Sebastian Martin, Smarandache’s function applied to perfect numbers, Smarandache Notions Journal, 
vol. 10, no. 1-2-3, 1999. 
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If n is a perfect number of the form n = (2^(k – 1))*(2^k – 1), where k positive integer, 
and 2^k – 1 = p prime, then S(n) = p. 

 
(13) Theorem on Smarandache function and the Dirichlet divisor function364 
 
Enunciation:  

For any positive integer n, the equation S(n) = τ(n) holds if and only if n = 2^(2^n – 1), 
where n is non-negative integer, and n = m*p^α, where m > 0 and m divides ((α1 + 
1)*(α2 + 1)*…*(αs + 1))!/(p^α), if α ≠ 1, p divides α + 1, 1 < s < 2^(α*p/α + 1)). 
 

(14) Theorems on Smarandache primitive numbers of power p365 
 
Definition:  

Let p be a prime, n be any fixed positive integer, then Sp(n) denotes the smallest positive 
integer such that Sp(n)! is divisible by p^n.366 

Theorem 1:  
Let p be an odd prime, mi be positive integer.  Then the following inequality is true: 
Sp(Σ1) ≤ Σ2, where Σ1 is the sum from i = 1 to i = k of the numbers mi and Σ2 is the sum 
from i = 1 to i = k of the numbers Sp(mi). 

Theorem 2:  
There are infinite integers mi (i = 1, 2, …, k) satisfying the following equality: 
Sp(Σ1) = Σ2, where Σ1 is the sum from i = 1 to i = k of the numbers mi and Σ2 is the sum 
from i = 1 to i = k of the numbers Sp(mi). 

 
 
Chapter II. Theorems due to Smarandache 
 
(1) A generalization of Euler’s Theorem on congruences367 
  
Enunciation:   

Let a, m be integers and m ≠ 0. Then a^(φ(ms) + s) ≡ a^s (mod m), where φ is Euler’s 
totient and ms and s are obtained by the following algorithm: 
(0): {a = a0d0; gcd(a0, m0) = 1 and m = m0d0; d = 1}; 
(1):  {d0 = d1

0 d1; gcd(d1
0, m1) = 1 and m0 = m1d1; d1 = 1}; 

……………………………………………………………... 
(s-1):  {ds-2 = d1

s-2 ds-1; gcd(d1s-2, ms-1) = 1 and ms-2 = ms-1ds-1; ds-1 = 1}; 
(s):  {ds-1 = d1

s-1 ds; gcd(d1s-1, ms) = 1 and ms-1 = msds; ds = 1}; 
 
(2) Theorem on an inequality involving factorials368 
 
Enunciation:   

                                                 
364 Wang, Chunping and Zhao, Yanlin, On an equation involving the Smarandache function and the Dirichlet 
divisor function, in Wenpeng, Zhang (editor), Research on number theory and Smarandache notions 
(Proceedings of the fifth international conference on number theory and Smarandache notions), Hexis, 2009. 
365 Liping, Ding, On the primitive numbers of power p and its triangle inequality, in Wenpeng, Zhang (editor), 
Research on  Smarandache problems in number theory (Collected papers), Hexis, 2004. 
366 See supra, Part One, Chapter Two, Sections (16)-(18). 
367 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 135. For the proof of the 
theorem see F.S., A generalization of Euler’s Theorem on congruences, Arxiv. 
368 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 141. 
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Let n and k be positive integers. Then n! is greater than k^(n – k + 1)*Π, where Π is the 
sum from i = 0 to i = k – 1 of the numbers ((n – 1)/k)! 

Example:   
For k = 2 it is obtained n! > (2^(n – 1))*((n – 1)/2)!*(n/2)! 

 
(3) Theorem on divisibility involving factorials369 
 
Enunciation:   

Let a and m be integers, m > 0. Then (a^m – a)*(m – 1)! is divisible by m. 
 
(4) Theorem on an infinity of a set of primes370 
 
Enunciation:   

There exist an infinite number of primes which contain given digits, a1, a2, …, am, in the 
positions i1, i2, …, im, with i1, i2, …, im ≥ 0, where the “i-th position” is the (10^i)-th digit.  

Note:   
If im = 0, then am must be odd and different from 5. 

 
(5) General theorem of characterization of n primes simultaneously371 
 
Enunciation:   

Let pij ,where 1 ≤ i ≤ n and 1 ≤ j ≤ mi, be coprime integers two by two and let r1, …, rn 
and a1, …an be integers such that ai and ri are coprime for all i. Under certain 
conditions372 the following statements are equivalent: 
(i) The numbers pij, where 1 ≤ i ≤ n and 1 ≤ j ≤ mi, are simultaneously prime. 
(ii) (R/D)*Σ ≡ 0 (mod R/D), where R is the product from i = 1 to i = n of the numbers 

ri, D is a divisor of R and  Σ is the sum from i = 1 to i = n of the numbers ai*ci/ri. 
 
(6) Theorems on Carmichael’s totient function conjecture373 
 
Theorem 1:   

The equation φ(x) = n, where φ is Euler’s totient and n is a natural number, admits a 
finite number of solutions. 

Theorem 2:   
If the equation φ(x) = n has, for a n natural, an unique solution x0, then x0 is a multiple of 
the number 2^2*3^2*7^2*43^2 (note also that, if a counterexemple x0 to the 
Carmichael’s totient function exists, it has to be greater than 10^10000)374. 

Theorem 3:   

                                                 
369 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 142. See also Le, 
Maohua, An improvement on the Smarandache divisibility theorem, in Seleacu, V., Bălăcenoiu, I. (editors), 
Smarandache Notions (Book series), vol. 10, American Research Press, 1999. 
370 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 155. 
371 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 313. 
372 See, for these conditions and more about this theorem, F.S., A general theorem for the characterization of n 
prime numbers simultaneously, Arxiv. 
373 For the proof of these theorems see F.S., On Carmichael’s conjecture, Arxiv. Carmichael’s totient function 
conjecture asserts that, if there is any x such that φ(x) = n, then there are at least two solutions x. For more 
about this conjecture see the article Carmichael’s totient function conjecture from the on-line math 
encyclopedia Wolfram Math World. 
374 P. Masai and A. Vallette, A lower bound for a counterexample to Carmichael's conjecture. 
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If n is a counterexample to Carmichael’s totient function conjecture, then n is a multiple 
of a product of a very large number of primes (but F.S. also conjectures that  there is no 
such a counterexample).375 

 
(7) Theorem inspired by Crittenden and Vanden Eynden’s Conjecture376 
 
Enunciation:   

It is not posible to cover all positive integers with n geometrical progressions of integers.  
Note:   

Crittenden and Vanden Eynden’s Conjecture refers to arithmetical proggresions and 
asserts that, if n arithmetic progressions, each having modulus at least k, include all 
integers from 1 to k*2^(n – k + 1), then they include all the integers.377 

 
(8) Theorem which generalizes Wilson’s Theorem378 
 
Description:   

In 1770, Wilson found the following result in number theory: “If p is prime, then (p – 1)! 
≡ -1 (mod p)”. Smarandache provided the following generalization of this theorem: 

Enunciation:   
Let m be a whole number and A be the set of the numbers of the form ±p^n, ±2*p^n, 
±2^r, or 0, where p is odd prime, n natural and r belongs to the set {0, 1, 2}. Let c1, c2, 
…, cφ(n) be a reduced system of residues modulo m. Then c1*c2*…*cφ(n) ≡ -1 (mod m) if 
m belongs to the set A, respectively +1 if m doesn’t belong to the set A, where φ is 
Euler’s totient. 

 
9) Theorems on arithmetic and geometric progressions379 
 
Theorem 1:   

It does not matter the way in which one partitions the set of the terms of an arithmetic 
progression (respectively geometric) in subsets: in at least one of these subsets there will 
be at least 3 terms in arithmetic progression (respectively geometric).  

Theorem 2:   
A set M , which contains an arithmetic progression (respectively geometric) infinite, not 
constant, preserves the property of the theorem 1. Indeed, this directly results from the 
fact that any partition of M implies the partition of the terms of the progression. 

 
10) Theorem on the number of natural solutions of a linear equation380 
 
Definition:   

                                                 
375 F.S., A property for a counterexample to Carmichael’s Conjecture, in Collected Papers, vol. I (second 
edition), InfoLearnQuest, 2007. 
376 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 85. F.S., 
Thirty-six unsolved problems in number theory, Arxiv. 
377 R.J. Simpson, On a conjecture of Crittenden and Vanden Eynden concerning coverings by arithmetic 
progressions. 
378 F.S., On a Theorem of Wilson, in Collected Papers, vol. I (second edition), InfoLearnQuest, 2007. 
379 F.S., About some progressions, in Collected Papers, vol. I (second edition), InfoLearnQuest, 2007. 
380 F.S., On solving general linear equations in the set of natural numbers, in Collected Papers, vol. I (second 
edition), InfoLearnQuest, 2007. This article, beside proving this theorem, also gives a method for solving 
general linear equations on the set of natural numbers. 



 102

The equation a1*x1 +…+ ai*xi +… + an*xn = b, with all ai and b integers, ai ≠ 0, and gcd 
(a1, …, an) = d, has variations of sign if there are at least two coefficients ai, aj with 1 ≤ i, 
j ≤ n, such that sign (ai*aj) = -1. 

Theorem:   
The equation from the definition above admits an infinity of natural solutions if and only 
if has variations of sign. 

