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Abstract

The "Schrödinger cat" states supposed by quantum mechanics need not be considered probabilis-

tic or otherwise inconsistent with the existence of the particle in the physically real state assumed

by classical physics. The further states contemplated by the formalism of quantum mechanics

could be states, not of the particle itself, but of the apparatus - oscillatory disturbances induced

by reaction as the particle is scattered and mimicking the wave characteristics of a particle state.

If quantum states are understood in that way, much of what has seemed mysterious in quantum

behaviour becomes consistent with local realism.
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I. INTRODUCTION

The members of the Royal Society of London, who were at Somerset House on Novem-

ber 24, 1803 to hear Thomas Young’s account of his experiments with light, would have

been astonished to learn of the explanations that would later emerge for the "double-slit"

interference that Young described that evening [1].

According to what is now orthodox or "standard" quantum mechanics (SQM), an inter-

fering particle exists in a superposition of intrinsically probabilistic "Schrödinger cat" states.

And while Schrödinger’s paradox of the probabilistic cat who is at once dead and alive [2]

may have been fanciful, we may also contemplate in Everett’s treatment of the measurement

problem [3], the intriguing possibility that the cat may not only be dead and alive, but up

to all sorts of mischief in the wider multiverse.

This paper will explore the rather less interesting possibility that the particle only seems

to be in more than one state. From the success of SQM, and the example of self interference,

it can hardly be doubted that in some formal sense the alternative states supposed by SQM

must exist. But it will be assumed, consistently with the local realism of classical physics,

that the particle is in a single physically real state at all times, albeit that this state may

be unknown or transitional or capable of expression as a superposition with respect to the

modes of some apparatus.

What might seem to be a further state of the particle will be, not a state of the particle

itself, but a state of the apparatus induced by reaction as the particle is scattered (for

instance at the surface of discontinuity within a beamsplitter). Assuming the exact and

locally causal operation of laws of conservation, it will be argued that the response of the

scattering medium must match exactly the change in the wave characteristics of the particle,

and must therefore take the form of a secondary wave or waves propagating through the

experiment in the same manner as a particle.

Understood in this way, quantum states become consistent with local realism and the

measurement problem disappears. Self interference is then the interference of real not

probabilistic states, and it also becomes possible to resolve a threshold problem in the local

realistic modelling of Bell’s experiments, namely the presence in each arm of the experiment

of orthogonal waves associated with the same particle.

The argument will be presented in a general way in the next section, and developed in
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Sect. 3 by reference to the phenomenon of refraction. Following sections will discuss in turn:

a local realistic approach to the Born rule (Sect. 4), possible refutations of that approach

(Sect. 5), beamsplitting (Sect. 6), self interference (Sect. 7) and entanglement (Sect. 8).

Sect. 9 will provide a brief conclusion.

II. QUANTUM STATES

The central problem of quantum mechanics, or as Feynman memorably told his students,

"the only mystery" [4], though best known from Young’s experiment, is illustrated in a

particularly compelling manner by the Mach-Zehnder interferometer of Fig. 1.

Interference is observed between the recombining partial beams even when the original

beam is incoherent or is so attenuated that only one particle is in flight at a time [5] - or as

was said in the context of neutron interferometry - when the next neutron along is yet to

be born in the nuclear furnace [6]. The problem then is this: How does a particle that is

indivisible and constrained to follow one or other path through the interferometer project

its influence along both paths so as to "self interfere" as those paths rejoin?

Notice, however, that there is nothing at all mysterious in the proposition that the scat-

tering of a particle must result in wave-like influences propagating in two directions. From

Newton’s third law, or equivalently conservation, the scattering of the particle in one direc-

tion is accompanied by a transfer of momentum in another direction of equal but opposite

effect to the change in the particle.

It is also known, from Einstein and de Broglie, that every elementary particle, whether

massive or massless, has wave characteristics commensurate with its dynamic properties,

namely from the Planck-Einstein relation,

E = ~ω, (1)

a frequency ω, and from the de Broglie relation,

p = ~κ, (2)

a wave number κ, where E and p are respectively the energy and momentum of the particle,

and ~ is the reduced Planck’s constant.
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FIG. 1: A Mach-Zehnder interferometer: In standard quantum mechanics, the probability

wave of the photon divides at beamsplitter BS1. Self interference then occurs as the par-

tial probability waves recombine at BS2. In the local realistic explanation here, the scatter-

ing of the photon into one or other arm at BS1 induces by reaction secondary radiation pre-

cisely anticorrelated with the change in the photon and capable of interference with the photon at

BS2.

Thus what is imparted by particle to scattering agency is never simply undifferentiated

energy or momentum. It is an oscillatory or wave-like disturbance of equal but opposite

effect to the change in the wave characteristics of the particle. In general, we should expect

this reaction (the response of the scattering medium) to be dissipated in some incoherent

manner through the medium. The macroscopic cat who bounces from a wall will impart

momentum to the wall, perhaps even leave an impression on the wall, but the oscillatory

changes induced in the molecules of the wall are unlikely to coalesce into some cat-like wave

propagating through the wall.

