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Preface 

 
 
  
 
 This book contains 21 papers of plane geometry. 
It deals with various topics, such as: quasi-isogonal cevians, nedians, polar of a point with 
respect to a circle, anti-bisector, aalsonti-symmedian, anti-height and their isogonal.  
A nedian is a line segment that has its origin in a triangle’s vertex and divides the opposite side 
in n  equal segments. 

The papers also study distances between remarkable points in the 2D-geometry, the 
circumscribed octagon and the inscribable octagon, the circles adjointly ex-inscribed associated 
to a triangle, and several classical results such as: Carnot circles, Euler’s line, Desargues 
theorem, Sondat’s theorem, Dergiades theorem, Stevanovic’s theorem, Pantazi’s theorem, and 
Newton’s theorem. 

Special attention is given in this book to orthological triangles, bi-orthological triangles, 
ortho-homological triangles, and tri-homological triangles. 

The notion of “ortho-homological triangles” was introduced by the Belgium mathematician 
Joseph Neuberg in 1922 in the journal Mathesis and it characterizes the triangles that are 
simultaneously orthogonal (i.e. the sides of one triangle are perpendicular to the sides of the 
other triangle) and homological. We call this “ortho-homological of first type” in order to 
distinguish it from our next notation. 

In our articles, we gave the same denomination “ortho-homological triangles” to triangles 
that are simultaneously orthological and homological. We call it “ortho-homological of second 
type.” 

Each paper is independent of the others. Yet, papers on the same or similar topics are listed 
together one after the other. 
      This book is a continuation of the previous book The Geometry of Homological Triangles, by 
Florentin Smarandache and Ion Pătraşcu, Educ. Publ., Ohio, USA, 244 p., 2012. 

The book is intended for College and University students and instructors that prepare for 
mathematical competitions such as National and International Mathematical Olympiads, or the 
AMATYC (American Mathematical Association for Two Year Colleges) student competition, or 
Putnam competition, Gheorghe Ţiteica Romanian student competition, and so on. 

 
The book is also useful for geometrical researchers.  
 
 

The authors 
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 Quasi-Isogonal Cevians 

Professor Ion Pătraşcu – National College Frații Buzeşti, Craiova, Romania 
Professor Florentin Smarandache –University of New-Mexico, U.S.A. 

In this article we will introduce the quasi-isogonal Cevians and we’ll emphasize on 
triangles in which the height and the median are quasi-isogonal Cevians. 

For beginning we’ll recall: 

Definition 1 
In a triangle ABC the Cevians AD , AE  are called isogonal if these are symmetric in 

rapport to the angle A  bisector.        

Observation 
In figure 1, are represented the isogonal Cevians AD , AE

A A 

D  
B        D E               C B         C       E 

Fig. 1.   Isogonal Cevians 

Proposition 1. 
In a triangle ABC , the height AD   and the radius AO  of the circumscribed circle are 

isogonal Cevians.     

Definition 2. 
We call the Cevians AD , AE  in the triangle ABC  quasi-isogonal if the point B  is 

between the points D  and E , the point E  is between the points B  and C , and 
DAB EACº  .      

Observation  
In figure 2 we represented the quasi-isogonal Cevians AD, AE . 
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A 

            D C 
B E 

Fig. 2 quasi-isogonal Cevians 

Proposition 2 
There are triangles in which the height and the median are quasi-isogonal Cevians. 

Proof 
It is clear that if we look for triangles ABC  for which the height and the median from the 

point A  are quasi isogonal, then these must be obtuse-angled triangle. We’ll consider such a 
case in which ( ) 90m A > °  (see figure 3).

A              R   
O             R N 

y 
P 

C          x 
D a       E       a 

B 

Fig. 3 

 Let O  the center of the circumscribed triangle, we note with N  the diametric point of A   
and with P  the intersection of the line AO  with BC . 

We consider known the radius R  of the circle and 2BC a= , a R<  and we try to 
construct the triangle ABC  in which the height AD  and the median AE  are quasi isogonal 
Cevians; therefore DAB EACº  . This triangle can be constructed if we find the lengths PC
and PN  in function of a  and R . We note PC x, PN y= = .  
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We consider the power of the point P  in function of the circle ( )O,RC . It results that

( ) ( )2 2x x a y y R× + = × +       (1)

From the Property 1 we have that DAB OACº  .  On the other side OAC OCAº   
and AD, AE  are quasi isogonal, we obtain that OC AE .     

The Thales’ theorem implies that: 
x y R
a R

+
= (2) 

 Substituting x  from (2) in (1) we obtain the equation: 

( ) ( )2 2 2 2 2 2 22 2 3 0a R y R R a y a R- - - + = (3) 

The discriminant of this equation is: 

( )2 4 2 2 4Δ 4R R a R a= - +

 EvidentlyΔ 0> , therefore the equation has two real solutions. 

Because the product of the solutions is 
2 2

2 2

3a R
a R-

 and it is negative we obtain that one of 

solutions is strictly positive. For this positive value of y  we find the value of x , consequently 
we can construct the point P , then the point N  and at the intersection of the line PN  we find A  
and therefore the triangle ABC  is constructed.  

For example, if we consider 2R =  and 1a = , we obtain the triangle ABC  in which 

2AB = , 2BC =  and 1 3AC = + .    
We leave to our readers to verify that the height and the median from the point A  are 

quasi isogonal.  



Nedians and Triangles with the Same Coefficient of Deformation  

Ion Pătraşcu – National College Frații Buzeşti, Craiova, Romania 
Florentin Smarandache – University of New Mexico, Gallup, NM, USA 

In [1] Dr. Florentin Smarandache generalized several properties of the nedians. Here, we 
will continue the series of these results and will establish certain connections with the triangles 
which have the same coefficient of deformation. 

Definition 1 
The line segments that have their origin in the triangle’s vertex and divide the opposite 

side in n  equal segments are called nedians. 
 We call the nedian iAA  being of order i  ( *i NÎ ), in the triangle ABC , if iA  divides the  

side ( )BC  in the rapport 
i
n

 ( i
iBA BC
n

= ×
 

 or i
iCA CB
n

= ×
 

, 1 1i n£ £ - ) 

Observation 1 
The medians of a triangle are nedians of order 1, in the case when 3n = , these are called 

tertian.  

We’ll recall from [1] the following: 

Proposition 1  
Using the nedians of the same of a triangle, we can construct a triangle. 

Proposition 2 
The sum of the squares of the lengths of the nedians of order i  of a triangle ABC  is given 

by the following relation: 

( )
2 2

2 2 2 2 2 2
2i i i

i in nAA BB CC a b c
n

- +
+ + = + + (1) 

 We’ll prove 

Proposition3. 
The sum of the squares of the lengths of the sides of the triangle 0 0 0A B C , determined by 

the intersection of the nedians of order i  of the triangle ABC  is given by the following relation: 

( ) ( )
2

2 2 2 2 2 2
0 0 0 0 0 0 2 2

2n i
A B B C C A a b c

i in n
-

+ + = + +
- +

(2) 
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A 
Ci  

A0

C0      Bi

B0

B C Fig. 1 
Ai

We noted  
{ } { } { }0 0 0i i i i i iA CC AA , B AA BB , C BB CC= = =   . 

Proof 
We’ll apply the Menelaus ’theorem in the triangle iAAC  for the transversals 0 iB B B- - , 

see Fig. 1. 

0

0

1i i

i i

BA B C B A
BC B A B A

× × =   (3) 

 Because i i i
ia ib ( n i )bBA , B C , B A
n n n

-
= = = , from (3) it results that: 

0 2 2 i
n( n i )B A AA

i in n
-

=
- +

(4) 

The Menelaus ’theorem applied in the triangle iAAB  for the transversal 0 iC C C- -  gives 

0

0

1i i

i i

CA C B A A
CB C A A A

× × =  (5) 

 But i i i
( n i )a ( n i )c icCA , C B , C A

n n n
- -

= = = , which substituted in (5), gives 

0 2 2 i
inAA AA

i in n
=

- +
(6) 

It is observed that 0 0 0 0A B AB AA= -  and using the relation (4) and (6) we find: 

( )
0 0 2 2

2
i

n n i
A B AA

i in n
-

=
- +

(7) 

Similarly, we obtain: 

( )
0 0 2 2

2
i

n n i
B C BB

i in n
-

=
- +

(8) 

( )
0 0 2 2

2
i

n n i
C A CC

i in n
-

=
- +

(9) 

Using the relations (7), (8) and (9), after a couple of computations we obtain the relation (2). 