 
11) Theorems on the solutions of diophantine quadratic equations381 
 
Theorem 1:   

The equation x^2 – y^2 = c admits integer solutions if and only if c is integer and is a 
multiple of number 4. 

Theorem 2:   
The equation x^2 – d*y^2 = c^2, where d is not a perfect square,  admits an infinity of 
natural solutions. 

Theorem 3382:   
The equation a*x^2 – b*y^2 = c, where c ≠ 0 and a*b = k^2 (k integer),  admits a finite 
number of natural solutions. 

Theorem 4:   
If the equation a*x^2 – b*y^2 = c, where a*b ≠  k^2 (k integer),  admits a particular 
nontrivial natural solution, then it admits an infinity of natural solutions. 

 
12) Theorems on linear congruences383 
 
Theorem 1:   

The linear congruence a1*x1 + ... + an*xn ≡ b (mod m) has solutions if and only if gcd (a1, 
…, an, m) divides b. 

Theorem 2:   
The congruence a*x ≡ b (mod m), m ≠ 0, with gcd (a, m) = d and d divides b, has d 
distinct solutions. 

Theorem 3:   
The congruence a1*x1 + ... + an*xn ≡ b (mod m), m1 ≠ 0, with gcd (a1, …, an, m) = d and d 
divides b, has d*m^(n – 1) distinct solutions. 

 
13) Theorem on very perfect numbers384 
 
Definition:   

A natural number n is named very perfect number if σ(σ(n)) = 2*n, were σ(n) is the sum 
of the positive divisors of n (including 1 and n).385 

                                                 
381 F.S., Existence and number of solutions of diophantine quadratic equations with two unknows in Z and N, 
in Collected Papers, vol. I (second edition), InfoLearnQuest, 2007.  
382 For Theorems 3-4 see also F.S., A method of solving a diophantine equation of second degree with n 
variables, Arxiv. 
383 F.S., Algorithms for solving linear congruences and systems of linear congruences, in Collected Papers, 
vol. I (second edition), InfoLearnQuest, 2007. Beside proving these theorems, this article gives also a method 
for solving linear congruences and systems of linear congruences. 
384 F.S., About very perfect numbers, in  Collected Papers, vol. III, Abaddaba, Oradea, 2000. 
385 A natural number is called a perfect number if  σ(n) = 2*n; there are known in present 47 such numbers, as 
much as Mersenne primes known, because between the two sets is a biunivocal correspondence. It is not 
known yet if there exist a perfect number which is odd; it is also not known if the set of perfect numbers 
(implicitly the set of Mersenne primes) is infinite. 
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Theorem:   
The square of an odd prime number can’t be very perfect number. 

 
14) Theorems on inequalities for the integer part function 386 
 
Theorem 1:   

For any x, y > 0, we have the inequality (we note with [x], [y] etc. the integer part of the 
numbers x, y etc.): [5*x] + [5*y] ≥ [3*x + y] + [3*y + x]. 

Theorem 2:   
If x, y, z ≥ 0, then we have the inequality [3*x] + [3*y] + [3*z] ≥ [x] + [y] + [z] + [x + y] 
+ [x + z] + [y + z]. 

Theorem 3:   
If x, y, z ≥ 0, then we have the inequality [2*x] + [2*y] + [2*z] ≤ [x] + [y] + [z] + [x + y 
+ z].  

Theorem 4:   
If x, y ≥ 0 and n, k are integers such that n ≥ k ≥ 0, then we have the inequality [n*x + 
n*y] ≥ k*[x] + k*[y] + (n – k)*[x + y]. 

Note:  
From the theorems above, Smarandache found the following applications concerning 
factorial function and divisibility: 

Application  1:   
For any m, n naturals, (5*m)!*(5*n)! is divisible by m!*n!*(3*m + n)!*(3*n + m)!. 

Application  2:   
For any a, b, c naturals, (3*a)!*(3*b)!*(3*c)! is divisible by a!*b!*c!*(a + b)!*(a + c)!*(b 
+ c)!. 

Application  3:   
For any a, b, c naturals, a!*b!*c!*(a + b + c)! is divisible by (2*a)!*(2*b)!*(2*c)!. 

Application  4:   
For any a, b, n, k naturals with n ≥ k, (n*a)!*(n*b)! is divisible by a!^k*b!^k*(a + 
b)!^(n*k). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
386 F.S., Inequalities for the integer part function, in  Collected Papers, vol. III, Abaddaba, Oradea, 2000. In 
this article are presented more theorems and applications (than the ones presented here). 
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PART FIVE 
Criteria, formulas and algorithms for computing due to Florentin 

Smarandache 
 
 
(1) Criterion for coprimes involving Euler’s totient387 
 
Enunciation:   

If a, b are strictly positive coprime integers, then a^(φ(b) + 1) + b^(φ(a) + 1) ≡ a + b (mod 
a*b), where φ is Euler’s totient. 

 
(2) Criteria of simultaneous primality 
 
A. Characterization of twin primes388:   

Let p and p + 2 be positive odd integers; then the following statements are equivalent: 
1.  p and p + 2 are both primes; 
2. (p – 1)!(3*p + 2) + 2*p + 2 is congruent to 0 (mod p*(p + 2)); 
3. (p – 1)!(p – 2) – 2 is congruent to 0 (mod p*(p + 2)); 
4. ((p – 1)! + 1)/p + (2*(p – 1)! + 1)/(p + 2) is an integer. 

B. Characterization of a pair of primes389:   
Let p and p + k be positive integers, with the property that gcd (p, p + k) = 1; then p and p 
+ k are both primes if and only if (p – 1)!*(p + k) + (p + k – 1)!*p + 2*p + k is congruent 
to 0 (mod p*(p + k)). 

C. Characterization of a triplet of primes390:   
Let p – 2, p and p + 4 be positive integers, coprime two by two; then p – 2, p and p + 4 
are all primes if and only if (p – 1)! + p*((p – 3)! + 1)/(p – 2) + p*((p + 3)! + 1)/(p + 4) is 
congruent to -1 (mod p). 

D. Characterization of a quadruple of primes391:   
Let, p p + 2, p + 6 and p + 8 be positive integers, coprime two by two; then p, p + 2, p + 6 
and p + 8 are all primes if and only if p*((p – 1)! + 1)/p + 2!*((p – 1)! + 1)/(p + 2) + 
6!*((p – 1)! + 1)/(p + 6) + 8!*((p – 1)! + 1)/(p + 8) is an integer. 

 
(3) Criteria of primality derived from Wilson’s Theorem392 
 
Enunciations393:   

                                                 
387 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 133. 
388 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Theorem 6. 
389 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Theorem 7. 
390 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Theorem 8. 
391 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Theorem 9. 
392 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, from Theorem 2 to Theorem 5. For more about the conjecture named after 
mathematician John Wilson [which states that (p – 1)! + 1 is a multiple of p if and only if p is a prime] see the 
article Wilson’s Theorem from the on-line math encyclopedia Wolfram Math World. 
393 For a study of these criteria, see Vassilev-Missana, Mladen and Atanassov, Krassimir, Some Smarandache 
problems, Hexis, 2004, Chapter 1: On some Smarandache’s problems, Section 10: On four Smarandache’s 
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1.  Let p be an integer, p ≥ 3; then p is prime if and only if (p – 3)! is congruent to ((p 
– 1)/2) (mod p); 

2. Let p be an integer, p ≥ 1; then p is prime if and only if (p – 4)! is congruent to (–
1)^(h + 1)*r (mod p), where h is the smallest integer greater than or equal to p/3 
and r is the smallest integer greater than or equal to (p + 1)/6; 

3. Let p be an integer, p ≥ 5; then p is prime if and only if (p – 5)! is congruent to 
r*h + ((r^2 – 1)/24) (mod p), where h the smallest integer greater than or equal to 
p/24 and r = p – 24*h; 

4. Let p = (k – 1)!*h + 1 be a positive integer, k > 5, h being a natural number. Then 
p is prime if and only if (p – k)! is congruent to (–1)^t*h (mod p), where t = h + q 
+ 1 and q the smallest integer greater than or equal to p/h. 

 
(4) A formula to calculate the number of primes394 
 
Enunciation:   

If π(x) is the number of primes less than or equal to x, then π(x) = -1 + Σ, where Σ is the 
sum from k = 2 to k = x of the numbers n, where n is the  smallest integer greater than or 
equal to S(k)/k and S(k) is the Smarandache function. 

 
(5) A closed expression for the generalized Pells’s equation 395 
 
Description:   

The equation a*x^2 – b*y^2 + c = 0, where a and b are pozitive integers, different from 
0, and c is an integer different from 0, is a generalization of Pell’s equation x^2 – D*y^2 
= 1. Smarandache showed that, if the equation has an integer solution and a*b is not a 
perfect square, then it has an infinitude of integer solutions and found a closed expression 
for these solutions. 

Example: 
For equation x^2 – 3*y^2 – 4 = 0, the general solution in positive integers is: xn = (2 + 
3^(1/2))^n + (2 – 3^(1/2))^n and yn = (1/3^(1/2))*(2 + 3^(1/2))^n + (2 – 3^(1/2))^n, for 
all n natural, that is (2, 0), (4, 2), (14, 8), (52, 30) etc. 