But things at the microscopic level are rather different. The elementary particles exist

and combine in characteristic and well defined forms, and are compelled by the wave-like

nature of those forms to propagate in directions of constructive interference. In quantum

measurement, where the trajectories and characteristics of incident and transmitted particles

are closely constrained by the circumstances of the experiment, so also must be the response
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of the medium. Trivially, but nonetheless precisely, we might write,

ψin − ψout = ψresp, (3)

where ψin and ψout are incoming wave and outgoing wave respectively, and ψresp is the

response of the medium.

Let us suppose that ψin (which we assume to be normalized) has components ci in the

two modes of a beamsplitter, that is,

ψin =
∑
i=1,2

ci ui, (4)

where ui is the (here physically real) eigenfunction for the ith mode. If ψin takes the channel

corresponding to say mode 2, we then have

ψout = u2,

and thus a reaction in the medium,

ψresp = c1u
′

1 − c1u
′

2 (5)

(where the prime denotes a state of the apparatus).

As a simple example, consider the interaction with an HV polarizing beamsplitter of a

photon linearly polarized at θ to the horizontal, that is,

ψin = H cos θ + V sin θ (6)

where H and V (the eigenfunctions) are states of horizontal and vertical polarization, re-

spectively.

As this photon is forced into one or other mode, let us say the V mode, a reaction of

equal but opposite effect occurs in the apparatus. Thus,

ψout = V,

and,

ψresp = H ′ cos θ − V ′ cos θ, (7)

where the prime again denotes, not a state of the particle, but a state of the apparatus,

having in this case the effect of a torsional wave propagating through the beamsplitter.
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According to SQM, the probability wave of the photon separates at the beamsplitter

into partial probability waves (Schrödinger cat states) with amplitudes H cos θ and V sin θ.

It then remains in this probabilistic limbo until a step is taken to ascertain from which

channel the photon has emerged, at which point (which could in principle be years later or

not at all) the photon acquires physical reality as an H or V photon (this being one of the

oddities of SQM that have encouraged several well considered reinterpretations of quantum

mechanics).

What is contemplated in this paper is that the photon is at all times in a physically

realistic state, but as it adopts the V state within the beamsplitter, the torsional response

(7) of the medium exactly balances the gain by the photon in its V component and the loss

of its H component. In the mode not adopted by the photon we have the reaction,

H ′ cos θ ≡ H cos θ,

and in the orthogonal mode, a composite disturbance,

V − V ′ cos θ ≡ V sin θ,

being physically realistic waves formally equivalent to the probabilistic Schrödinger cat states

supposed by SQM.

Eqn. (3) is simply Newton’s third law, but implies that the immediate response of the

medium comprises a fleeting imbalance of a wave-like form peculiarly apt to couple with an

accompanying or following particle of similar provenance. This disturbance will be referred

to compendiously as the "secondary wave". We will find in the tendency of the apparatus

to regain equilibrium by the reacquisition by interference of the resulting imbalance, a local

and realistic explanation of measurement. By following the evolution of this secondary wave

through the experiment it will also be possible to offer a local realistic explanation of self

interference.

Crucial to the argument will be a reliance upon conservation to a degree not contem-

plated in SQM. It is no longer suggested, as once it was [7], that conservation is merely

approximate or "statistical" in quantum processes, but an interpretation of quantum me-

chanics that concedes roles to chance and nonlocality is necessarily careless of the conserved

properties of physics. Eqn. (3) could not be an equation of the standard interpretation.

According to that interpretation, Ψf is reached from Ψi by a reduction or collapse that may
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be discontinuous and nonlocal and is certainly non-deterministic. Along with continuity

and causality, conservation must fail at the instant of measurement, as also in consequence

must Maxwell’s equations.

In what follows, we assume (in accordance with local realism) the continued validity at

the quantum level of Maxwell’s equations, as well as the local and causal operation at that

level of laws of conservation. We stress that the waves we are describing - the particle itself,

which might be thought of as the primary wave, and the secondary induced by reaction as

the primary is scattered - are at all times real waves. They are not the probabilistic waves

of SQM. Nor, are they to be equated, for instance, with the two waves of de Broglie’s double

solution.

III. THE SECONDARY WAVE

The secondary wave now proposed is in essence the secondary wave that is well recognized

as the cause of refraction (see, for instance, Born and Wolf, [8], chap. 2.4.3). In a region

of a dielectric remote from discontinuity, the interaction of photon with medium is solely

with the charged particles of the medium, which in a dielectric are bound charges. The

process is thus mediated by moments, primarily electric dipole moments, induced in the

molecules of the material. (If there were no charges in the medium, the photon would pass

through entirely unaffected). Reradiation from these moments interferes constructively in

the direction of the photon flux. The composition of this reradiation (the polarization field)

with the field of the photon causes the change in phase velocity that is the origin of the

refractive index.