Observation 2. 
The triangle formed by the nedians of order i  as sides is similar with the triangle formed 

by the intersections of the nedians of order i .  

   10



Indeed, the relations (7), (8) and (9) show that the sides 0 0 0 0 0 0A B , B C , C A  are 

proportional with i i iAA , BB , CC
The Russian mathematician V. V. Lebedev introduces in [2] the notion of coefficient of 

deformation of a triangle. To define this notion we need a couple of definitions and observations. 

Definition 2 
 If ABC  is a triangle and in its exterior on its sides are constructed the equilateral 
triangles BCA CAB ABC1 1 1, , , then the equilateral triangle O O O1 2 3  formed by the centers of the 

circumscribed circles to the equilateral triangles, described above, is called the exterior triangle 
of Napoleon. 

If the equilateral triangles BCA CAB ABC1 1 1, ,  intersect in the interior of the triangle ABC
then the equilateral triangle O O O1 2 3' ' '  formed by the centers of the circumscribed circles to 

these triangles is called the interior triangle of Napoleon. 
B1

A 
 O2

    C1

      O3

    B 

   C 

        O1

 A1

Fig. 2 
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A1’ 

A 

O1’ 
O2’ 

B O3’      C1’ 
C 

  B1’ 
Fig. 3 

Observation 3 
In figure 2 is represented the external triangle of Napoleon and in figure 3 is represented 

the interior triangle of Napoleon. 

 Definition 3 
A coefficient of deformation of a triangle is the rapport between the side of the interior 

triangle of Napoleon and the side of the exterior triangle of Napoleon corresponding to the same 
triangle. 

Observation 4 
The coefficient of deformation of the triangle ABC  is   

O Ok
O O
1 2

1 2

' '=

Proposition 4 
The coefficient of deformation k of triangle ABC  ha the following formula: 

1
2 2 2 2

2 2 2

4 3

4 3

a b c sk
a b c s

 + + −=  
+ + + 

(10) 

where s  is the aria of the triangle ABC . 

Proof 
We’ll apply the cosine theorem in the triangle 1 2CO ' O '  (see Fig. 3), in which 

1

3

3

aCO ' = , 2

3

3

bCO ' = , and ( )1 2 60m O CO ' C = − ° . 

 We have 
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( )
2 2

2
1 2

3 3
2 60

9 9 3

a b abO ' O ' cos C= + − − °

Because  

( ) 1 2
60 60 60

2 2
cos C cosC cos sin sinC cosC sinC− ° = ⋅ ° + ° ⋅ = +  and 

2 2 2

2

b a ccosC
ab

+ −= , and  

2ab sinC s= ,  
we obtain 

2 2 2
2

1 2

4 3

6

a b c sO ' O ' + + −=  (11) 

 Similarly 
2 2 2

2
1 2

4 3

6

a b c sO O + + += (12) 

By dividing the relations (11) and (12) and resolving the square root we proved the 
proposition. 

Observation 5 
In an equilateral triangle the deformation coefficient is 0k = . In general, for a triangle 

ABC , 0 1k≤ < . 

Observation 6 
From (11) it results that in a triangle is true the following inequality: 

2 2 2 4 3a b c s+ + ≥ (13) 
which is the inequality Weitzeböck. 

Observation 7 
In a triangle there following inequality – stronger than (13) – takes also place: 

( ) ( ) ( )2 2 22 2 2 4 3a b c s a b b c c a+ + ³ + - + - + - (14) 

which is the inequality of Finsher - Hadwiger. 

Observation 8 
It can be proved that in a triangle the coefficient of deformation can be defined by the  

1

1

AA 'k
AA

= (15) 

 Definition 4 
We define the Brocard point in triangle ABC  the point Ω  from the triangle plane, with 

the property: 
   Ω Ω ΩAB BC CA  º º  (16) 
The common measure of the angles from relation (16) is called the Brocard angle and is noted  

13



ΩAB ω =  

 Observation 9 
A triangle ABC  has, in general, two points Brocard Ω  and Ω'  which are isogonal 

conjugated (see Fig. 4)   

Proposition 5 
In a triangle ABC  takes place the following relation: 

2 2 2

4

a b cctgω
s

+ +
= (17) 

A 
ω  

Ω'
Ω

ω  
C 

ω  
B Fig. 4 

Proof 
We’ll show, firstly, that in a non-rectangle triangle ABC  is true the following relation: 

ctgω ctgA ctgB ctgC= + +        (18) 
Applying the sin theorem in triangle ΩA B  and ΩA C , we obtain 

Ω

Ω

B c
sinω sin B A

= and 
Ω

Ω

A b
sinω sin A C

=

Because ( ) ( )Ω 180m B A m B = °- and  ( ) ( )Ω 180m A C m A = °-  from the precedent

relations we retain that   
Ω

Ω

A b sin B
B c sin A

= (19) 

On the other side also from the sin theorem in triangle ΩA B , we obtain 

( )Ω

Ω

sin B ωA
B sinω

-
= (20) 

Working out ( )sin B ω- , taking into account that 
b sin B
c sin C
= and that ( )sin B sin A C= + , we

obtain (18). 

In a triangle ABC  is true the relation  
2 2 2

4

a b cctgA
s

+ +
=  (19) and the analogues. 
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B 

         A  C 
  B’ 

Fig. 5 
Indeed, if ( ) 90m A < ° and B' is the orthogonal projection of  B  on AC  (see Fig. 5),

then 
AB' c cos ActgA
BB' BB'

×
= =

Because 
2sBB'
b

=  it results that  
2

4

bc cos ActgA
s

=

From the cosine theorem we get 
2 2 22bc cos A b c a= + -  

Replacing in (18) the ctgA, ctgB, ctgC , we obtain (17) 

 Observation 10 
The coefficient of deformation k  of triangle ABC  is given by      

1

23

3

ctgωk
ctgω

æ ö-ç ÷= ç ÷+è ø
(21) 

B 

B’   A C 
Fig. 6 

Indeed, from (10) and (17), it results, without difficulties (21) 

 Proposition 6 (V.V. Lebedev) 
The necessary and sufficient condition for two triangles to have the same coefficient of 

deformation is to have the same Brocard angle. 
Proof 
If the triangles ABC  and 1 1 1A B C  have equal coefficients of deformation 1k k=   then 

from relation 21 it results 

15



1

1

3 3

3 3

ctgω ctgω
ctgω ctgω

- -
=

+ +

Which leads to 1ctgω ctgω=  with the consequence that 1ω ω= .  

 Reciprocal, if 1ω ω= , immediately results, using (21), that takes place 1k k= .    

Proposition 7 
 Two triangles ABC  and 1 1 1A B C  have the same coefficient of deformation if and only if 

2 2 2
1 1 1 1

2 2 2

s a b c
s a b c

+ +
=

+ +
(22) 

( 1s  being the aria of triangle  1 1 1A B C , with the sides 1 1 1a ,b ,c )        

Proof 
 If 1ω, ω  are the Brocard angles of triangles ABC  and 1 1 1A B C  then, taking into 

consideration (17) and Proposition 6, we’ll obtain (22). Also from (22) taking into consideration 
of (17) and Proposition 6, we’ll get 1k k= .         