 
(5) The Romanian multiplication396 
 
Description:   

It is an algorithm to multiply two integers, A and B. Let k be an integer greater than or 
equal to 2; write A and B on two different vertical columns: c(A), respectively c(B); 
multiply A by k, and write the product A1 on the column c(A); divide B by k, and write 
the integer part of the quotient B1 on the column c(B) and so on with the new numbers A1 
and B1, until we get a Bi < k on the column c(B). Then: write another column c(r), on the 
right side of c(B), such that: for each number of column c(B), which may be a multiple of 
k plus the rest r (where r = 0, 1, 2, ..., k – 1), the corresponding number on c(r) will be r; 
multiply each number of column A by its corresponding r of c(r), and put the new 

                                                                                                                                                             
problems. For the proof of these theorems, see F.S., Criteria of primality, in Collected Papers, vol. I (second 
edition), InfoLearnQuest, 2007. 
394 Seagull, L., The Smarandache Function and the number of primes up to x, Mathematical Spectrum, 
University of Shielfield, vol. 28, no. 3, 1995/6, p. 53. 
395 F.S., A method to solve the diophantine equation a*x^2 – b*y^2 + c = 0, in Collected Papers, vol. I (second 
edition), InfoLearnQuest, 2007. 
396 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 127. 
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products on another column c(P) on the right side of c(r); finally add all numbers of 
column c(P). It is obtained A*B which is equal to the sum of all numbers of c(P). 

Comments:   
1. Remark that any multiplication of integer numbers can be done only by 

multiplication with 2, 3, …, k, divisions by k, and additions. 
2. This is a generalization of Russian multiplication (the case k = 2, known since 

Egyptian time), called by F.S. Romanian multiplication. 
3. This multiplication is useful when k is very small, the best values being for k = 2 

or k = 3; if k is greater than or equal to min{10, B}, this multiplication is trivial. 
 
(6) Algorithm for division by k^n 
 
Description397:   

It is an algorithm to divide an integer A by k^n, where k and n are integers greater than or 
equal to 2. Write A and k^n on two different vertical columns: c(A), respectively c(k^n); 
divide A by k, and write the integer quotient A1 on the column c(A); divide k^n by k, and 
write the quotient q1 = k^(n – 1) on the column c(k^n) and so on with the new members 
A1 and q1, until we get qn = 1 (= k^0) on the column c(k^n). Then: write another column 
c(r), on the left side of c(A), such that for each number of column c(A), which may be a 
multiple of k plus the rest r (where r = 0, 1, 2, ..., k – 1), the corresponding number on 
c(r) will be r; write another column c(P), on the left side of c(r), in the following way: the 
element on line i (except the last line which is 0) will be k^(n – 1); multiply each number 
of column c(P) by its corresponding r of c(r), and put the new products on another 
column c(R) on the left side of c(P); finally add all numbers of column c(R) to get the 
final rest Rn, while the final quotient will be stated in front of c(k^n)'s 1. Therefore, 
A/(k^n) = An and rest Rn. 

Comments:   
1. Remark that any division of an integer number by k can be done only by divisions 

to k, calculations of powers of k, multiplications with 1, 2, …, k – 1 and 
additions. 

2. This division is useful when k is small, the best values being when k is an one-
digit number and n large. If k is very big an n is very small, this division becomes 
useless. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
397 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 128. 
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PART SIX 
Unsolved problems regarding Smarandache notions and open problems on 

number theory due to Florentin Smarandache 
 
 
Chapter I. Problems regarding sequences  
 
(1)  
Enunciation398:   

Find the sequences an defined in the following way: for any i positive integer, there exist 
j, k positive integers, with the property that i ≠ j ≠ k ≠ i, so that ai ≡ aj (mod ak).  
Find the sequences an defined in the following way: for any i positive integer, there exist 
j, k positive integers, with the property that i ≠ j ≠ k ≠ i, so that aj ≡ ak (mod ai). 

 
(2)  
Enunciation399:   

Let N(n) be the number of terms not greater than n of the sequence a1, a2, …, where this 
is a strictly increasing sequence of positive integers. Find the smallest k such that 
N(N(…N(n)…)) is constant, for a given n. 

 
(3)  
Enunciation400:   

Let 1 ≤ a1 < a2 < … be an infinite sequence of integers such that any three members do 
not constitute an arithmetical progression. 

Example:   
Let be an = p^(n – 1), n ≥ 1, p is an integer greater than 1; then an has the property of the 
assumption and the sum from n ≥ 1 of the numbers 1/an is equal to a number smaller than 
or equal to 2, i.e. the number 1 + 1/(n – 1). 

Questions:   
1.  Is it always the sum from n ≥ 1 of the numbers 1/an smaller than or equal to 2?401 
2.  Is the function S({an}n≥1) representing the sum from n ≥ 1 of the numbers 1/an 

bijective (biunivocal)? 
3. Analogously for geometrical progressions. 

 
(4)  
Enunciation402:   

                                                 
398 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 1. See also 
Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, p. 
24-25. 
399 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 53. See also 
Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, p. 
28.  
400 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 62. See also 
Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, p. 
30-31. 
401 Hristo Aladjov and Krassimir Atanassov showed that there is an infinite number of such sequences for which this 
sum is greater than 2; see Remark on the 62-th Smarandache’s problem, Smarandache Notions Journal, vol. 11, no. 
1-2-3, 2000. 
402 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Problem 20. 
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We consider the consecutive sequence (1, 12, 123, 1234, …) and we form the simple 
continued fraction 1 + (1/(12 + 1/(123 + 1/(1234 + 1/12345 + …)))). We also consider 
the reverse sequence (1, 21, 321, 4321, …) and we form the general continued fraction 
(1/(12 + 21/(123 + 321/(1234 + 4321/12345 + …)))). Calculate each of these two 
continued fractions. The first continued fraction is known as convergent.403 
 

(5)  
Enunciation404:   

It is considered the sequence constructed by concatenating in the same manner with the 
Smarandache consecutive numbers sequence the terms of the sequence of happy 
numbers.405 

Questions: 
 1. How many terms of Smarandache H-sequence are primes? 
 2. How many terms of Smarandache H-sequence belongs to the sequence of happy  

numbers? 
 
(6)  
Enunciation406:   

We denote with SDS the Smarandache deconstructive sequence.407 
Questions: 

1. Does every element of the Smarandache deconstructive sequence ending with a 6 
contain at least 3 instances of the prime 2 as a factor? 

2. If we form a sequence from the elements of SDS(n) that end in 6, do the powers 
of 2 that divide them form a monotonically increasing sequence? 

3. Let k be the largest integer such that 3^k divides n and j the largest integer such 
that 3^j divides SDS(n). Is it true that k is always equal to j? 

 
(7)  
Enunciation408:   

What is the maximum value of k such that n, n + 1, n + 2, …, n + k are all Smarandache 
pseudo-primes of the first kind?409 

                                                 
403 For the definition and study of Smarandache continued fractions see Castillo, Jose, Other Smarandache 
type functions, Smarandache Notions Journal, vol. 9, no. 1-2-3, 1998. See also Ibstedt, H., Mainly natural 
numbers – a few elementary studies on Smarandache sequences and other number problems, American 
Research Press, 2003, Chapter VI: Smarandache continued fractions. For the proof that the continued fraction 
1 + (1/(12 + 1/(123 + 1/(1234 + 1/12345 + …)))) is convergent see Ashbacher, Charles and Le, Maohua, On 
the Smarandache simple continued fractions, in Seleacu, V., Bălăcenoiu, I. (editors), Smarandache Notions 
(Book series), vol. 10, American Research Press, 1999. 
404 The definition of Smarandache sequence of happy numbers, or Smarandache H-sequence, belongs to 
Shyam Sunder Gupta hwo also proposed the problems presented here; see Smarandache sequence of happy 
numbers, Smarandache Notions Journal, vol. 13, no. 1-2-3, 2002. 
405 The happy numbers are the numbers with the following property: if you iterate the process of summing the 
squares of their digits this process ends in number 1. By doing this process of iteration with any integer, finally 
the process ends in number 1 (in the case of happy numbers) or into a loop (in the case of unhappy numbers) 
formed by only few possible numbers: {4, 16, 20, 37, 42, 58, 89, 145}. For  the first terms of the sequence of 
happy numbers see the sequence A035497 in OEIS. 
406 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 
1998, p. 11. 
407 For the definition of Smarandache deconstructive sequence, see supra, Part one, Chapter II, Section (3). 
408 For the problems (7)-(9) from this chapter, see Kashihara, K., Comments and topics on Smarandache 
notions and problems, Erhus University Press, 1996, Chapter 1: Some comments and problems on 
Smarandache notions, p. 15-18. 
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(8)  
Enunciation410:   

Let SPPFK(n) be the n-th member of the sequence of Smarandache pseudo-primes of the 
first kind. What is the largest possible difference between succesive terms, i.e. what is the 
upper bound of SPPFK(n + 1) – SPPFK(n)? 

 
(9)  
Enunciation:   

Let SPP(n) be the number of integers k ≤ n such that k is a Smarandache pseudo-prime of 
the first kind. Determine the limit when n tends to ∞ of the numbers SPP(n)/n. 