So much is well accepted. But consider refraction as it occurs in measurement, as when

a photon encounters the birefringence of a polarizing beamsplitter or the partially reflective

surface of a non-polarizing beamsplitter (of which more will be said in Sect. 6). Here

also the interaction of photon with medium is solely with the charges of the medium and

mediated entirely by moments induced in the molecules of that medium. However, there

are now alternative paths of constructive interference available to the photon, and at this

point the continuous wave of classical physics would divide. But not so the photon, which

(at these energies) is indivisible and thus forced (projected) in its entirety into one or other

path.
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SQM asserts that the path then taken is determined by intrinsic probability, or as von

Neuman described it irreducible quantum randomness [9], that is to say, pure chance. On

this view, the measurement of any one particle in a stream of particles can have no bearing

on the measurement of any other, which would seem to imply that the measuring apparatus

is entirely unaffected by what it measures.

Yet as the photon "chooses" its path, its dynamic and wave characteristics must change,

and there must be an equal but opposite reaction to this change. In a nonlocal theory, the

location of this reaction may be ill-defined, but in local realism it must take effect in the

charged particles from which the photon is scattered. It must therefore result in changes in

associated moments, and a fluctuation in the secondary radiation from those moments.

We distinguish now two parts of this fluctuating polarization field. One is the field that

would have been generated had the photon been as free to divide as was the classical wave.

The other is the departure from the first field induced by reaction as each photon is forced

to adopt one or other path from the site of scattering. The first field will define (as will

be discussed in Sects. 4 and 6) that notional point of equilibrium about which the system

must fluctuate as the beam divides. It is the second part, the fluctuation in the polarization

field, that is the secondary wave of interest.

The form taken by this fluctuation is determined by the change in the photon. Let us

suppose that the incident photon had the energy,

E = Ea + Eb,

(where for the polarizing beamsplitter, a and b might denote the H and V modes of the

beamsplitter). If the photon were to take say the a mode, its energy in that mode would

increase by Eb while decreasing by the same amount in the b mode. Conservation would

require equal but opposite changes in the corresponding modes of the medium.

Assuming, as we do, the validity at the quantum level of Maxwell’s equations, we can

be more precise. If the interaction of photon and apparatus could be run in reverse, it

would follow from the symmetry under time-reversal of those equations that the measured

photon and the reaction of the medium would recombine to return the unmeasured photon,

now propagating in reverse. But this could occur only if the reaction were itself of a wave-

like nature capable of interference with the returning photon. In the mode adopted by

the photon, it would have the effect of reversing by destructive interference the increase in
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energy that occurred in that mode. In the orthogonal mode, it would reinstate the energy

lost in that mode.

We come now to a significant point. The induced secondary wave acquires both its

frequency and its spatial distribution of phase from the photon driving the interaction.

Phase matching, that is to say the requirements of waveform continuity (for example, at the

boundary between media of differing index within a beamsplitter) will thus ensure that the

secondary wave is constrained to those directions of constructive interference available to

the photon itself.

Consistently with Eqn. (5), the secondary wave (or properly, waves) must therefore

comprise,

(a) a wave propagating in the direction not taken by the photon and having the energy

and wave characteristics of the wave that would have propagated in that direction had the

photon been able to divide, and

(b) a wave propagating in the direction that the photon does take, but of opposite phase

to the photon and having the effect of reducing the energy in that mode to that which would

have propagated in that direction had the photon been able to divide.

This fluctuation in the polarization field is not a photon. Nor could any assemblage of

such fluctuations constitute a cat. But the fluctuation is in a sense the alter ego of the

photon. It is anticorrelated with the change in the photon, has wave characteristic matching

those of following or accompanying photons, and is thus in a form precisely adapted to

influence by interference the measurement of those photons, or to (self) interfere with the

inducing photon itself if returned to the same path.

IV. THE BORN RULE

In SQM, measurement is governed by the Born rule [11], according to which (in a simple

form),

prob(ai) = |ui |ψ〉|2 (8)

where prob(ai) is the intrinsic probability that a particle in the state ψ will have the eigen-

value ai (for which the corresponding eigenfunction is ui).

Attempts to derive the Born rule have been criticized as circular (see, for instance, Refs

[12] to [15]). It has been said of such derivations that it is necessary "to put probabilities
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in to get probabilities out" [15]. There is nothing in the other postulates of SQM that

suggests intrinsic probability. Those postulates assimilate the particle to a wave (the wave

function or state vector), associate each "observable" property of the particle with a linear

Hermitian operator, and stipulate that the wave function is to evolve in accordance with

the time-dependent Schrödinger equation. These postulates are essentially deterministic.

They neither preclude the local realistic approach preferred here nor suggest the probabilistic

approach of SQM.