Proposition 8 
 Triangle i i iA B C  formed by the legs of the nediands of order i  of triangle ABC  and 

triangle ABC  have the same coefficient of deformation.       
Proof 
We’ll use Proposition 7, applying the cosine theorem in triangle i i iA B C , we’ll obtain  

2 2 2 2i i i i i iB C AC AB AC AB cos A= + -  
Because  

( )
i i

n i bicAC , AB
n n

-
= =

it results  

( ) ( )2 22 2
2

2 2 2

2
i i

n i b i n i bc cos Ai cB C
n n n

- -
= + -

A 

      Ci

Bi

        B         A1  C 
Fig. 7 

The cosin theorem in the triangle ABC  gives  

16



2 2 22bc cos A b c a= + -
which substituted above gives 

( ) ( )( )22 2 2 2 2 2

2
2i i

i c n i b i n i a b c
B C

n
+ - + - - -

=

( ) ( ) ( )2 2 2 2 2 2 2

2
2

3 2 2
i i

a in i b n in i c i in
B C

n
- + - + + -

=

Similarly we’ll compute 2
i iC A  and 2

i iA B
 It results 

2 2 2 2 2

2 2 2 2

2 3i i i i i iA B B C C A n in i
a b c n
+ + - +

=
+ +

(23) 

If we note 

i i i is Aria ABC=
We obtain 

( )i i i i i i is s Aria AB C Aria BAC Aria CA B  = - + + (24) 

But 
1

2i i i iAria AB C AC AB sin A = ×  

( ) ( )
2 2

1

2i i
i n i b c i n i s

Aria AB C sin A
n n
- × - ×

= =

Similarly, we find that  

( )
2i i i i

i n i s
Aria BAC Aria CA B

n 
- ×

= =

Revisiting (23) we get that 
2 2

2

3 3
i

sn in is
n

- +
=

therefore, 
2 2

2

3 3is n in i
s n

- +
= (25) 

The relations (23), (25) and Proposition 7 will imply the conclusion. 

 Proposition 9 
The triangle formed by the medians of a given triangle, as sides, and the given triangle 

have the same coefficient of deformation. 
Proof 
The medians are nedians of order I. Using (1), it results 

( )2 2 2 2 2 23

4i i iAA BB CC a b c+ + = + + (26) 

The proposition will be proved if we’ll show that the rapport between the aria of the 

formed triangle with the medians of the given triangle and the aria of the given triangle is 
3

4
.
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       A 

G 

A1 C 
          B

D 
Fig. 9 

If in triangle ABC  we prolong the median 1AA  such that 1 1A D GA=  (G  being the center 

of gravity of the triangle ABC ), then the quadrilateral BGCD  is a parallelogram (see Fig. 9). 

Therefore CD BG= . It is known that 1 1

2 2

3 3
BG BB , CG CC= =  and from construction we have 

that  1

2

3
GD AA=  . Triangle GDC  has the sides equal to 

2

3
 from the length of the medians of the 

triangle ABC . Because the median of a triangle divides the triangle in two equivalent triangles 
and the gravity center of the triangle forms with the vertexes of the triangle three equivalent 

triangle, it results that 
1

3
Aria GDC s = . On the other side the rapport of the arias of two similar 

triangles is equal with the squared of their similarity rapport, therefore, if we note 1s the aria of 

the triangle formed by the medians, we have 
2

1

2

3

Aria GDC
s
 æ ö

= ç ÷ç ÷
è ø

.   

We find that 1 3

4

s
s
= , which proves the proposition. 

Proposition 10 
The triangle formed by the intersections of the tertianes of a given triangle and the given 

triangle have the same coefficient of deformation. 

Proof  
 If 0 0 0A B C  is the triangle formed by the intersections of the tertianes, from relation (2) 

we’ll find 
2 2 2

0 0 0 0 0 0
2 2 2

1

7

A B B C C A
a b c
+ +

=
+ +

18



A 
C1  

A0

C0      B1

B0

B C           
A1

Fig 10 

 We note 0s  the aria of triangle 0 0 0A B C , we’ll prove that 0 1

7

s
s
= .  

From the formulae (6) and (7), it is observed that 0 0 0A A B=  and 0 0 0CC C A= .  
Using the median’s theorem in a triangle to determine that in that triangle two triangle are 
equivalent, we have that: 

0 0 0 0 0 0Aria AA C Aria AC C Aria A B C  = = =  

0 0 0 0 0 0Aria CB C Aria CBB Aria BB A Aria ABA   = = = =

Because the sum of the aria of these triangles is s , it results that 0

1

7
s s= , which shows what we 

had to prove. 

 Proposition 11 

We made the observation that the triangle 0 0 0A B C  and the triangle formed by the 

tertianes 1 1 1AA ,BB ,CC  as sides are similar. Two similar triangles have the same Brocard angle, 

therefore the same coefficient of deformation. Taking into account Proposition 10, we obtain the 
proof of the statement 

 Observation 11 
From the precedent observations it results that being given a triangle, the triangles formed 

by the tertianes intersections with the triangle as sides, the intersections of the tertianes of the 
triangle have the same coefficient of deformation. 
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From a problem of geometrical construction to the Carnot circles 

Prof. Ion Pătraşcu – The Fraţii Buzeşti College, Craiova - Romania 
Prof. Dr. Florentin Smarandache – University of New Mexico – U.S.A. 

In this article we’ll give solution to a problem of geometrical construction and we’ll show 
the connection between this problem and the theorem relative to Carnot’s circles. 

 Let ABC a given random triangle. Using only a compass and a measuring line, construct a point 
M  in the interior of this triangle such that the circumscribed circles to the triangles MAB  and 
MAC  are congruent. 

Construction 
We’ll start by assuming, as in many situations when we have geometrical constructions, 

that the construction problem is resolved. 
     A 

OB

OC 
R             M            S 

O 

B C 
Fig. 1 

Let M  a point in the interior of the triangle ABC  such that the circumscribed circles to 
the triangles MAB  and MAC  are congruent. 

We’ll note CO  and BO  the centers of these triangles, these are the intersections between 

the mediator of the segments [ ]AB  and [ ]AC . The quadrilateral C BAO MO  is a rhomb 

(therefore M  is the symmetrical of the point A  in rapport to B CO O  (see Fig. 1). 

A. Step by step construction 
We’ll construct the mediators of the segments [ ]AB and[ ]AC , let R,S  be their

intersection points with [ ]AB respectively[ ]AC . (We suppose that AB AC< , therefore

AR AS< .) With the compass in A  and with the radius larger than AS  we construct a circle 
which intersects OR in CO  and C'O  respectively OS  in BO  and B'O  - O  being the 

circumscribed circle to the triangle ABC .  
Now we construct the symmetric of the point A  in rapport to C BO O ; this will be the 

point M , and if we construct the symmetric of the point A  in rapport to C' B'O O  we obtain the 

point M '  
____________________ 

Lazare Carnot (1753 – 1823), French mathematician, mechanical engineer and political 
personality (Paris).  

20



B. Proof of the construction 
Because C BAO AO=  and M  is the symmetric of the point A  in rapport of C BO O , it 

results that the quadrilateral C BAO MO  will be a rhombus, therefore C CO A O M= and

B BO A O M= . On the other hand, CO  and BO  being perpendicular points of AB respectively  

AC , we have C CO A O B=  and B BO A O C= , consequently  

C C B B BO A O M O A O M O C= = = = ,  

which shows that the circumscribed circles to the triangles MAB  and MAC  are congruent. 
Similarly, it results that the circumscribed circles to the triangles ABM '  and ACM '  are 

congruent, more so, all the circumscribed circles to the triangles MAB,MAC,M ' AB,M ' AC  are 
congruent. 

As it can be in the Fig. 2, the point M '  is in the exterior of the triangle ABC . 

Discussion 
We can obtain, using the method of construction shown above, an infinity of pairs 

of points M and M ' , such that the circumscribed circles to the triangles 
MAB,MAC,M ' AB,M ' AC will be congruent.  It seems that the point M '  is in the exterior of the 
triangle ABC

A 

OC

P 
R 

OB

M O   S 
OC’

B                OB’      ’ 

T 

C 

M’ 
Fig. 2 
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Observation 
The points M  from the exterior of the triangle ABC  with the property described 

in the hypothesis are those that belong to the arch BC , which does not contain the vertex A  
from the circumscribed circle of the triangle ABC . 

Now, we’ll try to answer to the following: 

Questions 

1. Can the circumscribed circles to the triangles MAB,MAC  with M  in the interior of
the triangle ABC  be congruent with the circumscribed circle of the triangle ABC

2. If yes, then, what can we say about the point M ?

Answers

1. The answer is positive. In this hypothesis we have B COA AO AO= =  and it results

also that CO  and BO  are the symmetrical of O  in rapport to AB respectively AC The point M
will be, as we showed, the symmetric of the point A  in rapport to C BO O . 

