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Abstract: 

We study the Standard Model in light of the Zero-Postulation of the Theory of Abstraction. 
Yukawa Coupling, chiral superfields, the SUSY model, Interacting Boson Models (IBMs), Clebsch-
Gordan coefficients, Interacting Boson-Fermion Model (IBFM), etc., are some of the concepts 
that we study in this paper. Non-commutative geometry seems to come very handy in 
describing the quantum world. Bosons and fermions both seem to be governed by the rules of 
such geometry. The principle of conservation of boson number inside a system is seen to follow 
directly from the Abstraction Model. The IBMs are seen to obey the Laws of Physical 
Transaction that follows from Zero-Postulation. The chaotic superfields at the requisite scaling-
ratio yields necessary equation-parameters needed to describe them at that given scaling-ratio. 
This is seen to be independent of the choice of scale, but at smaller scaling-ratios, we have less 
loss of information. At a higher scale, we seem to have less number of parameters required to 
describe them. 
 

 

 

Introduction: 

In the Theory of Abstraction, we start from zero-postulation and build on to reach results that 

depend upon certain parameters that in turn depend on the system in question itself. Our 
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theory seems to fit in reasonably well in our study of systems in all scales. Starting from a basis 

of no postulation, we build our theory. As we go on piling up possibilities, we come to a similar 

basis for understanding the four non-contact forces of nature known till date. The difference in 

ranges of these forces is explained from this basis in previous papers. Zero postulation or 

abstraction as the basis of theory synthesis allows us to explore even imaginary and chaotic 

non-favoured solutions as possibilities. With no postulation as the fundamental basis, we are 

thus able to pile up postulated results or favoured results, but not the other way round. We 

keep describing such implications of abstraction in this paper too. We deal with the abstraction 

of observable parameters involved in the Standard Model. 

From previous work on th theory, we know that the force that will be felt due to a quantity 𝐴′ 
of the property 𝐴 in this field of acceleration a is, 

𝐹 = 𝐴′𝑐2  ∆𝐴 
4𝑖

8𝑖−1

 𝐴 
2

8𝑖−1

                                                         … (1), 

where the acceleration a is, 

a = 𝑐2  ∆𝐴 
4𝑖

8𝑖−1

 𝐴 
2

8𝑖−1

                                                              … (2). 

The uncertainty, in turn, depends upon the Lyapunov exponents (𝜈). Moreover, there is a 

stretching or shrinking of a given direction according to the factor 𝑒𝜈𝑡
, according as 𝜈 being 

positive or negative in that direction. 
This will be our starting point in our study of the Standard Model in this present body of work. 
 

Higgs Potential: 
 
When the gauge coupling constants, depending upon equation (2), are g and g’ for of SU(2) 

and U(1), respectively, the tree-level Higgs Potential in the minimal (SUSY) Standard Model is, 

𝑣 =
𝑔2

8
(𝐻 1 𝜏𝑎𝐻1 + 𝐻 2 𝜏𝑎𝐻2  )

2 +
𝑔′2

8
(𝐻 1 𝐻1 + 𝐻 2 𝐻2  )

2 , 
where (here), 

𝜏𝑎 =
𝐴

1
8𝑖−1

𝑐
                                                                      … (3). 

 
From the breaking of electroweak symmetry caused by  
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< 𝐻1 > =   
0

𝑣1
 / 2 

and 

< 𝐻2 > =   
𝑣2

0
 / 2 

 
we get the tree level masses of the Higgs scalars as, 

𝑚2
𝑥0 =  𝑚1

2 + 𝑚2
2, 

𝑚𝑥±
2 = 𝑚𝑥0

2 + 𝑚𝑊±
2 , 

𝑚𝑎,𝑏
2 =

1

2
[𝑚𝑥0

2 + 𝑚𝑧0
2 ±  {(𝑚𝑥0

2 + 𝑚𝑧0
2 )2 − 4𝑚𝑥0

2 𝑚𝑧0
2 𝑐𝑜𝑠2 2𝜃}], 

tan 𝜃 =
𝑣2

𝑣1
. 