 
(10)  
Enunciation411:  Study the sequences defined in the following way: 

1.  For k, ni belonging to natural set, k < ni, n0 = n, ni+1 = max{p: p divides ni – k; p is 
prime}; 

2. For k, ni belonging to natural set, k < ni, n0 = n, ni+1 = max{p: p divides ni/k; p is 
prime}; 

3. For k, ni belonging to natural set, 1 ≤ k ≤ ni, n0 = n, ni+1 = max{p: p divides ni + k; 
p is prime}; 

4. For k, ni belonging to natural set, 1 ≤ k ≤ ni, n0 = n, ni+1 = max{p: p divides ni*k; p 
is prime}. 

 
(11)  
Enunciation412:  Let ep(n) be the largest exponent of p which divides n; for example, if p = 3, the  

values of ep(n) are: {0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0,…}. 
1.  What is the expectation of ep(n), for any n belonging to natural set? 
2. What is the value of em(n) expressed using ep(n), eq(n), …, where m = p*q*…? 

 
(12)  
Enunciation413:   

Prove that in the infinite Smarandache prime base sequence 1, 2, 3, 5, 7, 11, … (defined 
as all prime numbers proceeded by 1) any positive integer can be uniquely written with 
only two digits: 0 and 1 (a linear combination of distinct primes and integer 1, whose 
coefficients are 0 and 1 only). 
 

 
Chapter II. Problems regarding Smarandache function  
 
 (1)  
Enunciation414:   

                                                                                                                                                             
409 For the definition of Smarandache pseudo-primes, see supra, Part one, Chapter II, Section (62). 
410 Kashihara conjectured that there is no such an upper bound. 
411 Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, 
p. 26-27. 
412 Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, 
p. 31. 
413 This problem has been solved; see Perez, M (editor), On some Smarandache problems, Notes on Number 
Theory and Discrete Mathematics, vol. 9, Number 2, 2003, Proposed problem 2. 
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Given any pair of integers (m, n) where both are greater than 1 and m ≠ n, is it always 
possible to find another pair of integers (p, q) such that S(m) + S(m + 1) + ... + S(m + p) 
= S(n) + S(n + 1) + ...+ S(n + q)?415 

 
(2)  
Enunciation416:   

Are there integers m, n, p, k with m ≠ n and p > 0 such that (S(m)^2 + S(m + 1)^2 +…+ 
S(m + p)^2)/(S(n)^2 + S(n + 1)^2 +…+ S(n + p)^2) = k?417 

 
(3)  
Enunciation418:   

How many primes have the form S(n)S(n + 1)S(n + 2)…S(n + k) for a fixed integer k? 
 
(4)  
Enunciation419:   

Is the set of integers {n: S(n)S(n + 1) prime} an infinite set?  
 
(5)  
Enunciation420:   

Are there n, m positive integers, n ≠ 1 ≠ m for which S(n*m) = S(n)*m^k? 
 
(6)  
Enunciation421:   

Let A be a set of consecutive positive integers. Find the largest set of numbers {n, n + 1, 
n + 2,…} such that {S(n), S(n + 1), S(n + 2),…} is monotonic. 

 
(7)  
Enunciation422:   

What is the smallest value of r such that  1/(S(n))^r is convergent? 
 
(8)  
Enunciation423:   

How many quadruplets satisfy the relation S(n) + S(n + 1) = S(n + 2) + S(n + 3)? 

                                                                                                                                                             
414 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 
1998, p. 29. 
415 Charles Ashbacher conjectured that the answer to this question is yes. 
416 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 
1998, p. 30. 
417 Charles Ashbacher conjectured that the answer to this question is yes. 
418 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 
1998, p. 31. 
419 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 
1998, p. 32. 
420 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 
1998, p. 33. 
421 See Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research 
Press, 1998, p. 36-37, for a study of this problem. 
422 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 
1998, p. 57. 
423 Ashbacher, Charles, An introduction to the Smarandache function, Erhus University Press, 1995, p. 42. The 
author conjectured that there are infinitely many such quadruplets. 
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(9)  
Enunciation424:   

How many quadruplets satisfy the relation S(n) – S(n + 1) = S(n + 2) – S(n + 3)? 
 
(10)  
Note425:   

The value of the number S(2^k – 1) (mod k) is equal to 1 for all integers from k = 2 to k 
= 97, with just four exceptions, for k = 28, k = 52, k = 68 and k = 92. 

Enunciation: 
One can obtain a formula that gives in function of k the value S(2^k – 1) (mod k) for all 
positive integer values of k? 

 
(11)  
Enunciation426:   
 Let p be a positive prime and S(n) the Smarandache function. Prove that S(p^p) = p^2. 
 
(12)  
Enunciation427:   
 Prove that in between n and S(n) there exists at least a prime number. 
 
(13)  
Enunciation428:   
 Solve the following diophantine equations: 
 (i) x^S(x) = S(x)^x; 
 (ii) x^S(y) = S(y)^x; 
 (iii) x^S(x) + S(x) = S(x)^x + x; 
 (iiii) x^S(y) + S(y) = S(y)^x + x. 
 
(14)  
Enunciation429:   

For what triplets n, n – 1, n – 2 does the Smarandache function satisfy the Fibonacci 
recurrence S(n) = S(n – 1) + S(n – 2)? Is there a pattern that would lead to the proof that 
there is an infinite family of solutions? 

Note:   
Solutions have been found for n = 11, 121, 4902, 26245, 32112, 64010, 368140, 415664. 

 
(15)  

                                                 
424 Ashbacher, Charles, An introduction to the Smarandache function, Erhus University Press, 1995, p. 43. The 
author conjectured that there are infinitely many such quadruplets. 
425 Ruiz, S.M., Applications of Smarandache function, and prime and coprime functions, American Research 
Press, 2002, p. 11-14. 
426 This problem has been solved; see Perez, M (editor), On some Smarandache problems, Notes on Number 
Theory and Discrete Mathematics, vol. 9, Number 2, 2003, Proposed problem 3. 
427 This problem has been solved; see Perez, M (editor), On some problems related to Smarandache notions, 
Notes on Number Theory and Discrete Mathematics, vol. 9, Number 2, 2003, Proposed problem 1. 
428 Tutescu, Lucian and Burton, Emil, On some diophantine equations, Smarandache Notions Journal, vol. 7, 
no. 1-2-3, 1996. In this article the equation (i) is solved and there are few more proposed diophantine equations 
concerning Smarandache function. 
429 Ibstedt, H., Base solution (the Smarandache function), Smarandache Notions Journal, vol. 7, no. 1-2-3, 
1996. The author name this problem “Asbacher’s problem”. 
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Enunciation430:   
Prove the following: 
(i) S(n) = S(n + 2) for only finitely many n; 
(ii) S(n) = S(n + 3) for only finitely many n. 

 
 
Chapter III. Problems regarding pseudoSmarandache function 
 
(1)  
Enunciation431:   

Let Z(n) be the pseudo-Smarandache function432 and Zk(n) = Z(Z(Z(…(n)…))), where the 
function is composed k times. For a given pair of natural numbers (k, m), find all integers 
n such that Zk(n) = m. 

 
(2)  
Enunciation:   

Let Z(n) be the pseudo-Smarandache function. Is the absolute value of the numbers Z(n + 
1) – Z(n) bounded or ubounded? The same question for the numbers Z(n + 1)/Z(n).  

 
(3)  
Enunciation:   

Try to find the relationships between Z(m + n) and Z(m), Z(n) and also between Z(m*n) 
and Z(m), Z(n). 
 

(4)  
Enunciation:   

Find all values of n such that: Z(n) = Z(n + 1); Z(n) divides Z(n + 1); Z(n + 1) divides 
Z(n). 
 

(5)  
Enunciation:   

For a given natural number m, how many n are there such that Z(n) = m? 
 
(6)  
Enunciation433: 

The sum from k = 1 to k = n of the numbers 1/Z(k) is an integer for n = 1. Is it an integer 
for any other value of n?  

 
(7)  
Enunciation:   

Is it the series defined as the sum from k = 1 to k = ∞ of the numbers 1/(Z(n))^2 
convergent or divergent? 

                                                 
430 Mullin, Albert A., On the Smarandache function and the fixed-point theory of numbers, Smarandache 
Notions Journal, vol. 7, no. 1-2-3, 1996. 
431 The problems (1)-(5) from this Chapter are raised by K. Kashihara; see Comments and topics on 
Smarandache notions and problems, Erhus University Press, 1996, Chapter 2: The pseudo-Smarandache 
function.  
432 Z(n) is the smallest number such that 1 + 2 + 3 +…+ Z(n) is divisible by n. 
433 The problems (6)-(12) from this Chapter are raised by C. Ashbacher; see Pluckings from the tree of 
Smarandache sequences and functions, American Research Press, 1998, p. 56-68. 
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(8)  
Enunciation:   

What is the smallest value of r such that the series defined as the sum from k = 1 to k = ∞ 
of the numbers 1/(Z(n))^r is convergent? 

 
(9)  
Enunciation:   

Is there a value for k where there are only a finite number of solutions to the equation 
k*Z(n) = n? 

 
(10)  
Enunciation:   

What is the smallest value of r such that the series defined as the sum from k = 1 to k = ∞ 
of the numbers 1/(Z(k) + S(k))^r is convergent? 
 

(11)  
Enunciation:   

Is the series defined as the sum from k = 1 to k = ∞ of the numbers 1/(Z(k)*S(k)) 
convergent or divergent? 

 
(12)  
Enunciation:   

Is there an infinite number of solutions to the equation Z(σ(n)) = σ(Z(n)), where σ(n) is the 
divisor function? 

 
 
Chapter IV. Problems regarding Smarandache double factorial function  
 
(1)  
Enunciation434:   

We note with Sdf(n) the double factorial function. Is the difference abs{Sdf(n + 1) – 
Sdf(n)} bounded or unbounded? 