The point M  will be also the orthocenter of the triangle ABC . Indeed, we prove that the 
symmetric of the point A  in rapport to C BO O  is H  which is the orthocenter of the triangle ABC
Let RS  the middle line of the triangle ABC . We observe that RS  is also middle line in the 
triangle B COO O , therefore B CO O  is parallel and congruent with BC , therefore it results that M
belongs to the height constructed from A  in the triangle ABC .  We’ll note T  the middle of

[ ]BC , and let R  the radius of the circumscribed circle to the triangle ABC ; we have

2
2

4

aOT R= - , where a BC= .

If P  is the middle of thesegment [ ]AM , we have

2
2 2 2

4B
aAP R PO R= - = - .

From the relation 2AM OT= ×  it results that M  is the orthocenter of the triangle ABC ,   
( 2AH OT= ). 

The answers to the questions 1 and 2 can be grouped in the following form: 

Proposition 

There is onlyone point in the interior of the triangle ABC  such that the circumscribed 
circles to the triangles MAB , MAC  and ABC  are congruent. This point is the orthocenter of the 
triangle ABC . 

Remark 
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From this proposition it practically results that the unique point M from the interior of 
the right triangle ABC  with the property that the circumscribed circles to the triangles 
MAB,MAC,MBC are congruent with the circumscribed circle to the triangle is the point H , the 
triangle’s orthocenter. 

Definition 
If in the triangle ABC , H  is the orthocenter, then the circumscribed circles to the 

triangles HAB,HAC,HBC  are called Carnot circles. 

We can prove, without difficulty the following: 

Theorem 
The Carnot circles of a triangle are congruent with the circumscribed circle to the 

triangle. 
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THE POLAR OF A POINT With Respect TO A CIRCLE 

Ion Pătraşcu, Fratii Buzesti National College, Craiova, Romania 

Florentin Smarandache, University of New Mexico, Gallup, NM 87301, USA 

In this article we establish a connection between the notion of the symmedian of a 

triangle and the notion of polar of a point in rapport to a circle 

We’ll prove for beginning two properties of the symmedians. 

Lemma 1 

If in triangle ABC inscribed in a circle, the tangents to this circle in the points B and C 

intersect in a point S, then AS is symmedian in the triangle ABC. 

Proof 

We’ll note L the intersection point of the line AS with BC (see fig. 1). 

Fig. 1 

We have 

CSLAria

BSLAria

LC

BL

ACLAria

ABLAria










It result 

LC

BL

ACSAria

ABSAria





(1) 

We observe that  

  




















AmBmABSm  and   




















AmCmACSm  

We obtain that 

  CsinABSsin   and   BsinACSsin   

We have also 

LC

BL

BsinSCAC

CsinSBAB

ACSAria

ABSAria










(2) 

From the sinus’ theorem it results 
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AC

AB

Bsin

Csin
 (3) 

The relations (2) and lead us to the relation 
2

AC

AB

LC

BL








 , 

which shows that AS is symmedian in the triangle ABC. 

Observations 

1. The proof is similar if the triangle ABC is obtuse.

2. If ABC is right triangle in A, the tangents in B and C are parallel, and the

symmedian from A is the height from A, and, therefore, it is also parallel with the

tangents constructed in B and C to the circumscribed circle.

Definition 1 

The points A, B, C, D placed, in this order, on a line d form a harmonic division if and 

only if 

CD

CB

AD

AB


Lemma 2 

If in the triangle ABC, AL is the interior symmedian LBC, and AP is the external 

median PBC, then the points P, B, L, C form a harmonic division. 

Proof 

It is known that the external symmedian AP in the triangle ABC is tangent in A to the 

circumscribed circle (see fig. 2), also, it can be proved that: 
2

AC

AB

PC

PB








 (1) 

but 
2

AC

AB

LC

LB








 (2) 

Fig. 2 

From the relations (1) and (2) it results 

LC

LB

PC

PB
 , 

Which shows that the points P, B, L, C form a harmonic division. 
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Definition 2 

If P is a point exterior to circle  r,0C  and B, C are the intersection points of the

circle with a secant constructed through the point P, we will say about the point Q(BC) with 

the property 
QC

QB

PC

PB
  that it is the harmonic conjugate of the point P in rapport to the circle 

 r,0C .

Observation 

In the same conjunction, the point P is also the conjugate of the point Q in rapport to 

the circle (see fig. 3).  

Fig. 3 

Definition 3 

The set of the harmonic conjugates of a point in rapport with a given circle is called 

the polar of that point in rapport to the circle. 

Theorem 
The polar of an exterior point to the circle is the circle’s cord determined by the points 

of tangency with the circle of the tangents constructed from that point to the circle.  

Proof 

Let P an exterior point of the circle  r,0C  and M, N the intersections of the line PO

with the circle (see fig. 4).  

We note T and V the tangent points with the circle of the tangents constructed from 

the point P and let Q be the intersection between MN and TV. 

Obviously, the triangle MTN is a right triangle in T, TQ is its height (therefore the 

interior symmedian, and TP is the exterior symmedian, and therefore the points P, M, Q, N 

form a harmonic division, (Lemma 2)). Consequently, Q is the harmonic conjugate of P in 

rapport to the circle and it belongs to the polar of P in rapport to the circle. 

We’ll prove that (TV) is the polar of P in rapport with the circle. Let MN be the 

intersections of a random secant constructed through the point P with the circle, and X the 

intersection of the tangents constructed in M and N to the circle. 

In conformity to Lemma 1, the line XT is for the triangle MTN the interior 

symmedian, also TP is for the same triangle the exterior symmedian.  

If we note Q the intersection point between XT and MN it results that the point Q is 

the harmonic conjugate of the point P in rapport with the circle, and consequently, the point 

Q belongs to the polar P in rapport to the circle. 
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Fig. 4 

For the triangle VMN, according to Lemma 1, the line VX is the interior symmedian 

and VP is for the same triangle the external symmedian. It will result, according to Lemma 2, 

that if   'N'MVX"Q  , the point Q" is the harmonic conjugate of the point P in rapport to 

the circle. Because the harmonic conjugate of a point in rapport with a circle is a unique point, 

it results that Q=Q". Therefore the points V, T, X are collinear and the point Q belongs to the 

segment (TV). 

Reciprocal 

If Q1(TV) and PQ1 intersect the circle in M1 and N1, we much prove that the point 

Q1 is the harmonic conjugate of the point P in rapport to the circle. 

Let X1 the intersection point of the tangents constructed from M1 and N1 to the circle. 

In the triangle M1TN1 the line X1T is interior symmedian, and the line TP is exterior 

symmedian. If   111
'
1 NMTXQ   then P, M1, 

'
1Q , N1 form a harmonic division. 

Similarly, in the triangle M1VN1 the line VX1 is interior symmedian, and VP exterior 

symmedian. If we note  111
"
1 NMVXQ  , it results that the point "

1Q  is the harmonic 

conjugate of the point P in rapport to M1 and N1. Therefore, we obtain '
1Q = "

1Q .  On the other 

side, X1, T, '
1Q  and V, X1, 

"
1Q  are collinear, but '

1Q = "
1Q , it result that X1, T, '

1Q , V are 

collinear, and then '
1Q =Q1, therefore Q1 is the conjugate of P in rapport with the circle. 
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Several Metrical Relations Regarding the Anti-Bisector,  
the Anti-Symmedian, the Anti-Height and their Isogonal    

Professor Ion Pătraşcu – Frații Buzeşti National College, Craiova 
Professor Florentin Smarandache –University of New Mexico, U.S.A. 

We suppose known the definitions of the isogonal cevian and isometric cevian; we 
remind that the anti-bisector, the anti-symmedian, and the anti-height are the isometrics of the 
bisector, of the symmedian and of the height in a triangle. 