In excluding by definition extraneous considerations, intrinsic probability allows no bridge

from the deterministic "Schrödinger phase" in the evolution of the state vector to the

catastrophic (discontinuous, acausal and nonlocal) reduction or collapse that is assumed

to occur on measurement. (The coexistence of these deterministic and non-deterministic

phases, or rather the diffi culty of saying when or how the one ends and the other begins, is

also the source of the "measurement problem" that has so confounded SQM).

In the limit of large numbers, the probabilities assumed by SQM reproduce the division

that was expected (from conservation) of the continuous but divisible wave of classical

physics. That this is so is hardly surprising for these probabilities are not prescribed by

the Born rule, but determined experimentally or acquired from the same essentially classical

rules of conservation. For example, a beam of photons, linearly polarized at θ to the

horizontal, divides at an HV polarization beamsplitter, approximately in the proportions:

N(H)

N(V )
≈

cos2 θ

sin2 θ
, (9)

thus conserving (to the same approximation) the beam’s energies of horizontal and vertical

polarization.

But in the context of SQM, it is not at all obvious why the quantized wave should divide

in this way. If the measurement of one particle is independent of that of the next, it might

be asked why each does not simply adopt that mode for which it has the greater incident

component or, even more reasonably, take the energetically more favorable path through the

apparatus. If measurement were governed by intrinsic probability, the division of a beam

in accordance with conservation would seem a fortuitous coincidence.

In this paper, it is the response of the apparatus that ensures that the beam divides

in accordance with conservation. Induced in the paths of following and accompanying

photons, and sharing their frequency and trajectories, the secondary wave is well adapted
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to couple with and influence the measurement of the ensuing stream. It is only necessary

to assume that the fluctuating polarization field is reacquired by interference by the stream

(as is known to occur with refraction in a uniform medium) to see that the apparatus must

itself fluctuate about a state of equilibrium defined by conservation.

The approximate conservation observed in the measured stream may then be seen as

merely incidental to this process of relaxation or recovery in the medium. What is exactly

conserved is the sum of the measured property in medium and measured stream together.

The forgoing is not a derivation of the Born rule. Intrinsic probability has become

subjective probability - the probability accorded from ignorance of underlying deterministic

processes (as when a card player attributes a chance of 1/52 to the next card being the

ace of spades when it is certainly in fact the six of hearts). However, the connection with

conservation is now explained, as also the approximate and seemingly probabilistic nature

of that conservation. Because there is no longer an intrinsically probabilistic phase in the

evolution of the state vector, the measurement problem cannot arise.

It remains to consider why the Born rule should depend on the square of an amplitude.

In the measurement of photons, as in Eqn. (9), the reason is easily seen. The energy of

a wave is proportional to the square of its amplitude [16], and the energy of orthogonal

components of the wave must be independently conserved. That this same dependence

should hold for massive particles is implicit in the postulates of SQM, which as we have

seen, describe the behaviour of a particle in terms of the development and interference of a

wave function. More significantly, and this seems to be the true basis of the rule, it is also

consistent with the common underlying wave nature of matter and radiation suggested by

the Planck-Einstein and de Broglie relations, (Eqns. (1) and (2) ).

V. COUNTER-ARGUMENTS

To refute this explanation of measurement, it would seem necessary to identify some

mechanism by which the local and causal consequences of the response of the medium might

be suppressed. An interpretation of quantum mechanics that is nonlocal and acausal and

has an uncertainty principle is not without such "defence mechanisms". It will be argued

that their invocation here would lack logical consistency.

Three possibilities might seem worth considering:
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(a) that such fluctuations in the polarization field are simply passed on to the wider

environment;

(b) that by the uncertainty principle these fluctuations are virtual rather than real; and,

(c) that the reaction of the medium is displaced nonlocally to some time or place suffi -

ciently remote that it plays no further part in measurement.

The problem with (a) is that it is the interference of the polarization field with the photon

stream that explains refraction. It is implausible that fluctuations in this same field should

escape unnoticed by the photon stream.

Indeed it is known from the experiment of Beth in 1935 [17] and the exploitation of

the Beth effect in optical traps and the like [18] that photons refracted by a dielectric

target, not only impart linear and angular momentum to that target, but may do so to

the extent of causing observable movement in the target. These experiments evidence the

operation of Newton’s third law (or equivalently conservation) in the scattering of photons,

they show the torsional nature of the force between photon and target, and they provide

ample demonstration that momentum imparted by photon to medium is not simply passed

without local effect to the wider environment.

The suspended wave plate of Beth was in effect a single-mode device. Allowed no

possibility of maintaining equilibrium by a division of the beam, the device was ultimately

forced to move in response to the beam. But a measuring apparatus is a multi-mode

device that is able to minimize disequilibrium by returning by interference to one particle

the imbalance acquired from another.

In support of possibility (b), the argument would be that these fluctuations in the po-

larization field occur only within those brief periods when (according to SQM) energy may

exist in a virtual state. This would not be a novel application of the uncertainty principle.

It has been invoked to excuse the similar fluctuations that occur in a nonlinear crystal during

a process such as down-conversion [19].