 
(2)  
Enunciation:   

For each value of n, which iteration of Sdf(n) produces always a fixed point or a cycle? 
For iteration is intended the repetead application of Sdf(n). 

 
(3)  
Enunciation:   

Find the smallest k such that between Sdf(n) and Sdf(k + n), for n > 1, there is at least a 
prime. 

 
(4)  
Enunciation:   

                                                 
434 The problems (1)-(9) from this Chapter are raised by Felice Russo; see A set of new Smarandache 
functions, sequences and conjectures in number theory, American Research  Press, 2000, Chapter IV: An 
introduction to the Smarandache double factorial function. 
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Is the number 0.1232567491011…, where the sequence of digits is Sdf(n) for n ≥ 1 an 
irrational or trascendental number?  

 
(5)  
Enunciation:   

Are there k, n, m nonnull positive integers for which Sdf(n*m) = m^k*Sdf(n)? 
 
(6)  
Enunciation:   

Are there k, n nonnull positive integers for which (Sdf(n))^k = k*Sdf(n*k)? 
 
(7)  
Enunciation:   

Find all the solution for the equation Sdf(n)! = Sdf(n!). 
 
(8)  
Enunciation:   

Find all the solution for the equation Sdf(n^k) = k*Sdf(n), for k > 1, n > 1. 
 
(9)  
Enunciation:   

Find all the solution for the equation Sdf(n^k) = n*Sdf(k), for k > 1. 
 
(10)  
Enunciation435:   

Let p be prime and Sdf(x) Smarandache double factorial function. Solve the diophantine 
equation Sdf(x) = p. How many solutions are there? 

 
 
Chapter V. Problems regarding other functions  

 
(1)  
Enunciation436:   

Let M be a number in a base b. All distinct digits of M are named generalized period of 
M (for example, if M = 104001144, its generalized period is g(M) = {0, 1, 4}). Of course, 
g(M) is included in {0, 1, 2, ..., b – 1}. The number of generalized periods of M is equal 
to the number of the groups of M such that each group contains all distinct digits of M 
(for example, ng(M) = 2 if M = 104001144 because both groups of digits 104 respectively 
001144 contain all distinct digits of M). Length of generalized period is equal to the 
number of its distinct digits (for example, lg(M) = 3). Questions: 
(i) Find ng and lg for pn, n!, n^n, n^(1/n). 
(ii) For a given k ≥ 1, is there an infinite number of primes pn or n! or n^n or n^(1/n) 

which have a generalized period of length k? Same question such that the number 
of generalized periods be equal to k. 

(iii) Let a1, a2, …, ah be distinct digits. Is there an infinite number of primes pn or n! or 
n^n or n^(1/n) which have as a generalized period the set {a1, a2, …, ah}? 

 
                                                 
435 This problem has been solved; see Perez, M (editor), On some Smarandache problems, Notes on Number 
Theory and Discrete Mathematics, vol. 9, Number 2, 2003, Proposed problem 5. 
436 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequences 129-131. 
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(2)  
Enunciation437:   

Is it possible to construct a function which obtains all irrational numbers? How about all 
transcendental numbers? 

 
(3)  
Enunciation438:   

Let FI(n) and SFI(n) be the Smarandache fitorial and supplementary fitorial functions. 
Find the values of n for the following relationships to be true:  
(i) FI(n) < SFI(n) and FI(n) > SFI(n); 

 (iii) τ(F(n)) > τ(SFI(n)) and τ(F(n)) > τ(SFI(n)); 
 (iiii) σ(F(n)) > σ(SFI(n)) and σ(F(n)) > σ(SFI(n)). 
 
 
Chapter VI. Problems regarding equations  
 
(1)   
Enunciation439:   

Let q be a rational number, q different from {-1, 0, 1}. Solve the equation:  
x*q^(1/x) + (1/x)*q^x = 2*q. 

 
(2)   
Enunciation440:   

The equation x^3 + y^3 + z^3 = 1 has as solutions (9, l0, -12) and (-6, -8, 9). How many 
other nontrivial integer solutions are there?  

 
(3)   
Enunciation441:   

Consider the following equation: (a – b*n^(1/m)) *x + c*n^(1/m)*y + q^(1/p)*z + (d + 
e*w)*s^(1/r) = 0, where a, b, c, d are constant integers and the m-th, p-th and r-th roots 
are irrational distinct numbers. What conditions must the parameters  m, n, p, q, r and s 
accomplish such that the equation admits integer solutions (x, y, z and w being 
variables)? 

 
(4)   
Enunciation442:   

                                                 
437 Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, 
p. 25. 
438 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 172-173. See supra, Part Two, Chapter 1, Section (45) for the 
definitions of the Smarandache fitorial and supplementary fitorial functions. 
439 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 50. See also, 
for a discussion on this equation, Kashihara, K., Comments and topics on Smarandache notions and problems, 
Erhus University Press, 1996, p. 27-28. 
440 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 60. 
441 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 86. 
442 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 88. The 
problem is inspired by a equation from a William Lowell Putnam Mathematical Competition, i.e. x^3 – z = 3, 
where z is the greater integer less then or equal to x. See also, for a discussion on this equation, Kashihara, K., 
Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, p. 32. 
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Find all real solutions (x, y) of the equation x^y – z = y, where z is the greater integer less 
than or equal to x. 

 
(5)   
Enunciation443:   

Solve the diophantine equation 2*x^2 – 3*y^2 = 5. 
 
(6)   
Enunciation444:   

Solve the diophantine equation ISPP(x) + SSPP(x) = k, where ISPP(x) is the Inferior 
Smarandache Prime Part (the largest prime less than or equal to n) and SSPP(x) is the 
Superior Smarandache Prime Part (the smallest prime greater than or equal to n). 

 
 
Chapter VII. Problems regarding prime numbers 
 
(1)  
Enunciation445:   

Find the number of primes which can be formed from the digits a1, a2, …, an, where a1, 
a2, …, an are distinct digits of the set {0, 1, …, 9}, for a certain n, 1 ≤ n ≤ 9. Generalizing, 
the same question is raised in the case when n is positive integer and a1, a2, …, an are 
distinct positive integers.  

Comment:   
The problem “can be solved quickly on a modern computer”.446 

Conjecture447:   
Can be formed an infinity of such primes (obviously, if is allowed the repetition of the  
digits a1, a2, …, an). 
 

(2)   
Enunciation448:   

Find the number of the digits of a, where a is a certain digit between 0 and 9, contained 
by the n-th prime number Pn; the same question is raised for n! or for n^n and, 
generalizing, for a non-negative integer a. 

Comment:  
“The sizes  Pn, n! and n^n have jumps when n → n + 1, hence the analytical expressions 
are approximate only. Moreover, the results depend on the exact (and not approximate) 
value of these sizes”.449 

 

                                                 
443 This equation has been solved; see Vassilev-Missana, Mladen and Atanassov, Krassimir, Some 
Smarandache problems, Hexis, 2004, Chapter 1: On some Smarandache’s problems, Section 9: On the 78-th 
Smarandache’s problem. 
444 This equation has been solved; see Perez, M (editor), On some Smarandache problems, Notes on Number 
Theory and Discrete Mathematics, vol. 9, Number 2, 2003, Proposed problem 1. 
445 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 3, F.S., 
Sequences of numbers involved in unsolved problems, Hexis, 2006, Problem 154. 
446 R.K. Guy, Calgary University, Alberta, Canada, Letter to F.S., 15 november 1985, cited by F.S., Only 
Problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 3. 
447 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006. 
448 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 3. 
449 E. Grosswald, Pennsylvania University, Philadelphia, SUA, Letter to F.S., 3 august 1985, cited by F.S., 
Only Problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 3. 
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(3)   
Enunciation450:   

Are there, for any set of digits a1, a2, …,an, primes to contain in their writing the 
concatenated group a1a2 … an of these digits? The problem is raised for other bases of 
numeration beside 10 too, also for n! and for n^n. 

Example:  
For a1 = 0 and a2 = 9 we have the primes 109, 409, 709, 809 etc. 

 
(4)   
Enunciation451:   

Does the sequence of numbers dn = (1/2)*(pn+1 – pn), where pn and pn+1 are two 
consecutive primes, contain an infinite number of primes? Does dn contain an infinity of 
numbers of the form n! or of the form n^n? 

 
(5)   
Enunciation452:   

If gcd (a, b) = 1, how many primes does the progression a*pn + b, where n = 1, 2, …, and 
pn is the n-th prime, contain? But numbers of the form n! or of the form n^n? Same 
questions for a^n + b, where a different from {-1, 0, 1}. Same questions for k^k + 1 and 
k^k – 1, where k is positive integer. 

Notes on progression a*pn + b 453:   
1. For a = 1 and b = 2, we have the classical unsolved problem: “are there infinitely 

many twin primes?”  
2. For a = 2 and b = 1, we have again a classical unsolved problem: “are there 

infinitely many Sophie-Germain primes?” 
3. Henry Ibstedt conjectured that there are infinitely many primes in the progression 

a*pn + b, if gcd (a, b) = 1. 
Notes on progression a^n + b:   

1. For a = 2 and b = -1, we have the classical unsolved problem: “are there infinitely 
many Mersenne primes?”  

2. Kenichiro Kashihara conjectured that each element of the family of sequences  
a^n + b contains an infinite number of prime numbers, for gcd (a, b) = 1 and a 
different from {-1, 0, 1}, if  a + b is odd.454 

 
(6)   
Enunciation455:   

How many primes are there in the expression x^y + y^x, where gcd (x, y) = 1? 
Notes:   

1. This problem is called “Smarandache expression”. 

                                                 
450 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 33. 
451 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 35. See also 
Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, p. 
25-26. 
452 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 51. 
453 For a study of how the function a*pn + b behaves see Ibstedt, H., Surphing on the ocean of numbers – a few 
Smarandache notions and similar topics, Erhus University Press, Vail, 1997, Chapter I: On prime numbers. 
454 Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, 
p. 24. 
455 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Problem 20. 
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2. Kenichiro Kashihara announced that there are only finitely many numbers of this 
form which are products of factorials. 