It is also known the following Steiner (1828) relation for the isogonal cevians 1AA and 

1
'AA : 

2

1 1

1 1

'

'

BA BA AB
CA ACCA

æ ö
ç ÷× = ç ÷
è ø

We’ll prove now that there is a similar relation for the isometric cevians  

 Proposition 
 In the triangle ABC  let consider 1AA and 1

'AA  two isometric cevians, then there exists 

the following relation: 

( )
( )

( )
( )

2
11

1 1

'

'

sin BAAsin BAA sin B
sin Csin CAA sin CAA

æ ö
× = ç ÷ç ÷

è ø
(*) 

Proof 

A 

C 
A1’ 

B              A1

Fig. 1 

The sinus theorem applied in the triangles 1 1ABA ,ACA  implies (see above figure)  

( )1

1 1

sin BAA sin B
BA AA

= (1) 

( )1

1 1

sin CAA sinC
CA AA

= (2) 
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From the relations (1) and (2) we retain 
( )
( )

1 1

11

sin BAA sin B BA
sinC CAsin CAA

= × (3) 

The sinus theorem applied in the triangles 1 1
' 'ACA ,ABA  leads to 

( )1

1 1

'

' '

sin CAA sinC
AC AA

= (4) 

( )1

1 1

'

' '

sin BAA sin B
BA AA

= (5) 

From the relations (4) and (5) we obtain: 
( )
( )

1
1

11

'
'

''

sin BAA sin B BA
sin C CAsin CAA

= × (6) 

 Because 1 1
'BA CA=  and 1 1

'AC BA=  ) the cevians being isometric), from the relations (3) 

and (6) we obtain relation (*) from the proposition’s enouncement.     

Applications 
1. If 1AA  is the bisector in the triangle ABC  and 1

'AA  is its isometric, that is an  

anti-bisector, then from (*) we obtain 
( )
( )

2
1

1

'

'

sin BAA sin B
sin Csin CAA

æ ö
= ç ÷ç ÷
è ø

(7) 

Taking into account of the sinus theorem in the triangle ABC  we obtain 
( )
( )

2
1

1

'

'

sin BAA AC
ABsin CAA

æ ö
= ç ÷ç ÷
è ø

(8) 

2. If 1AA  is symmedian and 1
'AA  is an anti-symmedian, from (*) we obtain 

( )
( )

3
1

1

'

'

sin BAA AC
ABsin CAA

æ ö
= ç ÷ç ÷
è ø

 Indeed, 1AA  being symmedian it is the isogonal of the median AM  and  

( )
( )

sin MAB sin B
sinCsin MAC

=   and   

( )
( )

( )
( )

1

1

'

'

sin BAA sin MAC sin C AB
sin B ACsin MABsin CAA

= = =
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3. If 1AA  is a height in the triangle ABC , ( )1A BCÎ  and 1
'AA  is its isometric (anti-

height), the relation (*) becomes.
( )
( )

2
1

1

sin BAA ' AC cos C
AB cos Bsin CAA '

æ ö
ç ÷= ×ç ÷
è ø

Indeed 
( ) ( )1 1

1 1
' 'BA CAsin BAA ; sin CAA

AB AC
= =

therefore 
( )
( )

1
1

11

'

'

sin BAA AC BA
AB CAsin CAA

= ×

From (*) it results  
( )
( )

1
1

11

'

'

sin BAA AC CA
AB BAsin CAA

= ×

or 

1CA AC cosC= ×  and 1BA AB cos B= ×
therefore 

( )
( )

2
1

1

'

'

sin BAA AC cos C
AB cos Bsin CAA

æ ö
= ç ÷ ×ç ÷
è ø

4. If 1
"AA  is the isogonal of the anti-bisector 1

'AA  then 
3

1

1

"

"
BA AB
A C AC

æ ö
= ç ÷ç ÷
è ø

  (Maurice D’Ocagne, 1883) 

Proof 
The Steiner’s relation for 1

"AA  and 1
'AA  is 

2

1 1

1 1

" '

" '
BA BA AB
A C AC AC

æ ö
× = ç ÷ç ÷

è ø

But 1AA  is the bisector and according to the bisector theorem 1

1

BA AB
CA AC

=  but 1 1
'BA CA=  and 

1 1
'AC BA=  therefore 

1

1

'

'
CA AB
BA AC

=

and we obtain the D’Ocagne relation 
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5. If in the triangle ABC  the cevian 1
"AA  is isogonal to the symmedian  1

'AA  then 
4

1

1

"

"
BA AB
A C AC

æ ö
= ç ÷ç ÷
è ø

Proof 
 Because 1AA  is a symmedian, from the Steiner’s relation we deduct that  

2

1

1

BA AB
CA AC

æ ö
= ç ÷ç ÷
è ø

The Steiner’s relation for 1 1
" 'AA , AA  gives us  

2

1 1

1 1

" '

" '
BA BA AB
A C CA AC

æ ö
× = ç ÷ç ÷

è ø
Taking into account the precedent relation, we obtain 

4

1

1

"

"
BA AB
A C AC

æ ö
= ç ÷ç ÷
è ø

6.
 If 1

"AA  is the isogonal of the anti-height 1
'AA  in the triangle ABC  in which the height 

1AA  has ( )1A BCÎ  then 
3

1

1

"

"
BA AB cos B
A C AC cosC

æ ö
= ç ÷ ×ç ÷
è ø

Proof 
 If 1AA  is height in triangle ABC ( )1A BCÎ  then   

1

1

BA AB cos B
AC AC cosC

= ×

Because 1
'AA  is anti-median, we have 1 1

'BA CA=  and 1 1
'AC BA=  then  

1

1

BA '' AC cos C
A '' C AB cos B

= ×

Observation 
The precedent results can be generalized for the anti-cevians of rang k and for their 

isogonal. 
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An Important Application of the Computation of the Distances between 
Remarkable Points in the Triangle Geometry 

Prof. Ion Pătraşcu, The Frații Buzeşti College, Craiova, Romania 
Prof. Florentin Smarandache, University of New Mexico, U.S.A. 

In this article we’ll prove through computation the Feuerbach’s theorem relative to the 
tangent to the nine points circle, the inscribed circle, and the ex-inscribed circles of a given 
triangle. 

Let ABC  a given random triangle in which we denote with O  the center of the 
circumscribed circle, with I  the center of the inscribed circle, with H  the orthocenter, with aI
the center of the A  ex-inscribed circle, with 9O  the center of the nine points circle, with 

2

a b cp + +
=  the semi-perimeter, with R  the radius of the circumscribed circle, with r  the 

radius of the inscribed circle, and with ar  the radius of the A  ex-inscribed circle. 

Proposition 

In a triangle ABC  are true the following relations: 
(i) 2 2 2OI R Rr= - Euler’s relation 
(ii) 2 2 2a aOI R Rr= + Feuerbach’s relation 

(iii) 2 2 2 22 2 9 8OH r p R Rr= - + +
(iv) 2 2 2 23 4 4IH r p R Rr= - + +  

(v) 2 2 2 2 22 4 4a aI H r p r R Rr= - + + +

Proof 

(i) The positional vector of the center I  of the inscribed circle of the given triangle ABC  is 

( )1

2
PI aPA bPB cPC

p
= + +

   

For any point P  in the plane of the triangle ABC . 
We have 

( )1

2
OI aOA bOB cOC

p

   
= + +

We compute OI OI
 

´ , and we obtain: 

( )2 2 2 2 2 2 2
2

1
2 2 2

4
OI a OA b OB c OC abOA OB bcOB OC caOC OA

p

     
= + + + ´ + ´ + ´
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From the cosin’s theorem applied in the triangle OBC we get 
2

2

2

aOB OC R
 

´ = -

and the similar relations, which substituted in the relation for 2OI  we find 

( )2 2 2
2

1
4 2

4
OI R p abc p

p
= × - ×

Because 4abc Rs=  and s pr=  it results (i) 

(ii) The position vector of the center aI  of the A ex-inscribed circle is give by: 

( )( )1

2aPI aPA bPB cPC
p a

= - + +
-

   

We have: 

( )( )1

2aOI aOA bOB cOC
p a

= - + +
-

   

Computing a aOI OI×
 

 we obtain 

( ) ( ) ( ) ( )
2 2 2

2 2
2 2 2 2

2 2 2 2
a

a b c ab bc acOI R OA OB OB OC OA OC
p a p a p a p a

   + +
= × - ´ + ´ - ´

- - - -

Because 
2

2

2

aOB OC R
 

´ = -  and ( )as r p a= - , executing a simple computation we obtain the 

Feuerbach’s relation. 