As contemplated by the uncertainty principle, a fluctuation in energy δE may exist in a

virtual state for a time interval of order,

δt = ~/δE,

where for a 50:50 beamsplitter and a photon of frequency ω, the permitted fluctuation δE
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would be ~ω/2 in each mode per photon, and could thus endure only for a time,

δt = 2/ω,

which is of the order of the period of oscillation of the photon. But such a discrepancy in

energy would be temporary only if corrected, presumably in this case by the measurement of

a following photon or photons. The uncertainty principle could not suppress a fluctuation

induced by a lone photon or by any suffi ciently attenuated stream of photons.

In SQM, it is (c) that is the more obvious possibility. But the logical diffi culties are

considerable. One is that the nonlocal transfer would be curiously selective. It does

not suppress that part of the polarization field responsible for the birefringence or partial

reflection that causes the beam to divide, but would suppress fluctuations in that same field

that are consequent upon that division.

Other curious effects would result from the displacement of the reaction from the point of

scattering. The reaction would take effect, not in the charges that have caused the change in

the photon, but in remote and otherwise uninvolved charges and moments. Relative phase

would then be indefinable, notably the relative phase that should determine the manner

in which the nonlocally displaced field fluctuation is to interfere with whatever is already

occupying the space that it will now inhabit. This is a large problem for any interpretation

of quantum mechanics that supposes nonlocality.

Moreover, a nonlocal transfer can be instantaneous in but one frame of reference. In any

other frame the transfer would cause a temporary surplus or deficit of energy and momentum.

A related diffi culty, not at all temporary, would arise for conservation of angular momentum.

Linear momentum lost (or acquired) at one point might be eventually conserved by its

emergence (or disappearance) elsewhere, but the angular momentum associated with that

linear momentum would not be conserved.

In the absence of a locally causal response from the medium, fields would be discontinuous

and, as noted above, Maxwell’s equations would fail at a boundary of discontinuity. But

(as discussed in the next section (Sect. 6)) partial reflection is conventionally explained by

assuming that Maxwell’s equations do remain valid across such boundaries. That some of

these diffi culties may be well known does not make them any less embarrassing to the notion

of nonlocality.

It should also be noticed that a division determined by chance would be an inferior, indeed
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unreliable, way of approximating conservation. The measurement of any one particle would

as likely increase as decrease any pre-existing imbalance in the medium. Indeed, the variance

of a distribution based on chance (that of the random walk) increases with run-time, and

in the tails of such a distribution an excursion from balance could be substantial [20]. By

comparison, excursions from a system in equilibrium tend to be self-limiting, whatever the

run-time.

Finally, another diffi culty is worthy of mention. Between measurements the system

evolves, as we have seen, in the so-called "Schrödinger phase", which is to say, deterministi-

cally and as it would classically. Thus in an as yet unmeasured system (and for unobserved

Nature generally) the response of the medium is local and causal, must generate by reaction

a fluctuating polarization field as discussed above, and must lead through the composition of

that fluctuating field with following particles to the division in accordance with conservation

discussed in Sect. 4.

This process would thus achieve, unmeasured and unobserved, the division predicted by

conservation (and quantum mechanics), leaving neither opportunity nor necessity for the

discontinuous jump that is assumed by SQM.

VI. BEAMSPLITTING

In the next section (Sect 7.), we discuss the Mach-Zehnder interferometer. As a nec-

essary preliminary, we consider now the local realistic operation of a simple non-polarizing

beamsplitter based on partial reflection from a polished dielectric surface.

In SQM, the balancing of field components that determined the division of the classical

wave is disrupted on measurement by the discontinuous nature of reduction or collapse.

With this disruption, conservation fails locally, as also must Maxwell’s equations. Here

we suppose no such failure, and need to consider how balancing might be continued and

conservation maintained when what is scattered arrives episodically in a flux of indivisible

photons. The answer is to be found in the response of the medium.

The continuous wave of classical physics was assumed to divide (in accordance with the

Fresnel relations [21]) in such a way that the forces on the charges of the medium, whether

arising from incident or induced fields, remain in a state of balance. This implied in turn

the continuity of Maxwell’s equations across the inter-medial boundary, requiring (assuming
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a wave passing from medium 1 to medium 2 through a boundary in the xy-plane) that,

(ε0E1+P1)z = (ε0E2+P2)z ,

(E1)xy = (E2)xy , (10)

B1 = B2.

E, B and P being the macroscopic electric, magnetic and polarization fields, respectively

(See, for instance, Feynman [4], vol. II, chap. 33).

Consider now the quantized wave. For the microscopic fields to remain continuous

(and Maxwell’s equations to hold) as photons are variously reflected or transmitted, there

must be a continuing readjustment, not of the boundary conditions (10) themselves, but

of the manner in which those conditions are satisfied. Consider, for example, the first of

these conditions, which is obtained by asserting, in the z-direction, Coulomb’s law, which

in dielectric form is,

∇ · E = −∇ ·P
ε0

.