3. Florian Luca announced a lower bound for the size of the largest prime divisor of 
an expression of type a*x^y + b*y^x, where a*b ≠ 0, x, y ≥ 2 and gcd (x, y) = 1. 

 
 
Chapter VIII. Other unsolved problems 
 
(1)  
Enunciation456:   

Let τ(n) be the number of positive divisors of n, where n is positive integer. Find the 
smallest k such that τ(τ(…τ(n)…)) = 2, where the function τ is applied repeatedly k times. 

 
(2)  
Enunciation457:   

Find the maximum r such that the set {1, 2,…, r} can be partitioned into n classes such 
that no class contains integers x, y, z with x*y = z. Same question when x^y = z. Same 
question when no integer can be the sum of another integers of its class. 

 
(3)  
Enunciation458:   

Let N = {1, 2, ..., n}. Find the maxim number of elements extracted from N such that any 
m from these be not an arithmetic progression (n > m > 2). Same question when the m 
elements must not be a geometrical progression.  

 
(4)  
Enunciation459:   

Let f be an arithmetic function and R a k-relation among numbers. How many times can 
n be expressed as a sum of non-null squares, or cubes, or m-powers? How many times 
can n be expressed as R(f(n1), f(n2), …, f(nk)) for some k  and n1, n2, …, nk so that n1+ n2 
+…+ nk = n?  

 
(5)  
Enunciation460:   

Let σ(n) be the sum of divisors of n, π(x) the number of primes not exceeding x, ω(n) the  
number of distinct prime factors of n, τ(n) the number of positive divisors of n and p(n) 
the largest prime factor of n. Let f(k) be the function f composed k times, for any function 
f. Find the smallest k for which: 
(i) For fixed n and m, we have σ(k)(n) > m; 
(ii) For a fixed real number x, x ≥ 2, we have π(k)(x) = 1; 
(iii) For a fixed n, we have ω(k)(n) = 1; 
(iiii) For fixed n and m, we have d(k)(n) > m; 
(iiiii) For a fixed n, we have p(p(…(p(n) – 1)…) – 1) – 1 = 1, where the operation p(n) 

– 1 is repetead k times. 

                                                 
456 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 52. 
457 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 57. 
458 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 58. 
459 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Definition 49 and Problem 17. 
460 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 83. 
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(6)  
Enunciation461:   

For any integers m and n, n ≥ 1, m ≥ 3, find the maximum number S(n, m) such that the 
set {1, 2, 3, …, n} has a subset A of cardinality S(n, m) with the property that A contains 
no m-term arithmetic progression. S(n, m) is called the cardinality number. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
461 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 156. 
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AFTERWORD 
An infinity of problems concerning the Smarandache function 

 
 
 In the Abstract to the paper An infinity of unsolved problems concerning a function in the 
number theory462, F.S. says: “W. Sierpinski has asserted to an international conference that if 
mankind lasted for ever and numbered the unsolved problems, then in the long run all these 
unsolved problems would be solved. The purpose of our paper is that making an infinite number 
of unsolved problems to prove his supposition is not true. Moreover, the author considers the 
unsolved problems proposed in this paper can never be all solved!” 

Indeed, can be formulated an infinity of problems starting from a simple question raised 
by F.S. in the above mentioned paper: are there non-null and non-prime integers a1, a2, …, an in 
the  relation P, so that S(a1), S(a2), …, S(an) are in the relation R? Where each P, R can represent 
one of the following number sequences: Abundant numbers, Almost perfect numbers, Amicable 
numbers, Bell numbers, Bernoulli numbers, Catalan numbers, Carmichael numbers, Congruent 
numbers, Cullen numbers,  Deficient numbers, Euler numbers, Fermat numbers, Fibonacci 
numbers, Genocchi numbers, Harmonic numbers, Heteromenous numbers, K-hyperperfect 
numbers, Kurepa numbers, Lucas numbers, Lucky numbers, Mersenne numbers, Multiply 
perfect numbers, Perfect numbers, Polygonal numbers, Pseudoperfect numbers, Pseudoprime 
numbers, Pyramidal numbers, Pythagorian numbers, Stirling numbers, Superperfect numbers, 
Untouchable numbers, Ulam numbers, Weird numbers etc. 

As the list of the sequences of numbers related by special properties is potentially 
infinite, here’s how can you construct with just one question an infinity of unsolved problems.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
462F.S., Collected Papers, vol. III, Abaddaba, Oradea, 2000. In this paper, F.S. raised hundreds of questions 
concerning the Smarandache function. Some of them were given an answer but many of them still await a 
solution. 
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ANNEX A 
List of twenty types of numbers named after Florentin Smarandache 

 
 
 

(1) 
Smarandache numbers 
 
Definition: 

The numbers generated by the Smarandache function, i.e. the least positive integers k 
with the property that k! is divisible by n.  

The first thirty Smarandache numbers (sequence A002034 in OEIS):  
1, 2, 3, 4, 5, 3, 7, 4, 6, 5, 11, 4, 13, 7, 5, 6, 17, 6, 19, 5, 7, 11, 23, 4, 10, 13, 9, 7, 29, 5. 

Reference: 
 Part Two, Chapter 1, Section (1). 
 
(2) 
Smarandache consecutive numbers 
 
Definition: 
 The numbers obtained through the concatenation of first n positive integers. 
The first ten such numbers (sequence A007908 in OEIS):  

1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 12345678910. 
Reference: 
 Part One, Chapter 1, Section (1). 

 
(3) 
Smarandache-Wellin numbers 
 
Definition: 
 The numbers obtained through the concatenation of first n primes. 
The first ten such numbers (sequence A019518 in OEIS):  

2, 23, 235, 2357, 235711, 23571113, 2357111317, 235711131719, 23571113171923, 
2357111317192329. 

Reference: 
 Part One, Chapter 1, Section (5). 

 
(4) 
Smarandache-Fibonacci numbers 
 
Definition: 

The positive integers n with the property that S(n) = S(n – 1) + S(n – 2), where S(k) is the 
Smarandache function.  

The first fifteen such numbers (sequence A015047 in OEIS):  
11, 121, 4902, 26245, 32112, 64010, 368140, 415664, 2091206, 2519648, 4573053, 
7783364, 79269727, 136193976, 321022289.  

Reference: 
 Part One, Chapter 2, Section (31). 
 
(5) 
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Smarandache-Radu numbers 
 
Definition: 

The positive integers n with the property that between S(n) and S(n + 1) there is no 
prime, where S(n) and S(n +1) are included, where S(k) is the Smarandache function.  

The first fifteen such numbers (sequence A015048 in OEIS):  
224, 2057, 265225, 843637, 6530355, 24652435, 35558770, 40201975, 45388758, 
46297822, 67697937, 138852445, 157906534, 171531580, 299441785. 

Reference: 
 Part One, Chapter 2, Section (32). 

 
(6) 
Smarandache friendly numbers 
 
Definition: 

The pairs of natural numbers [m, n], where m < n, with the property that the product m*n 
is equal to the sum of all natural numbers from m to n (m and n are included).  

The first four such pairs of numbers:  
[1, 1], [3, 6], [15, 35], [85, 204]. 

Reference: 
 Part One, Chapter 2, Section (34). 

 
(7) 
Smarandache friendly primes 
 
Definition: 

The pairs of Smarandache friendly numbers with the property that are also primes.  
The five known such pairs of numbers (sequence A176914 in OEIS): 

[2, 5], [3, 13], [5, 31], [7, 53], [3536123, 128541727]. 
Reference: 
 Part One, Chapter 2, Section (35). 

 
(8) 
Pseudo-Smarandache numbers 
 
Definition: 

The least positive integers k with the property that 1 + 2 +…+ k is divisible by n, which 
is equivalent to n divides k*(k + 1)/2.  

The first thirty such numbers (sequence A011772 in OEIS):  
1, 3, 2, 7, 4, 3, 6, 15, 8, 4, 10, 8, 12, 7, 5, 31, 16, 8, 18, 15, 6, 11, 22, 15, 24, 12, 26, 7, 28, 
15, 30, 63, 11, 16, 14, 8, 36, 19, 12, 15. 

Reference: 
 Part Two, Chapter 1, Section (11). 

 
(9) 
Pseudo-Smarandache numbers of first kind 
 
Definition: 

The least positive integers k with the property that 1^2 + 2^2 +…+ k^2 is divisible by n, 
which is equivalent to n divides k*(k + 1)*(2*k + 1)/6. 
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The first fifteen such numbers:  
1, 3, 4, 7, 2, 4, 3, 15, 13, 4, 5, 8, 6, 3, 4. 

Reference: 
 Part Two, Chapter 1, Section (12). 
 
(10) 
Pseudo-Smarandache numbers of second kind 
 
Definition: 

The least positive integers k with the property that 1^3 + 2^3 +…+ k^3 is divisible by n, 
which is equivalent to n divides k^2*(k + 1)^2/4. 