(iii) In a triangle it is true the following relation  

OH OA OB OC= + +
   

This is the Sylvester’s relation. 

 We evaluate OH OH
 

´ and we obtain: 
OH2 = 9R2 – (a2+b2+c2). 

We’ll prove that in a triangle we have: 
2 2 4ab bc ca p r Rr+ + = + +

and 
2 2 2 2 22 2 8a b c p r Rr+ + = - -

We obtain 

( )( )( ) ( )
2

3s p a p b p c p p ab bc ca abc
p
= - - - = - + + + -  

Therefore 
2

2
2

4s Rsp ab bc ca
p p

= - + + + -

We find that  
2 2 4ab bc ca p r Rr+ + = + +

Because 
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( ) ( )22 2 2 2a b c a b c ab bc ca+ + = + + - + +
it results that  

2 2 2 2 22 2 8a b c p r Rr+ + = - -
which leads to (iii). 

(iv) In the triangle ABC we have  

IH OH OI= -
  

We compute 2IH , and we obtain: 
2 2 2 2IH OH OI OH OI= + - ×

 

( ) ( )1

2
OH OI OA OB OC aOA bOB cOC

p

       
´ = + + × + +

( ) ( ) ( ) ( )21

2
OH OI R a b c a b OA OB b c OB OC c a OC OA

p

       é ù´ = + + + + ´ ´ + + ´ ´ + + ´ ´ =ê úë û

( )
3 3 3 2 2 2

23
2 2

a b c a b cR .
a b c
+ + + +

= - -
+ +

3 3 3
2 24 2

a b cIH R Rr
a b c
+ +

= - -
+ +

To express 3 3 3a b c+ +  in function of p,r,R  we’ll use the identity: 

( )( )3 3 3 2 2 23a b c abc a b c a b c ab bc ca+ + - = + + + + - - - .

and we obtain 

( )3 3 3 2 22 3 6a b c p p r Rr+ + = - -

Substituting in the expression of 2IH , we’ll obtain the relation (iv) 

(v) We have  

( )( )1

2aHI aHA bHB cHC
p a

= - + +
-

   

We’ll compute a aHI HI
® ®

´

( ) ( )2 2 2 2 2 2 2
2

1
2 2 2

4
aHI a HA b HB c HC abHA HB acHA HC bcHB HC

p a

     
= + + - ´ - ´ + ´

-

If 1A  is the middle point of ( )BC it is known that 12AH OA=
 

, therefore 
2 2 24AH R a= -

also, 

( )( )HA HB OB OC OC OA
    

´ = + +

We obtain: 

( )2 2 2 21
4

2
HA HB R a b c


´ = - + +

Therefore 
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( )2 2 2 2 22 4a b c p r Rr+ + = - -

It results 
2 2 24 4HA HB r p R Rr

 
´ = - + +

Similarly, 
2 2 24 4HB HC HC HA r p R Rr

   
´ = ´ = - + +

( ) ( ) ( ) ( )( )2 2 2 2 2 4 4 4 2 2 2
2

1
4 4 4 2 2 2

4
aHI R a b c a b c r p R Rr bc ab ac

p a
é ù= + + - + + + - + + - -ê úë û-

Because ( )2b c a p a+ - = - , it results

( ) ( )2 2 2 22 2 2 4bc ab ac p a a b c- - = - - + +

( ) ( )( ) ( ) ( ) ( )22 2 2 2 2 2 2 2 2 4 4 4
2

1
4 4 4 4

4
aHI a b c p r Rr p a r p R Rr a b c

p a
é ù= + + - - + - - + + - + +ê úë û-

It is known that  
2 2 2 2 2 2 2 4 4 416 2 2 2s a b b c c a a b c= + + - - -

From which we find 

( ) ( ) ( )222 2 2 2 2 2 2 22 4 4a b b c c a ab bc ca abc a b c r p Rr pabc+ + = + + - + + = + + -

Substituting, and after several computations we obtain (v). 

Theorem (K. Feuerbach) 

In a given triangle the circle of the nine points is tangent to the inscribed circle and to the 
ex-inscribed circles of the triangle. 

Proof  

We apply the median’s theorem in the triangle OIH  and we obtain 

( )2 2 2 2
94 2IO OI IH OH= + -

We substitute 2 2 2OI ,IH ,OH  with the obtained formulae in function of r,R, p  and after several 
simple computations we’ll obtain 

9 2

RIO r= -

This relation shows that the circle of the nine points (which has the radius 
2

R
) is tangent to

inscribed circle. 
We apply the median’s theorem for the triangle aOI H , and we obtain 

( )2 2 2 2
94 2a a aI O OI I H OH= + -

We substitute a aOI ,I H ,OH  and we’ll obtain 
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9 2a a
RI O r= +

This relation shows that the circle of the nine points and the A- ex-inscribed circle are 
tangent in exterior. 

Note 
In an article published in the Gazeta Matematică, no. 4, from 1982, the late Romanian 

Professor Laurențiu Panaitopol asked for the finding of the strongest inequality of the type 
2 2 2 2 2kR hr a b c+ ³ + +  and proves that this inequality is 

2 2 2 2 28 4R r a b c+ ³ + + . 

Taking into consideration that 
2 2 2

2 2 24 2
2

a b cIH R r + +
= + -

and that 2 0IH ³  we re-find this inequality and its geometrical interpretation. 
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The Duality and the Euler’s Line  

Prof. Ion Pătraşcu – The Frații Buzeşti National College, Craiova - Romania 
Prof. Florentin Smarandache – University of New Mexico – U.S.A. 

In this article we’ll discuss about a theorem which results from a duality transformation 
of a theorem and the configuration in relation to the Euler’s line. 

Theorem
Let ABC  a given random triangle, I  the center of its inscribed circle, and A' B' C'  its 

triangle of contact. The perpendiculars constructed in I  on AI , BI , CI  intersect BC, CA, AB  
respectively in the points 1 1 1A , B , C . The medians of the triangle of contact intersect the second 

time the inscribed circle in the points 1 1 1A ', B ', C ' , and the tangents in these points to the 

inscribed circle intersect the lines BC, CA, AB  in the points 2 2 2A , B , C  respectively. 

Then: 
i) The points 1 1 1A , B , C  are collinear; 

ii) The points 2 2 2A , B , C  are collinear; 

iii) The lines 1 1 2 2A B , A B  are parallel. 

Proof 
We’ll consider a triangle A' B' C'  circumscribed to the circle of center O . Let 

A' A'', B' B", C' C"  its heights concurrent in a point H  and A' M , B' N , C' P  its medians 
concurrent in the weight center G . It is known that the points O, H , G  are collinear; these are 
situated on the Euler’s line of the triangle A' B' C' . 

We’ll transform this configuration (see the figure) through a duality in rapport to the 
circumscribed circle to the triangle A' B' C' .   

To the points A', B', C'  correspond the tangents in A', B', C'  to the given circle, we’ll 
note A, B, C  the points of intersection of these tangents. For triangle ABC  the circle A' B' C'
becomes inscribed circle, and A' B' C'  is the triangle of contact of ABC . 

To the mediators A' M , B' N , C' P  will correspond through the considered duality, their 
pols, that is the points 2 2 2A , B , C  obtained as the intersections of the lines BC, CA, AB  with the 

tangents in the points 1 1 1A ', B ', C '  respectively to the circle A' B' C'  ( 1 1 1A ', B ', C '  are the 

intersection points with the circle A' B' C'  of the lines ( A' M , (B' N , (C' P ). To the height 

A' M  corresponds its pole noted 1A  situated on BC  such that ( )1 90m AOA = ° (indeed the pole 

of B' C'  is the point A  and because A' M B' C'^  we have ( )1 90m AOA = °), similarly to the 

height B' N  we’ll correspond the point 1B  on AC  such that ( )1 90m BOB = °, and to the height 

C' N  will correspond the point 1C  on AB  such that ( )1 90m COC = ° .  



        B2

B 

B1

B1
’ 

A’ 
N 

C 
C’1          H 

G   O    
C’ 

A1

            A2 B’      A” M 

A1
’ 

A 

C2
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Because the heights are concurrent in H  it means that their poles, that is the points 

1 1 1A , B , C  are collinear. 