On the side of the boundary to which a photon departs, there will be (compared with

the steady state supposed classically) a fleeting increase in the photon field, and on the

other side of the boundary, a corresponding decrease in that field. This fluctuation in fields

will induce by reaction a compensating fluctuation in the dispositions of moments and in

the direction and strength of the polarization field. Whether the photon is reflected or

transmitted, the fields at the boundary will thus remain continuous and consistent with the

boundary conditions.

Why then should these excursions from the steady state be self-correcting? The fields

remain continuous because moments change in response to fluctuations in the photon field.

Each such change in the disposition and strengths of moments involves an exchange of

momentum concentrated upon a particular distribution of molecules that will be to that

extent in disequilibrium with the surrounding dielectric. Return to equilibrium should

be expected on conventional thermodynamic grounds - the minimization of energy and

maximization of entropy - but will here be facilitated by the nature of the induced imbalance,

which is eminently qualified in its wave characteristics to couple with the ensuing photon

stream.

In this process, each photon "chooses" its path, not by chance, but as determined by its
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own particular circumstances, including the local state of imbalance in which it finds the

medium.

VII. SELF INTERFERENCE

Self interference will be understood here as the mutual interference of physically real

waves, namely the particle in question and secondary radiation induced by the scattering of

that particle. As we saw in Sect. 3, the phenomenon of refraction is ample evidence that

mutual interference of this nature does occur. When it occurs in refraction or diffraction,

such mutual interference may be regarded as self interference in which the secondary wave

is reacquired immediately by the particle flux. This immediate self interference will explain

the diffraction observed at the slits of a Young’s experiment.

But this mutual interference may instead be delayed. Thus in a beamsplitter, the particle

and that part of the secondary wave that has taken the alternative channel part company,

and it is their later reunion that will explain the Mach-Zehnder and similar interferometers.

Although illustrating differing forms of self interference, the double-slit effect and the

Mach-Zehnder interferometer will be seen to have this in common - that they demonstrate

the preference of the particle for that path through the experiment that best preserves its

characteristic transverse waveform.

Young’s experiment

To explain the double-slit effect [1], it will be assumed that the particle has suffi cient

lateral extension to influence the material of the screen, directly or indirectly, in the vicinity

of both slits. In this, we suppose of the particle no more than the lateral influence supposed

of the corresponding probability wave of SQM. For a massive particle the de Broglie wave

will play the role played for a photon by its transverse electromagnetic wave.

The particle passes through the screen provided the centre of the wave (which is also its

centre of momentum and influence) finds one or other slit. As this occurs, outlying reaches

of the wave will interact with the scattering elements (usually charges) of the screen, and

become modified by interference with reradiation from those elements, but the wave will

nonetheless be carried through the screen.
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There is nothing novel in the notion that a particle, for instance a photon or electron,

constitutes an extended wave form that may pass nonetheless through even the smallest of

pinholes. Except in an inelastic encounter, the field of one particle may pass through that

of another or through the fields of a distribution of particles such as those constituting a

screen. Although changed by the encounter, the particle will tend toward its free space

form as it departs.

Even if a particle cannot pass through a barrier, its field will be "felt" by a test charge

on the other side. That influence is indirect being relayed through changes induced in the

fields of the screen. Nonetheless the field of the particle, modified in phase by the response

of the screen, can be considered to penetrate the screen. If the charge is moving the analysis

becomes more complicated but the principle is the same.

As the particle interacts with the slitted screen, it suffers varying degrees of dephasing

from interaction with the screen, but those regions of its waveform encountering one or other

slit remain relatively unchanged and mutually coherent. The available paths of constructive

interference - the trajectories that will least disrupt the continuity and coherence of the

particle - are thus determined by the slits. From the geometry of the setup, we then have

in well known manner, but on the basis of local realism, Young’s condition for constructive

interference.

d sin θ = nλ

where d is the slit separation, θ the angle of deflection of the photon, n the order of the

interference fringe, and λ the wavelength.

In following such a path, the particle is taking, as it were, the path of least resistance - the

path that will least disrupt its waveform - and to which it is compelled by whatever internal

force or effect is ensuring its indivisibility. Its preference for that path will be affected by

transient moments and currents, whether induced by the photon itself or by accompanying

or preceding particles, as well by any intervention, such as the seeking of "which way"

information, that diminishes (or enhances) the possibility of constructive interference.

The Mach-Zehnder Interferometer

Consider again Fig. 1. The interference at BS2 is now between real waves, these being

the photon (we will concentrate on photons) and the secondary wave that was generated
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by reaction at BS1 as the photon was forced to adopt one or other path through the

interferometer. As discussed in Sect. 6, this fluctuation of the polarization field propagates

in both channels of the beamsplitter maintaining microscopically the continuity of fields

supposed classically by Maxwell’s equations and the Fresnel relations.