 
Interacting Boson Models: 
 
For a Hamiltonian 𝐻(𝑞, 𝑝)and equations of motion 

𝑞 𝑖 =
𝜕𝐻

𝜕𝑝𝑖
, 𝑝 𝑖 =

𝜕𝐻

𝜕𝑞𝑖
 

    With 𝐷 degrees of freedom, 

𝑥 =  𝑞, 𝑝 , 
𝑞 =  𝑞1 , 𝑞2, 𝑞3 , … , 𝑞𝐷 , 
𝑝 =  𝑝1, 𝑝2, 𝑝3, … , 𝑝𝐷 . 
    The value of the Hamiltonian function at the state space point 𝑥 =  𝑞, 𝑝  is constant 

along the trajectory𝑥(𝑡). Thus the energy along the trajectory 𝑥(𝑡) is constant, 

𝑑

𝑑𝑡
𝐻 𝑞 𝑡 , 𝑝 𝑡  =

𝜕𝐻

𝜕𝑞𝑖
𝑞 𝑖 𝑡 +

𝜕𝐻

𝜕𝑝𝑖
𝑝 𝑖 𝑡 =

𝜕𝐻

𝜕𝑞𝑖

𝜕𝐻

𝜕𝑝𝑖
−

𝜕𝐻

𝜕𝑝𝑖

𝜕𝐻

𝜕𝑞𝑖

= 0 

    The trajectories therefore lie on surfaces of constant energy or level sets of the Hamiltonian 

  𝑞, 𝑝 : 𝐻 𝑞, 𝑝 = 𝐸 . 
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Given a smooth function𝑔(𝑥), the standard map is, 

𝑥𝑛+1 = 𝑥𝑛 + 𝑦𝑛+1  

𝑦𝑛+1 = 𝑦𝑛 + 𝑔 𝑥𝑛 . 
    This is an area-preserving map. The corresponding 𝑛𝑡𝑕

 iterate Jacobian matrix is, 

𝑀𝑛 𝑥0 , 𝑦0 =   
1 + 𝑔′(𝑥𝐾) 1

𝑔′(𝑥𝐾) 1
 

1

𝐾=𝑛

                           …  4 . 

 
 
The complete Hamiltonian of the IBM1 is, 

𝐻 = 𝐻(𝐼) + 𝑣𝑅𝑅
2 + 𝑣𝑞𝑄

2
, 

where 𝐻(𝐼) = 𝜀𝑛𝑁 + 𝑣𝑛𝑁
2 +  𝜀𝑑

′ + 𝑣𝑛𝑑𝑁 𝑛𝑑 + 𝑣𝑑𝑛𝑑
2 + 𝑣𝑡𝑇

2 +
𝑣𝑗 𝐽

2
 , 

|𝑁𝑛𝑑𝜏𝑛∆𝐽𝑀 > are eigenfunctions of the operator 𝐻(𝐼)
, with eigenvalues 𝐸𝑁𝜏𝐽𝑛 𝑑

(𝐼)
 . 

A Floquet multiplier Λ = Λ 𝑥0 , 𝑡  associated to a trajectory is an eigenvalue of the 

Jacobian matrix 𝐽 and it satisfies 

det 𝐽 − Λ𝐼 = det 𝐽𝑇 − Λ𝐼 = det −𝜔𝐽𝑇𝜔 − Λ𝐼  

= det 𝐽−1 det 𝐼 − Λ𝐽    
= Λ2𝐷 det 𝐽 − 𝛬−1𝐼                                …  5 . 

    This is because,𝐽−1 = −𝜔𝐽𝑇𝜔, 𝐽 being symplectic. If ∧ is an eigenvalue of 𝐽 so are 
1

Λ
, Λ∗

 and 
1

Λ∗. Real eigenvalues always come paired as Λ,
1

Λ
. The complex eigenvalues come 

in pairs Λ, Λ∗,  Λ = 1, or in loxodromic quartets Λ,
1

Λ
, Λ∗

 and 
1

Λ∗. 

    For a trajectory originating near 𝑥0 = 𝑥(0) with an initial infinitesimal displacement 

𝛿𝑥(0), the flow transports the displacement 𝛿𝑥(𝑡) along the trajectory 𝑥 𝑥0 , 𝑡 =
𝑓𝑡 𝑥0 . 
    This infinitesimal displacement is transported along the trajectory 𝑥 𝑥0 , 𝑡 , with time 

variation given by, 
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𝑑

𝑑𝑡
𝛿𝑥𝑖 𝑥0 , 𝑡 =

  
𝜕𝑣𝑖

𝜕𝑥𝑗
 𝑥 𝑗  

𝑥=𝑥 𝑥0 ,𝑡 
𝛿𝑥𝑗  𝑥0 , 𝑡                                    …  6 . 