The first fifteen such numbers:  
1, 3, 2, 3, 4, 3, 6, 7, 2, 4, 10, 3, 12, 7, 5. 

Reference: 
 Part Two, Chapter 1, Section (13). 

 
(11) 
Smarandache wrong numbers 
 
Definition: 

The positive integers n, where n = a1a2…ak, consisted of at least two digits, with the 
property that the sequence a1, a2, …, ak, bk+1, bk+2, …(where bk+i is the product of the 
previous k terms, for any i ≥ 1), contains n as its term. 

Reference: 
 Part One, Chapter 2, Section (48). 

 
(12) 
Smarandache impotent numbers 
 
Definition: 

The positive integers n with the property that its proper divisors product is less than n. 
The first twenty such numbers (sequence A000430 in OEIS): 

2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59. 
Reference: 
 Part One, Chapter 2, Section (49). 

 
(13) 
Smarandache simple numbers 
 
Definition: 

The positive integers n with the property that its proper divisors product is less than or 
equal to n. 

The first twenty such numbers (sequence A007964 in OEIS): 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25. 

Reference: 
 Part One, Chapter 2, Section (50). 
 
(14) 
Smarandache bad numbers 
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Definition: 
The positive integers n with the property that cannot be expressed as the difference 
between a cube and a square (in absolute value). 

Reference: 
 Part Three, Chapter 4, Section (2). 
 
(15) 
Smarandache primitive numbers 
 
Definition: 

The least positive integers k with the property that p^n divides k!, where p is prime. The 
least positive integers k for which 2^n divides k! are called Smarandache primitive 
numbers of power two, the least positive integers k for which 3^n divides k! are called 
Smarandache primitive numbers of power three etc.  

The first forty primitive numbers of power two (sequence A007843 in OEIS):  
1, 2, 4, 4, 6, 8, 8, 8, 10, 12, 12, 14, 16, 16, 16, 16, 18, 20, 20, 22, 24, 24, 24, 26, 28, 28, 
30, 32, 32, 32, 32, 32, 34, 36, 36, 38, 40, 40, 40, 42. 

The first forty primitive numbers of power three (sequence A007844 in OEIS):  
1, 3, 6, 9, 9, 12, 15, 18, 18, 21, 24, 27, 27, 27, 30, 33, 36, 36, 39, 42, 45, 45, 48, 51, 54, 
54, 54, 57, 60, 63, 63, 66, 69, 72, 72, 75, 78, 81, 81, 81, 81. 

Reference: 
 Part One, Chapter 2, Sections (16)-(18). 
 
(16) 
Erdős-Smarandache numbers 
 
Definition: 

The numbers n which are solutions of the diophantine equation P(n) = S(n), where P(n) is 
the largest prime factor which divides n, and S(n) is the Smarandache function. 

The first twenty-five such numbers: 
2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 37. 

Reference: 
 Part One, Chapter 2, Section (75). 
 
(17) 
Goldbach-Smarandache numbers 
 
Definition: 

The numbers n with the property that n is the largest even number such that any other 
even number not exceeding it is the sum of two of the first n odd primes. 

The first twenty such numbers (sequence A007944 in OEIS): 
6, 10, 14, 18, 26, 30, 38, 42, 42, 54, 62, 74, 74, 90, 90, 90, 108, 114, 114, 134. 

Reference: 
 Part One, Chapter 2, Section (76). 
 
(18) 
Smarandache-Vinogradov numbers 
 
Definition: 
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The numbers n with the property that n is the largest odd number such that any odd 
number greater than or equal to 9 not exceeding it is the sum of three of the first n odd 
primes. 

The first twenty such numbers (sequence A007962 in OEIS): 
9, 15, 21, 29, 39, 47, 57, 65, 71, 93, 99, 115, 129, 137, 143, 149, 183, 189, 205, 219. 

Reference: 
 Part One, Chapter 2, Section (77). 
 
(19) 
Smarandache perfect and completely perfect numbers463 
 
Definition 1: 

An integer n, n ≥ 1, is called Smarandache perfect (or S-perfect) if and only if n is equal 
to te sum from i = 1 to i = k of the numbers S(di), where S is the Smarandache function 
and d1 = 1, d2, …, di = dk are the proper divisors of n. 

Definition 2: 
An integer n, n ≥ 1, is called Smarandache completely perfect (or completely S-perfect) if 
and only if n is equal to te sum from i = 1 to i = n of the numbers S(di), where S is the 
Smarandache function and d1 = 1, d2, …, di = n are the divisors of n. 

Note: 
In the same way, considering beside the Smarandache function the pseudo-Smarandache 
function, are defined the Z-perfect and the completely Z-perfect numbers.464 

 
(20) 
Smarandache Ulam numbers465 
 
Definition: 

The numbers obtained concatenating the Ulam numbers.466 The first few Smarandache 
Ulam numbers (or, in other words, the first terms of the Smarandache U-sequence) are: 
1, 12, 123, 1234, 12346, 123468, 12346811, 1234681113, 123468111316, … 

Comment: 
There are only two primes known in the first 3200 terms of this sequence, i.e. SU(22) and 
SU(237), where SU(n) is the n-th element of the sequence. 

 
 
 

                                                 
463 Introduced by A.A.K. Majumdar, see S-perfect and completely S-perfect numbers, in Wenpeng, Zhang 
(editor), Research on number theory and Smarandache notions (Proceedings of the fifth international 
conference on number theory and Smarandache notions), Hexis, 2009. The author proved that the only S-
perfect numbers are 1 and 6 and the only completely perfect S-numbers are 1 and 28. 
464 To find the all Z-perfect and completely Z-perfect numbers is still an open problem. The only known Z-
perfect numbers less than 10^6 are 4 and 6. 
465 Introduced by Shyam Sunder Gupta, see Smarandache sequence of Ulam numbers, in Wenpeng, Zhang 
(editor), Research on number theory and Smarandache notions (Proceedings of the fifth international 
conference on number theory and Smarandache notions), Hexis, 2009.  
466 An (m, n) - Ulam number is said to be a term of the sequence defined in the following way: the first term of 
the sequence is equal to m, the second is equal to n and the following terms are the least integers that can be 
expressed in an unique way as the sum of two distinct earlier terms. Here is considered the standard Ulam 
sequence, where m = 1 and n = 2: the first terms of this sequence are: 1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 
38, 47, … (sequence A002858 in OEIS). 
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ANNEX B 
A proposal for a new Smarandache type notion 

 
 

  
Definition 1: 

We call the set of Smarandache-Coman divisors of order 1 of a composite positive 
integer n with m prime factors, n = d1*d2*…*dm, where the least prime factor of n, d1, is 
greater than or equal to 2, the set of numbers defined in the following way: 
SCD1(n) = {S(d1 – 1), S(d2 – 1), …, S(dm – 1)}, where S is the Smarandache function. 
Examples:  
1. The set of SC divisors of order 1 of the number 6 is {S(2 – 1), S(3 – 1)} = {S(1), 

S(2)} = {1, 2}, because 6 = 2*3; 
2. SCD1(429) = {S(3 – 1), S(11 – 1), S(13 – 1)} = {S(2), S(10), S(12)} = {2, 5, 4}, 

because 429 = 3*11*13. 
 

Definition 2: 
We call the set of Smarandache-Coman divisors of order 2 of a composite positive 
integer n with m prime factors, n = d1*d2*…*dm, where the least prime factor of n, d1, is 
greater than or equal to 3, the set of numbers defined in the following way: 
SCD2(n) = {S(d1 – 2), S(d2 – 2), …, S(dm – 2)}, where S is the Smarandache function. 
Examples:  
1. The set of SC divisors of order 2 of the number 21 is {S(3 – 2), S(7 – 2)} = {S(1), 

S(5)} = {1, 5}, because 21 = 3*7; 
2. SCD2(2429) = {S(7 – 2), S(347 – 2)} = {S(5), S(345)} = {5, 23}, because 2429 = 

7*347. 
 

Definition 3: 
We call the set of Smarandache-Coman divisors of order k of a composite positive 
integer n with m prime factors, n = d1*d2*…*dm, where the least prime factor of n, d1, is 
greater than or equal to k + 1, the set of numbers defined in the following way: 
SCDk(n) = {S(d1 – k), S(d2 – k), …, S(dm – k)}, where S is the Smarandache function. 
Examples:  
1. The set of SC divisors of order 5 of the number 539 is {S(7 – 5), S(11 – 5)} = 

{S(2), S(6)} = {2, 3}, because 539 = 7^2*11; 
2. SCD6(221) = {S(13 – 6), S(17 – 6)} = {S(7), S(11)} = {7, 11}, because 221 = 

13*17. 
 

Comment: 
We obviously defined the sets of numbers above because we believe that they can have 
interesting applications, in fact we believe that they can even make us re-think and re-
consider the Smarandache function as an instrument to operate in the world of number 
theory: while at the beginning its value was considered to consist essentially in that to be 
a criterion for primality, afterwards the Smarandache function crossed a normal process 
of substantiation, so it was constrained to evolve in a relatively closed (even large) circle 
of equalities, inequalities, conjectures and theorems concerning, most of them, more or 
less related concepts. We strongly believe that some of the most important applications of 
the Smarandache function are still undiscovered. We were inspired in defining the 
Smarandache-Coman divisors by the passion for Fermat pseudoprimes, especially for 
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Carmichael numbers and Poulet numbers, by the Korselt’s criterion, one of the very few 
(and the most important from them) instruments that allow us to comprehend Carmichael 
numbers, and by the encouraging results we easily obtained, even from the first attempts 
to relate these two types of numbers, Fermat pseudoprimes and Smarandache numbers. 