As in SQM, each set of waves recombining at BS2 has originated from the scattering of

the same photon at BS1. The phase difference ∆ between the two paths is thus the same

from one photon to the next, and it follows that no matter how attenuated or incoherent is

the original beam, the recombining beams will be mutually coherent.

Let us suppose that BS1 and BS2 are non-polarizing lossless 50 : 50 beamsplitters so

constructed and aligned that when the upper and lower optical paths to detector D1 differ

by ∆, the corresponding paths to detector D2 will differ by ∆ + π [22]. If ∆ = 0, the

waves propagating in the two arms will interfere constructively in the direction of D1, but

destructively in that of D2. The photon will favour the path that better preserves the

integrity of its waveform. Photons scattered at BS2 will thus register only at D1.

Suppose instead that the waves are neither exactly in nor out phase as they arrive at

BS2. In SQM, the probability of detection where superposed probability waves of equal

amplitude have differing phases χ1 and χ2 is,∣∣eiχ1 + eiχ2
∣∣2 =

[(
ei(χ1+χ2)/2

) (
ei∆/2 + e−i∆/2

)]2
, (11)

≈ cos2 ∆

2
=

1 + cos ∆

2
, (12)

where ∆ = χ1 − χ2 (and where the first factor in (11) has been equated with unity).

The photon must maintain its characteristic waveform notwithstanding the disruption

threatened by the phase difference between the recombining waves. As the photon is

projected into one or other path, the indivisibility of the photon induces by reaction an im-

balance mediated by induced moments in the material of the beamsplitter. In the direction

of detector D1, the recombining waves are able to achieve consistency of phase at BS2 by

inducing in the moments of that beamsplitter an imbalance,

ΨD1 = 1− ei∆,

= ei∆/2
(

2 sin
∆

2

)
. (13)

The coherent merger of photon and secondary thus induces an imbalance of amplitude 2 sin ∆
2

and of phase ∆/2. Such an imbalance will tend to bias by interference a following photon
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toward detector D2. Conversely, coherence in the direction of D2 induces an imbalance,

ΨD2 = ei∆/2
(

2 cos
∆

2

)
, (14)

tending to bias a following photon toward D1. For equilibrium within BS2, we have, from

Eqns. (13) and (14), a division in the proportions,

N(D1)

N(D2)
≈

cos2 ∆
2

sin2 ∆
2

,

which corresponds to prediction (12) of SQM, but is derived now on the basis of local

realism.

It has been assumed in this treatment that secondary wave and photon propagate in

similar manner. It might be thought that since the induced moments are confined to the

dielectric, so also must be the reradiation. However the moments are merely the sources of

the polarization field, and such sources may extend their influence far beyond the medium

containing those sources. Thus in the conventional modelling of refraction, the field at

a point remote from the dielectric is the sum at that point of the fields from all sources,

including those from dipole reradiation. It is true that as a photon departs the medium, it

regains its earlier wave length, but it carries with it nonetheless the continuing influence of

the polarization field in an altered phase and (usually) a change of trajectory.

Again, there is no suggestion that the secondary wave is in any sense a photon or part

of a photon. It is a fluctuation in the polarization field capable of survival over the time

frame of the experiment because it is equal but opposite in effect to the change occurring in

the photon, and capable therefore of propagating in like manner.

Although we have considered only photons, neutron interferometry involves similar con-

siderations, with the strong nuclear force replacing the electromagnetic force. Thus it has

been said that in the context of neutron interferometry, the use of the word "optical " is by

no means metaphorical (Rauch and Werner [23], p.1).

VIII. ENTANGLEMENT

In modelling a Bell’s experiment, local realism has been handicapped by an inability to

replicate the orthogonal or conjugate waves that are assumed in SQM to be propagating

simultaneously in each arm of the experiment. In SQM, these are alternative probabilistic

states of the particle, but local realism can supply only one particle per arm per pair.
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The extra wave cannot be dismissed as an extravagance of SQM that might be abandoned

in a physically realistic interpretation of quantum mechanics. The presence of two waves

in each arm is evidenced by the need for compensation for birefringent "walk-off" in the

generation of entangled photons by down-conversion (see, for example, Kwiat et al [24] ).

The presence of the additional wave is also implied by the interference that is evidently

responsible for the differing behaviour of the four Bell states. This has been a significant

problem for local realism, but as will now be shown, the additional waves (one in each

arm) may be explained, as in self interference, as states of the apparatus - secondary waves

induced by reaction as the entangled particle pair is created.

Consider photon pairs sourced, as in recent Bell’s experiments (for instance, the important

Weihs experiment [25]), from type II spontaneous parametric down-conversion (SPDC). In

a nonlinear crystal, induced moments and reradiation from those moments have a quadratic

component, which in a intense pump laser may find its release in down-conversion (the

division of a pump photon into two "daughter" photons), subject for optimal effi ciency to

the phase matching conditions,

ωp = ω1 + ω2, and kp = k1 + k2, (15)

where ω and k designate, respectively, angular frequencies and wave vectors, while the suffi x

p identifies a pump photon and 1 and 2 the daughter photons.