 

For two scalar bosons 𝜑𝑎  and 𝜑𝑏  the mass-matrix is, 

(𝜑𝑎𝜑𝑏)

 
 
 
 
 
𝑚𝑥0

2 + 𝑚𝑧0
2 𝑠𝑖𝑛22𝜃 −𝑚𝑧0

2 𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜃

+
1

2
𝛿𝑠𝑖𝑛22𝜃. 𝑣2 +𝛿𝑠𝑖𝑛2𝜃𝑠𝑖𝑛2𝜃. 𝑣2

−𝑚𝑧0
2 𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜃

+𝛿𝑠𝑖𝑛2𝜃𝑠𝑖𝑛2𝜃. 𝑣2

𝑚𝑧0
2 𝑐𝑜𝑠22𝜃

+2𝛿𝑠𝑖𝑛4𝜃. 𝑣2  
 
 
 
 

 
𝜑𝑎

𝜑𝑏
 , 

where, 𝛿 ≃ 3  𝑙𝑜𝑔
𝑚2+𝑚 𝑡

2

𝑚 𝑡
2   

𝑕𝑡
2

4𝜋
  . 

One of the eigenvalues being always smaller than 𝑚𝑧0
2 𝑐𝑜𝑠22𝜃 + 2𝛿𝑠𝑖𝑛4𝜃. 𝑣2 the 

mass of the lightest scalar boson 𝜑𝑙  is, 

𝑚𝑙 ≤  {𝑚𝑧0
2 𝑐𝑜𝑠22𝜃 +

6

 2𝜋 2  𝑙𝑜𝑔
𝑚2+𝑚 𝑡

2

𝑚 𝑡
2  

𝑚 𝑡
4

𝑣2 } . 

The equations of motion for a time-independent 𝐷-degrees of freedom Hamiltonian can be 
written as, 

𝑥 𝑖 = 𝜔𝑖𝑗 𝐻𝑗  𝑥 , 𝜔 =  
0 −𝐼
−𝐼 0

 , 𝐻𝑗  𝑥 =
𝜕

𝜕𝑥𝑗
𝐻 𝑥 ; 

where 𝑥 = (𝑞, 𝑝) ∈ 𝐵 is a phase space point. 𝐻𝐾 = 𝜕𝐾𝐻 is the column vector of 

partial derivatives of 𝐻, 𝐼 is the  𝐷 × 𝐷  unit matrix and 𝜔 the  2𝐷 × 2𝐷  symplectic 

form. 

ωT = −ω, ω2 = −1 

    The evolution of 𝐽𝑡  is determined by the stability matrix 𝐴, 

𝑑

𝑑𝑡
𝐽𝑡 𝑥 = 𝐴 𝑥 𝐽𝑡 𝑥 , 

𝐴𝑖𝑗  𝑥 = 𝜔𝑖𝑘𝐻𝑘𝑗  𝑥                                                         … (7), 

where the matrix of second derivations 𝐻𝑘𝑛 = 𝜕𝑘𝜕𝑛𝐻 is the Hessian matrix. For 

symmetry of 𝐻𝑘𝑛 , 𝐴𝑇𝜔 + 𝜔𝐴 = 0. 
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The eigenenergy of the I-th state is 𝐸𝑁𝐽
(𝐼)

 and satisfies the relation, 

𝐻|𝐼𝑁𝑀𝐽 >>= 𝐸𝑁𝐽
 𝐼 

|𝐼𝑁𝑀𝐽 >> . 

The Yukawa coupling 𝑕𝑡  of the top quark is defined in the superpotential, 

𝐺 = 𝑕𝑡𝜑𝓉𝑅𝜑𝑞𝐿3𝜑𝐻2
 , 

where 𝜑𝓉𝑅  and 𝜑𝑞𝐿3   are chiral superfields of the right-handed top quark and the left-

handed quark doublet in the third generation, respectively. 
In this respect, the Yukawa coupling of the top quark is, 

𝑕𝑡 =  2𝑚𝑡/𝑣2 . 

The Hamiltonian 𝐻(1)
 of an active boson of a single state |𝑏𝐼𝑀 > is constituted by its 

kinetic energy 𝐾(1)
 and its potential energy  𝑃(1) . 