Because the medians are concurrent in the point G  it means that their poles, that is the 
points 2 2 2A , B , C  are collinear. 

 The lines 1 1 1A B C  and 2 2 2A B C  are respectively the poles of the points H  and G , because 

H , G  are collinear with the point O ; this means that these poles are perpendicular lines on OG
respectively on OH ; consequently these are parallel lines. 

By re-denoting the point O  with I we will be in the conditions of the propose theorem 
and therefore the proof is completed. 

Note 
This theorem can be proven also using an elementary method. We’ll leave this task for 

the readers.  
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Two Applications of Desargues’ Theorem 

Prof. Florentin Smarandache, University of New Mexico, U.S.A. 
Prof. Ion Pătraşcu, The National College “Fraţii Buzeşti”, Craiova, Romania 

In this article we will use the Desargues’ theorem and its reciprocal to solve two 
problems. 

For beginning we will enunciate and prove Desargues’ theorem: 

Theorem 1 (G.Desargues, 1636, the famous “perspective theorem”: When two triangles 
are in perspective, the points where the corresponding sides meet are collinear.) 

Let two triangle ABC  and 1 1 1A B C  be in a plane such that { }1 1 1AA BB CC O=∩ ∩ ,  
{ }
{ }
{ }

1 1

1 1

1 1

AB A B N

BC B C M

CA C A P

=

=

=

∩

∩

∩

 

then the points ,  ,  N M P  are collinear. 

A 

A1

 B 

B1

  C  C1 O 

  M N P 

Fig. 1 
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Proof 
 Let { } 1 1 1O AA BB CC= ∩ ∩ , see Fig.1.. We’ll apply the Menelaus’ theorem in the 
triangles ;  ;  OAC OBC OAB  for the transversals 1 1 1 1 1 1, , ;  , , ;  , ,N A C M B C P B A , and we obtain  

1 1

1 1

1NA C C A O
NC C O A A

⋅ ⋅ = (1) 

1 1

1 1

1MC B B C O
MB B O C C

⋅ ⋅ = (2) 

1 1

1 1

1PB B O A A
PA B B AO

⋅ ⋅ = (3) 

By multiplying the relations (1), (2), and (3) side by side we obtain 

1NA MC PB
NC MB PA

⋅ ⋅ = . 

This relation, shows that ,  ,  N M P are collinear (in accordance to the Menealaus’ 
theorem in the triangle ABC ). 

Remark 1 
 The triangles ABC  and 1 1 1A B C  with the property that 1 1 1, ,AA BB CC  are concurrent  are 
called homological triangles. The point of concurrency point is called the homological point of 
the triangles. The line constructed through the intersection points of the homological sides in the 
homological triangles is called the triangles’ axes of homology. 

Theorem 2 (The reciprocal of the Desargues’ theorem) 
` If two triangles ABC  and 1 1 1A B C   are such that  

{ }
{ }
{ }

1 1

1 1

1 1

AB A B N

BC B C M

CA C A P

=

=

=

∩

∩

∩

 

And the points ,  ,  N M P  are collinear, then the triangles ABC  and 1 1 1A B C   are homological. 
Proof 
We’ll use the reduction ad absurdum method .  

 Let  
{ }
{ }
{ }

1 1

1 1 1

1 1 2

AA BB O

AA CC O

BB CC O

=

=

=

∩

∩

∩
We suppose that 31 2O O O O≠ ≠ ≠ . 

The Menelaus’ theorem applied in the triangles 1 2,  ,  OAB O AC O BC  for the transversals 

1 1 1 1 1 1, , ;  , , ;  , ,N A B P A C M B C , gives us the relations  

1 1

1 1

1NB B O AA
NA B B AO

⋅ ⋅ = (4) 
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1 1 1

1 1 1

1PA AO C C
PC AO C O

⋅ ⋅ = (5) 

1 1 2

1 1

1MC B B C O
MB B O C C

⋅ ⋅ = (6) 

Multiplying the relations (4), (5), and (6) side by side, and taking into account that the points 
,  ,  N M P  are collinear, therefore  

1PA MC NB
PC MB NA

⋅ ⋅ = (7) 

We obtain that 
1 1 1 1 2

1 1 2 1 2

1AO B O C O
AO B O C O

⋅ ⋅ = (8) 

The relation (8) relative to the triangle 1 1 1A B C  shows, in conformity with Menelaus’ theorem, 
that the points 1 2, ,O O O  are collinear. On the other hand the points 1,O O  belong to the line 1AA , 
it results that 2O  belongs to the line 1AA . Because { }1 1 2BB CC O=∩ , it results that 
{ }2 1 1 1O AA BB CC= ∩ ∩ , and therefore 2 1O O O= = , which contradicts the initial supposition. 

Remark 2 
The Desargues’ theorem is also known as the theorem of the homological triangles. 

Problem 1 
 If ABCD  is a parallelogram, ( ) ( ) ( ) ( )1 1 1 1, , ,A AB B BC C CD D DA∈ ∈ ∈ ∈  such that the 
lines 1 1 1 1, ,A D BD B C  are concurrent, then: 

a) The lines 1 1,AC AC  and 1 1B D  are concurrent 
b) The lines 1 1 1 1,A B C D  and AC  are concurrent. 
Solution 

Q 
B1

B C
A1

        C1

   A D 
D1

  P 
Fig. 2 
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 Let { } 1 1 1 1P A D B C BD= ∩ ∩  see Fig. 2. We observe that the sides 1 1A D  and 1 1B C ; 1CC
and 1AD ; 1A A  and 1CB  of triangles 1 1AA D  and 1 1CB C  intersect in the collinear points , ,P B D . 
Applying the reciprocal theorem of Desargues it results that these triangles are homological, that 
is, the lines: 1 1,AC AC  and 1 1B D  are collinear. 
 Because { } 1 1 1 1P A D B C BD= ∩ ∩  it results that the triangles 1 1DC D  and 1 1BB A  are 
homological. From the theorem of the of homological triangles we obtain that the homological 
lines  

1DC  and 1BB ; 1DD  and 1BA ; 1 1D C  and 1 1A B  intersect in three collinear points, these are 
, ,C A Q , where { } 1 1 1 1Q D C A B= ∩ . Because Q  is situated on AC  it results that 1 1 1 1,A B C D  and 

AC  are collinear. 

Problem 2 
Let ABCD  a convex quadrilateral such that  

{ }
{ }
{ }
{ }
{ }

AB CB E

BC AD F

BD EF P

AC EF R

AC BD O

=

=

=

=

=

∩

∩

∩

∩

∩
We note with ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  G H I J K L M N Q U V T respectively the middle points of 

the segments: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , , , , ,AB BF AF AD AE DE CE BE BC CF DF DC . Prove 
that 

i) The triangle POR  is homological with each of the triangles:
,  ,  ,  GHI JKL MNQ UVT .

ii) The triangles GHI  and JKL  are homological.
iii) The triangles MNQ  and UVT  are homological.
iv) The homology centers of the triangles ,  ,  GHI JKL POR  are collinear.
v) The homology centers of the triangles ,  ,  MNQ UVT POR  are collinear.

Solution 
i) when proving this problem we must observe that the ABCDEF  is a complete

quadrilateral and if 1 2 3, ,O O O  are the middle of the diagonals ( ) ( ),AC BD  respective EF , these 
point are collinear. The line on which the points 1 2 3, ,O O O  are located is called the Newton-
Gauss line [* for complete quadrilateral see [1]]. 

The considering the triangles POR  and GHI  we observe that { }1 GI OR O=∩  because 
 GI  is the middle line in the triangle ABF  and then it contains the also the middle of the 
segment ( )AC , which is 1O . Then { }3HI PR O=∩  because HI  is middle line in the triangle 
AFB  and 3O  is evidently on the line PR  also. { }2GH PO O=∩ because  GH  is middle line in 
the triangle BAF  and then it contains also 2O  the middle of the segment ( )BD . 
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 The triangles GIH  and ORP  have as intersections of the homological lines the collinear 
points 1 2 3, ,O O O , according to the reciprocal theorem of Desargues these are homological. 