In the nonlinear crystal, as in any dielectric, the interaction between beam and medium

is mediated solely by induced moments. Assuming local realism, and as discussed in Sect.

3, any imbalance induced in the photon field must be accompanied by an equal but opposite

reaction in those moments and a resulting fluctuation in the polarization field.

Let us suppose a typical type II SPDC event in which a pump photon (V -polarized) down-

converts to a V -polarized daughter photon propagating to Alice and anH-polarized daughter

photon to Bob. The phase matching conditions (15) are consistent with the conservation of

energy and momentum, but do not exhaust the requirements of that conservation. Writing,

V (ωp) −→ V (ωV , θV )A +H(ωH , θH)B, (16)

(where θV and θH are the angles at which the photons diverge from the pump beam), it

becomes evident, not only that horizontal polarization has been gained at the expense of

vertical polarization, but that horizontal polarization is propagating to one side of the crystal

at one frequency and vertical to the other at (usually) another frequency.
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The asymmetry in Eqn. (16) would be redressed by the inclusion, in the direction of

Alice, of a fluctuation in the polarization field, of form,

1

2
[H ′(ωH , θH)− V ′(ωV , θV )]L,

and in the direction of Bob, of form,

1

2
[V ′(ωV , θV )−H ′(ωH , θH)]R,

where reaction is again identified by a prime, and the negative implies a diminution in the

relevant mode of the polarization field. On including these secondary waves, Eqn. (16)

becomes,

V (ωp) =⇒ [V (ωV , θV ) +
1

2
H

′
(ωH , θH)− 1

2
V

′
(ωV , θV )]L (17)

+ [H(ωH , θH)− 1

2
H

′
(ωH , θH) +

1

2
V

′
(ωV , θV )]R,

which remains consistent with the phase matching conditions (15), but waves propagating

to Alice are now in balance with those propagating to Bob. The formal equivalence of these

waves to the probabilistic waves of SQM may be seen from Eqn. (17) as follows,

[V (ωV , θV ) +
1

2
H

′
(ωH , θH)− 1

2
V

′
(ωV , θV )]L ≈

1

2
[V (ωV , θV ) +H(ωH , θH)]L =⇒ (VA +HA),

[H(ωH , θH)− 1

2
H

′
(ωH , θH) +

1

2
V

′
(ωV , θV )]R ≈

1

2
[H(ωH , θH) + V (ωV , θV )]R =⇒ (HB + VB).

so that, as is assumed in SQM, H- and V - polarized waves are propagating to both Alice

and Bob.

Interference between these waves, occurring independently at each end of a Bell’s exper-

iment, suggests immediately the significance of phase to the differing behaviour of the Bell

states. It becomes apparent, for instance, that with Alice’s and Bob’s analyzers at the same

setting, phase relationships will determine whether their measurements tend to correlation

or anticorrelation.

It is not suggested that the mere existence of these waves avoids Bell’s theorem [26],

but it may allow a more plausible modelling of the data sets of reported dynamic Bell’s
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experiments than has been possible hitherto. Certainly, the conclusions reached in those

experiments are not beyond dispute, as recent analyses [29] [30] of deficiencies in the data

sets of the Weihs experiment [25] have shown. The antithesis between special relativity

and nonlocality would itself be reason enough to scrutinize very carefully the claims of these

experiments.

IX. CONCLUSION

Various reinterpretations of quantum mechanics have sought to avoid the measurement

problem and the excesses of probabilistic collapse. But confronted by self interference and

entanglement, all have included, as does SQM, some random or nonlocal step or branching

or other discontinuity inconsistent with the wave-like nature of the underlying processes.

Quantum mechanics is of course a theory of quanta, but it is also theory of waves. As

we saw in Sect. 4, the wave nature of matter and radiation is implicit in the amplitude

dependence of the Born rule and explicit in the deterministic Schrödinger phase of SQM.

Schrödinger’s wave version of quantum mechanics was prompted indeed by de Broglie’s

insights concerning the wave nature of matter. But in its evolution and interactions, a wave

is an essentially causal and local phenomenon. Acausality implies discontinuity, while in

the absence of actual physical overlap, it is not apparent how a relationship of phase could

be defined between interfering waves.

There is thus a tension between the continuity of underlying wave forms and the non-

locality and acausality that has been perceived in self interference and entanglement. It

should not be surprising then that it is when introducing nonlocality or intrinsic probability

that reinterpretations of quantum mechanics have seemed ad hoc or contrived, or have led,

as in SQM, to logical inconsistency.

A return to local realism would avoid this tension, and with it the problems of measure-

ment and collapse. While local realism has had its own problems, the interpretation of

"Schrödinger cat" states proposed here permits a local realistic explanation of self interfer-

ence, and in the extension of that explanation to entanglement, removes what has been a

significant obstacle to the local realistic modelling of Bell’s experiments.
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