The IBMs are seen to obey the Laws of Physical Transaction that follows from Zero-Postulation. 
The chaotic superfields at the requisite scaling-ratio yields necessary equation-parameters 
needed to describe them at that given scaling-ratio. This is seen to be independent of the 
choice of scale, but at smaller scaling-ratios, we have less loss of information. At a higher scale, 
we seem to have less number of parameters required to describe them. 
The 12 creation operators for bosons are: 

𝑏𝜋,𝑗𝑚
+ = 𝑠𝜋

+, 𝑑𝜋,𝑚
+  (𝑚 = −2, −1,… ,2) and 

 𝑏𝑣,𝑗𝑚
+ = 𝑠𝑣

+, 𝑑𝑣,𝑚
+  (𝑚 = −2,−1, … ,2), 

where 𝜋 is a proton and 𝑣 is a neutron. 

Thus, for these pairs, 

𝐻 = 𝐻𝜋 + 𝐻𝑣 + 𝑉𝜋𝑣   , 

which is the usual result. 

A normalized, symmetric many-boson state (with occupational numbers: 𝑁𝑎 , 𝑁𝑏 , … , 𝑁𝑥 ) , 

for creation operator 𝑏𝑛
+

 (with index 𝑛), is represented by, 

(𝑁𝑎 ! 𝑁𝑏 ! …𝑁𝑥 !)−
1

2(𝑏𝑎
+)𝑁𝑎 (𝑏𝑏

+)𝑁𝑏 … (𝑏𝑥
+)𝑁𝑥 | >= |𝑁𝑎𝑁𝑏 …𝑁𝑥 > , 

where the index represents the angular momentum of the single state and its projection. 
 

Conservation of Boson Number: 
 
    Let us now consider the flow of an energy quantum, with frequency (𝜈) in a given direction 

in vacuum. The distance (𝐷) of transport in that given direction can be considered to 
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be(𝑐𝑇); where (𝑐) is the velocity of energy-quantum in vacuum and (𝑇) is the time of 

transport. 

    For an empty environment in which the flow takes place, we may assume that the concerned 
difference in concentrations between the initial and the final points, 

𝜆 = 𝑕𝜈 

where 𝑕 is Plank’s constant. 

    Placing 𝐷 = 𝑐𝑇 and 𝜆 = 𝑕𝜈 in the transaction equation, we get, 

𝐹 ∝
𝜔𝑕𝜈𝑆

𝑐𝑅
 

    Again, as the energy-quantum moves from the initial to the final point completely, the 
concerned flow, 

𝐹 = 𝑕𝜈 

    Placing this value of 𝐹 in the previous equation, we get, 

𝜔 = 𝑐  
𝑅

𝑆
 . 

    Assuming, the resistance against the concerned flow and the support towards it for the 

energy, i.e., considering𝑅 = 𝑆, we have, 

𝜔 = 𝑐                                                                                      … (8). 

    The value of the constant 𝜔 may therefore be replaced by the speed of light in vacuum, 𝑐, 

in the equations concerning transport of a given physical entity. 

    Such a transfer of any physical entity as described by the transaction equation will continue 

until and unless the difference in concentrations concerned, i.e., 𝜆 becomes zero. 

While 

 

𝐹

𝑇
= 2𝑐  

𝜆

𝐷
                                                                               … (9). 
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   Equation (9) describes fundamentally the effect (i.e., the flow 𝐹 in time𝑇) of two material-

points having same factorial conditions regarding one or a number of entities. Considering a 
collection of such points and applying a statistical approach, the logistic equation (due to May, 

1967) for  
𝐹

𝑇
  can be written as, 

2𝑐  
𝜆

𝐷
 
𝑡+1

= 2𝐾𝑐  
𝜆

𝐷
 
𝑡
 1 − 2𝑐  

𝜆

𝐷
 
𝑡
  

i.e., 
 

 

 
𝜆

𝐷
 
𝑡+1

= 𝐾  
𝜆

𝐷
 
𝑡
 1 − 2𝑐  

𝜆

𝐷
 
𝑡
                                                 

where 𝐾 is a constant. 

    Also, the quadratic map (due to Lorentz, 1987) can be written as, 

2𝑐  
𝜆

𝐷
 
𝑡+1

= 𝐾 −  2𝑐
𝜆

𝐷
 
𝑡

2

 

i.e., 

2𝑐  
𝜆

𝐷
 
𝑡+1

= 𝐾 − 4𝑐2  
𝜆

𝐷
 
𝑡

2
                                               … (10). 

Let us consider a system of 𝑛𝑑   bosons. The parameter 𝑑 represents its structural-orientation, 

which depends upon our experimental conditions (like the scaling-ratio used, differences in 

concentration, etc.).  For our present scale of interest, the frequency of a boson 𝜗𝑑  represents 

the given difference in concentration  𝜆𝑑  .  