 
Smarandache-Coman divisors of order 1 of the 2-Poulet numbers: 

(See the sequence A214305 in OEIS, posted by us, for a list with Poulet numbers with 
two prime factors) 

 
SCD1(341)  = SCD1(11*31) = {S(11 – 1), S(31 – 1)} = {S(10), S(30)}  = {5, 5}; 
SCD1(1387)  = SCD1(19*73) = {S(19 – 1), S(73 – 1)} = {S(18), S(72)}  = {6, 6}; 
SCD1(2047)  = SCD1(23*89) = {S(23 – 1), S(89 – 1)} = {S(22), S(88)}  = {11, 11}; 
SCD1(2701)  = SCD1(37*73) = {S(37 – 1), S(73 – 1)} = {S(36), S(72)}  = {6, 6}; 
SCD1(3277)  = SCD1(29*113) = {S(29 – 1), S(113 – 1)} = {S(28), S(112)} = {7, 7}; 
SCD1(4033)  = SCD1(37*109) = {S(37 – 1), S(109 – 1)} = {S(36), S(108)} = {6, 9}; 
SCD1(4369)  = SCD1(17*257) = {S(17 – 1), S(257 – 1)} = {S(16), S(256)} = {6, 10}; 
SCD1(4681)  = SCD1(31*151) = {S(31 – 1), S(151 – 1)} = {S(30), S(150)} = {5, 10}; 
SCD1(5461)  = SCD1(43*127) = {S(43 – 1), S(127 – 1)} = {S(42), S(126)} = {7, 7}; 
SCD1(7957)  = SCD1(73*109) = {S(73 – 1), S(109 – 1)} = {S(72), S(108)} = {6, 9}; 
SCD1(8321)  = SCD1(53*157) = {S(53 – 1), S(157 – 1)} = {S(52), S(156)} = {13, 13}. 

 
Comment: 
It is notable how easily are obtained interesting results: from the first 11 terms of the 2-
Poulet numbers sequence checked there are already foreseen few patterns. 
 
Open problems:  
1. Is for the majority of the 2-Poulet numbers the case that the two Smarandache-

Coman divisors of order 1 are equal, as for the seven from the eleven numbers 
checked above? 

2. Is there an infinity of 2-Poulet numbers for which the set of SCD of order 1 is 
equal to {6, 6}, the case of Poulet numbers 1387 and 2701, or with {6, 9}, the 
case of Poulet numbers 4033 and 7957? 

 
Smarandache-Coman divisors of order 2 of the 2-Poulet numbers: 

 
SCD2(341)  = SCD2(11*31) = {S(11 – 2), S(31 – 2)} = {S(9), S(29)}  = {6, 29}; 
SCD2(1387)  = SCD2(19*73) = {S(19 – 2), S(73 – 2)} = {S(17), S(71)}  = {17, 71}; 
SCD2(2047)  = SCD2(23*89) = {S(23 – 2), S(89 – 2)} = {S(21), S(87)}  = {7, 29}; 
SCD2(2701)  = SCD2(37*73) = {S(37 – 2), S(73 – 2)} = {S(35), S(71)}  = {7, 71}; 
SCD2(3277)  = SCD2(29*113) = {S(29 – 2), S(113 – 2)} = {S(27), S(111)} = {9, 37}; 
SCD2(4033)  = SCD2(37*109) = {S(37 – 2), S(109 – 2)} = {S(35), S(107)} = {7, 107}; 
SCD2(4369)  = SCD2(17*257) = {S(17 – 2), S(257 – 2)} = {S(15), S(255)} = {5, 17}; 
SCD2(4681)  = SCD2(31*151) = {S(31 – 2), S(151 – 2)} ={S(29), S(149)} = {29, 149}; 
SCD2(5461)  = SCD2(43*127) = {S(43 – 2), S(127 – 2)} = {S(41), S(125)} = {41, 15}; 
SCD2(7957)  = SCD2(73*109) = {S(73 – 2), S(109 – 2)} ={S(71), S(107)} = {71, 107}; 
SCD2(8321)  = SCD2(53*157) = {S(53 – 2), S(157 – 2)} = {S(52), S(156)} = {17, 31}. 

 
Comment: 
In the case of SCD of order 2 of the 2-Poulet numbers there are too foreseen few patterns. 
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Open problems:  
1. Is for the majority of the 2-Poulet numbers the case that the two Smarandache-

Coman divisors of order 2 are both primes, as for the eight from the eleven 
numbers checked above? 

2. Is there an infinity of 2-Poulet numbers for which the set of SCD of order 2 is 
equal to {p, p + 20*k}, where p prime and k positive integer, the case of Poulet 
numbers 4033 and 4681? 

 
Smarandache-Coman divisors of order 1 of the 3-Poulet numbers: 

(See the sequence A215672 in OEIS, posted by us, for a list with Poulet numbers with 
two prime factors) 

 
SCD1(561)  = SCD1(3*11*17) = {S(2), S(10), S(16)} = {2, 5, 6}; 
SCD1(645)  = SCD1(3*5*43) = {S(2), S(4), S(42)}  = {2, 4, 7}; 
SCD1(1105)  = SCD1(5*13*17) = {S(4), S(12), S(16)}  = {4, 4, 6}; 
SCD1(1729)  = SCD1(7*13*19) = {S(6), S(12), S(18)}  = {3, 4, 6}; 
SCD1(1905)  = SCD1(3*5*127) = {S(2), S(4), S(126)}  = {2, 4, 7}; 
SCD1(2465)  = SCD1(5*17*29) = {S(4), S(16), S(28)}  = {4, 6, 7}; 
SCD1(2821)  = SCD1(7*13*31) = {S(6), S(12), S(30)}  = {3, 4, 5}; 
SCD1(4371)  = SCD1(3*31*47) = {S(2), S(30), S(46)}  = {2, 5, 23}; 
SCD1(6601)  = SCD1(7*23*41) = {S(6), S(22), S(40)}  = {3, 11, 5}; 
SCD1(8481)  = SCD1(3*11*257) = {S(2), S(10), S(256)}  = {2, 5, 10}; 
SCD1(8911)  = SCD1(7*19*67) = {S(6), S(18), S(66)}  = {3, 19, 67}. 
 
Open problems:  
1. Is there an infinity of 3-Poulet numbers for which the set of SCD of order 1 is 

equal to {2, 4, 7}, the case of Poulet numbers 645 and 1905? 
2. Is there an infinity of 3-Poulet numbers for which the sum of SCD of order 1 is 

equal to 13, the case of Poulet numbers 561 (2 + 5 + 6 = 13), 645 (2 + 4 + 7 = 13), 
1729 (3 + 4 + 6 = 13), 1905 (2 + 4 + 7 = 13) or is equal to 17, the case of Poulet 
numbers 2465 (4 + 6 + 7 = 17) and 8481 (2 + 5 + 10 = 17)? 

3. Is there an infinity of Poulet numbers for which the sum of SCD of order 1 is 
prime, which is the case of the eight from the eleven numbers checked above? 
What about the sum of SCD of order 1 plus 1, the case of Poulet numbers 2821 (3 
+ 4 + 5 + 1 = 13) and 4371 (2 + 5 + 23 + 1 = 31) or the sum of SCD of order 1 
minus 1, the case of Poulet numbers 1105 (4 + 4 + 6 – 1 = 13), 2821 (3 + 4 + 5 – 
1 = 11) and 4371 (2 + 5 + 23 – 1 = 29)? 

 
Note: We stop here for now, because the purpose of this book is not to substantiate new 

concepts but to show the richness and the potential of the already largely known 
Smarandache notions. 
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About the works of Florentin Smarandache have been written a lot of 

books (he himself wrote dozens of books and articles regarding math, physics, 

literature, philosophy). Being a globally recognized personality in both 

mathematics (there are countless functions and concepts that bear his name) 

and literature, it is natural that the volume of writings about his research is 

huge. What we try to do with this encyclopedia is to gather together as much as 

we can both from Smarandache’s mathematical work and the works of many 

mathematicians around the world inspired by the Smarandache notions. We 

structured this book using numbered Definitions, Theorems, Conjectures, 

Notes and Comments, in order to facilitate an easier reading but also to 

facilitate references to a specific paragraph. We divided the Bibliography in 

two parts, Writings by Florentin Smarandache (indexed by the name of books 

and articles) and Writings on Smarandache notions (indexed by the name of 

authors). We treated, in this book, about 130 Smarandache type sequences, 

about 50 Smarandache type functions and many solved or open problems of 

number theory. We also have, at the end of this book, a proposal for a new 

Smarandache type notion, id est the concept of “a set of Smarandache-Coman 

divisors of order k of a composite positive integer n with m prime factors”, 

notion that seems to have promising applications, at a first glance at least in the 

study of absolute and relative Fermat pseudoprimes, Carmichael numbers and 

Poulet numbers. This encyclopedia is both for researchers that will have on 

hand a tool that will help them “navigate” in the universe of Smarandache type 

notions and for young math enthusiasts: many of them will be attached by this 

wonderful branch of mathematics, number theory, reading the works of 

Florentin Smarandache. 

 
 

 

 

 

 

 

 