Thus the total energy carried by a given boson is, 

𝐸 = 𝑕𝜆𝑑                                                                                     

Also, let us have 𝑛𝑑1
 and 𝑛𝑑2

 bosons interacting, such that total energy in the system is, 

𝐸 = 𝑕 𝜆𝑑1
+ 𝜆𝑑2

 .  
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The principle of conservation of energy for that given system requires that the resulting system 

of bosons (𝜆𝑑3
) have an equal amount of total energy, such that, 

𝜆𝑑3
=  

𝜆𝑑1 +𝜆𝑑2

2
, 

which, in turn, means, 

𝑛𝑑3
= 𝑛𝑑1

+ 𝑛𝑑2
 . 

All trajectories described by the quadratic map become asymptotic to −∞ for 

𝐾 < −0.25 and 𝐾 > 2 . 

In the SO(6) or γ-instable limit, a linear combination of Casimir operators on the chain 

𝑈(6) ⊃ 𝑆𝑂(6) ⊃ 𝑆𝑂(5) ⊃ 𝑆𝑂(3) is, 

𝐻 = 𝜀𝑛𝑁 + 𝑣𝑛𝑁
2 + 𝑣𝑟𝑅

2 + 𝑣𝑡𝑇
2 + 𝑣𝑗 𝐽

2 . 

For the functions 𝜑𝑖 = 𝜆𝑖  and 𝜑𝑗 = 𝜆𝑗  belonging to the same system, 

 𝜆𝑗
∗  𝑅 𝜆𝑖 𝑅 𝑑𝑅 ≡  𝜆𝑗

∗  𝑅 𝛿 𝑅 − 𝑅′ 𝜆𝑖 𝑅
′ 𝑑𝑅𝑑𝑅′ =

  𝜆𝑗
∗

𝛽  𝑅 𝜆𝛽 𝑅 𝑑𝑅 ∙  𝜆𝛽
∗  𝑅′ 𝜆𝑖 𝑅

′ 𝑑𝑅′                   …  11 .               

Using Lyapunov exponents for a given transport, and replacing 2𝑐  
𝜆

𝐷
  by a quantity ′𝜏′, we 

have, 

𝑑

𝑑𝜏
𝑓𝑛 𝜏 =

𝛿𝑛

𝛿𝑜
 

i.e., 

𝛿𝑛

𝛿𝑜
=  𝑓′(𝜏𝑖)

𝑛

𝑖=1

                                                                   … (12) 

𝑏 =
1

𝑛
log𝑒  

𝛿𝑛

𝛿𝑜
  

   i.e., 
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𝑏 =
1

𝑛
 log𝑒  𝑓

′(𝜏𝑖) 

𝑛−1

𝑖=1

                                                       …  13 , 

where 𝑏 is a constant (the local slope of all possible routes), and 

Ψ = lim
𝑛→∞

1

𝑛
 log𝑒  𝑓

′(𝜏𝑖) 

𝑛−1

𝑖=0

                                              …  14 , 

where  is a constant for the system. 

 

Non-commutative Operators: 
 

Let the spectral triple  𝒜, ℋ, 𝒟  denote a non-commutative geometry, where in Hilbert 

space ℋ we have an involutive geometry 𝒜 and a self-adjoint unbounded operator𝒟. 

𝒟−1
 , the inverse of 𝒟  denotes infinitesimal length. 𝒜 = 𝐶∞ 𝑀   is the algebra of 

smooth functions on the Riemann Manifold 𝑀. The Dirac operator of Levi-Civita spin is𝒟.  

The Hilbert space of 𝐿2
-spinors is, 

ℋ = 𝐿2 𝑀, 𝑆 . 

Considering 𝑥 dimensions of the manifold𝑀, a 𝑍/2 gradient for difference in concentrations 

of one or a group of physical quantity or quantities 𝜆𝑥  in the Hilbert space ℋ satisfies: 

𝜆𝑥 = 𝜆𝑥
∗, 𝜆𝑥

2 = 1, 𝜆𝑥𝑎 = 𝑎𝜆𝑥  ∀ 𝑎 ∈  𝒜, 𝜆𝑥𝒟 = −𝒟𝜆𝑥 … (15) . 
The spectrum of the operator 𝒟 replaces the status of points 𝑥 ∈ 𝑀 in commutative 

geometry. 

𝑥 modulo 8 determines the values of the parameters 𝜀, 𝜀′ , 𝜀′′
 such that, 

𝐽2 = 𝜀, 𝐽𝒟 = 𝜀′𝒟𝐽, 𝐽𝜆𝑥 = 𝜀′′ 𝜆𝑥𝐽, 𝜀, 𝜀′ , 𝜀′′ ∈ {−1,1} , 
where 𝐽 is an anti-linear isometry in the Hilbert space ℋ and it denotes the real structure on 

ℋ. 

For any given flow 𝐹  in ℋ, we have, 

𝒜 = 𝐶∞ 𝑀 ⨂𝒜𝐹  , 
𝒜𝐹 = 𝐶 ⊕ ℋ ⊕ 𝑀3 𝐶 , 

ℋ = { 
𝛼 𝛽

−𝛽 𝛼
 ; 𝛼, 𝛽 ∈ 𝐶}, 
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ℋ = 𝐿2 𝑀, 𝑆 ⨂ℋ𝐹 , 𝒟 = ð𝑀 ⨂ 1 + 𝜆𝑥5⨂𝒟𝐹 . 

The Dirac operator 𝒟𝑥  , considering inner fluctuations, yields a 36 × 36 matrix for the 36 

quarks. 𝜎𝛼  and 𝜓𝑖 represent Pauli matrices and Gell-Mann matrices, respectively. This matrix, 

with Clifford algebra tensors, is, 

𝒟𝑥 = 

 
 
 
 
 𝝀𝒙

𝝁
⨂ 𝓓𝝁𝟏𝟐 −

𝒊

𝟐
𝒈𝟎𝟐𝑨𝝁

𝜶𝝈𝜶 −
𝒊

𝟔
𝒈𝟎𝟏𝑩𝝁⨂𝟏𝟐 ⨂𝟏𝟑, 𝝀𝒙𝟓⨂𝑲𝟎

𝒅⨂𝓗𝑭, 𝝀𝒙𝟓⨂𝑲𝟎
𝒖⨂𝓗𝑭

 

𝝀𝒙𝟓⨂𝑲𝟎
𝒅∗⨂𝓗𝑭

∗,

𝝀𝒙𝟓𝑲𝟎
𝒖∗𝓗𝑭

 ∗
,

𝝀𝒙𝟓⨂ 𝓓𝝁 +
𝒊

𝟑
𝒈𝟎𝟏𝑩𝝁 ⨂𝟏𝟑,

𝟎,

𝟎

𝝀𝒙𝟓
𝝁⨂ 𝓓𝝁 −

𝟐𝒊

𝟑
𝒈𝟎𝟏𝑩𝝁 ⨂𝟏𝟑 

 
 
 
 

 

⨂13 + 𝜆𝑥5
𝜇⨂14⨂13⨂(−

𝑖

2
𝑔03𝑉𝜇

𝑖𝜓𝑖), 

where, 𝐵𝜇  , 𝐴𝜇
𝛼  and 𝑉𝜇

𝑖  are the 𝑈(1), 𝑆𝑈(2)𝑤  and 𝑆𝑈(3)𝑐  gauge fields, respectively, 

with gauge couplings 𝑔01 , 𝑔02  and 𝑔03 . 𝐻𝐹
 = 𝑖𝜎2𝐻𝐹 . 

A similar treatment, after considering inner fluctuations, yields a 9 × 9 matrix for leptons, 

𝐷𝑥

=  
𝜆𝑥
𝜇
⨂ 𝒟𝜇 −

𝑖

2
𝑔02𝐴𝜇

𝛼𝜎𝛼 −
𝑖

2
𝑔01𝐵𝜇⨂12 ⨂13 𝜆𝑥5⨂𝐾0

𝑒⨂ℋ𝐹

𝜆𝑥5⨂𝐾0
𝑒∗⨂ℋ𝐹

∗ 𝜆𝑥5
𝜇⨂ 𝒟𝜇 + 𝑖𝑔01𝐵𝜇 ⨂13

  

 

Conclusion: 
 
We study the Standard Model taking into consideration the Zero-Postulation of the Theory of 
Abstraction. The relative difference in concentrations of any given physical entity creates a 
tensor-gradient that causes the varied ways of flow. The necessary complete set of parameters 
and the required scaling-ratio for a given set of observations describes the observations 
themselves. We can arrive at IBMs and IBFMs in this way. We may as well describe the basis of 
the Standard Model itself using the Theory of Abstraction. 
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