A 

        G 

          B 

O1          J 

          K             I 
     Q         O2

O 
N    H 

   D 
   C       T  

M          L U        V 

    E          O3 R       F        P 

Fig. 3 

Similarly, we can show that the triangle ORP  is homological with the triangles JKL , 
MNQ , and UVT  (the homology axes will be 1 2 3, ,O O O ). 

ii) We observe that
{ }
{ }
{ }

1

2

3

GI JK O

GH JL O

HI KL O

=

=

=

∩

∩

∩

 

then 1 2 3, ,O O O  are collinear and we obtain that the triangles GIH  and JKL  are homological 
iii) Analog with ii)
iv) Apply the Desargues’ theorem. If three triangles are homological two by two, and

have the same homological axes then their homological centers are collinear. 
v) Similarly with iv).

Remark 3 
The precedent problem could be formulates as follows: 
The four medial triangles of the four triangles determined by the three sides of a given 

complete quadrilateral are, each of them, homological with the diagonal triangle of the complete 
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quadrilateral and have as a common homological axes the Newton-Gauss line of the complete 
quadrilateral.  
 We mention that: 

- The medial triangle of a given triangle is the triangle determined by the middle points 
of the sides of the given triangle (it is also known as the complementary triangle). 

- The diagonal triangle of a complete quadrilateral is the triangle determined by the 
diagonals of the complete quadrilateral. 

We could add the following comment: 
Considering the four medial triangles of the four triangles determined by the three sides 

of a complete quadrilateral, and the diagonal triangle of the complete quadrilateral, we could 
select only two triplets of triangles homological two by two. Each triplet contains the diagonal 
triangle of the quadrilateral, and the triplets have the same homological axes, namely the 
Newton-Gauss line of the complete quadrilateral. 

Open problems 
1. What is the relation between the lines that contain the homology centers of the

homological triangles’ triplets defined above?
2. Desargues theorem was generalized in [2] in the following way: Let’s consider the

points A1,...,An situated on the same plane, and B1,...,Bn situated on another plane,
such that the lines AiBi are concurrent. Then if the lines AiAj and BiBj are concurrent,
then their intersecting points are collinear.
Is it possible to generalize Desargues Theorem for two polygons both in the same
plane?

3. What about Desargues Theorem for polyhedrons?
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An Application of Sondat’s Theorem  

Regarding the Ortho-homological Triangles 

Ion Pătraşcu, “Fraţii Buzeşti” National College, Craiova, Romania; 
Florentin Smarandache, ENSIETA, Brest, France. 

In this article we prove the Sodat’s theorem regarding the ortho-homogolgical triangle 
and then we use this theorem along with Smarandache-Pătraşcu theorem to obtain another 
theorem regarding the ortho-homological triangles. 

Theorem (P. Sondat) 
Consider the ortho-homological triangles ABC , 1 1 1A B C . We note Q , 1Q  their 

orthological centers, P  the homology center and d  their homological axes. The points P , Q , 

1Q  belong to a line that is perpendicular on d

P 

  Q 

          A1
B1

C1

C’ B’        A’      d 
   C 

      B 

       A 
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Proof. 
Let Q  the orthologic center of the ABC  the 1 1 1A B C  (the intersection of the perpendiculars 

constructed from 1 1 1,  ,  A B C  respectively on ,  ,  BC CA AB ), and 1Q  the other orthologic center of 
the given triangle. 

We note { } 1 1'B CA C A= ∩ , { } 1 1'A BC B C= ∩ , { } 1 1'C AB A B= ∩ .  
We will prove that PQ d⊥  which is equivalent to  

2 2 2 2' ' ' 'B P B Q C P C Q− = − (1) 
We have that  

1 1 1 1 1 1, , PA A A PB B B PC C Cα β γ= = =
JJJG JJJJG JJJG JJJJG JJJJG JJJJG

 
From Menelaus’ theorem applied in the triangle PAC  relative to the transversals 

1 1',  ,  B C A  we obtain that  
'
'

B C
B A

α
γ

=  (2) 

The Stewart’s theorem applied in the triangle 'PAB  implies that  
2 2 2' ' ' ' 'PA CB PB AC PC AB AC CB AB⋅ + ⋅ − ⋅ = ⋅ ⋅ (3) 

Taking into account (2), we obtain: 
( )2 2 2 2 2' ' 'PC PA PB B A B Cγ α γ α α γ− = − − +    (4) 

Similarly, we obtain: 
( )2 2 2 2 2' ' 'QC QA QB B C B Aγ α γ α γ α− = − + −    (5) 

Subtracting the relations (4) and (5) and using the notations: 
2 2 2 2 2 2,  ,  PA QA u PB QB v PC QC t− = − = − =

we obtain: 
2 2' ' t uPB QB γ α

γ α
−− =
−

(6) 

The Menelaus’ theorem applied in the triangle PAB  for the transversal 1',  ,  C B A  gives 
'
'

C B
C A

α
β

=         (7)

From the Stewart’s theorem applied in the triangle 'PC A  and the relation (7) we obtain: 
( )2 2 2 2 2' ' 'PA PB C P C A C Bα β α β α β− = − + −    (8)

Similarly, we obtain: 
( )2 2 2 2 2' ' 'QA QB C Q C A C Bα β α β α β− = − + −    (9) 

From (8) and (9) it results 
2 2' ' u vC P C Q α β

α β
−− =
−

 (10) 

The relation (1) is equivalent to: 
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( ) ( ) ( ) 0u v v t t uαβ βγ γα− + − + − =     (11)
To prove relation (11) we will apply first the Stewart theorem in the triangle CAP , and 

we obtain: 
2 2 2

1 1 1 1 1CA PA PC A A CA PA PA A A PA⋅ + ⋅ − ⋅ = ⋅ ⋅ (12) 
Taking into account the previous notations, we obtain: 

( )2 2 2 2 2
1 1 11CA PC CA PA A Aα α α+ − + = +     (13) 

Similarly, we find: 
( )2 2 2 2 2

1 1 11BA PB BA PA A Aα α α+ − + = +     (14) 
From the relations (13) and (14) we obtain: 

( )( )2 2 2 2 2 2
1 11 0BA CA PB PC BA CAα α α− + − − + − = (15) 

Because 1AQ BC⊥ , we have that 2 2 2 2
1 1BA CA QB QC− = − , which substituted in relation (15) 

gives: 
2 2 2 2 t vBA CA QC QB

α
−− + − = (16) 

Similarly, we obtain the relations: 
2 2 2 2 u tCB AB QA QC

β
−− + − = (17) 

2 2 2 2 v uAC BC QB QA
γ
−− + − = (18) 

By adding the relations (16), (17) and (18) side by side, we obtain 

0t v u t v u
α β γ
− − −+ + = (19) 

The relations (19) and (11) are equivalent, and therefore, PQ d⊥ , which proves the 
Sondat’s theorem. 

Theorem (Smarandache – Pătraşcu) 
 Consider triangle ABC  and the inscribed triangle 1 1 1A B C  ortho-homological, Q , 1Q  their 
centers of orthology, P the homology center and d their homology axes. If 2 2 2A B C  is the podar 
triangle of 1Q , 1P  is the homology center of triangles ABC  and  2 2 2A B C , and 1d  their homology 
axes, then the points 1 1,  ,  ,  P Q Q P  are collinear and the lines d  and 1d  are parallel 

Proof.  
Applying the Sondat’s theorem to the ortho-homological triangle ABC  and 1 1 1A B C , it 

results that the points 1,  ,  P Q Q  are collinear and their line is perpendicular on d . The same 
theorem applied to triangles ABC  and 2 2 2A B C  shows the collinearity of the points 1 1,  ,  P Q Q , 
and the conclusion that their line is perpendicular on 1d . 

From these conclusions we obtain that the points 1 1,  ,  ,  P Q Q P  are collinear and the 
parallelism of the lines d  and 1d . 
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Another proof of a theorem relative to the orthological triangles 

Ion Pătraşcu – National College “Fraţii Buzeşti, Craiova, Romania 
Florentin Smarandache – New Mexico University, U.S.A. 

In [1] we proved, using barycentric coordinates, the following theorem: 

Theorem: (generalization of the C. Coşniţă theorem) 
 If P  is a point in the triangle’s ABC  plane, which is not on the circumscribed triangle, 

' ' 'A B C  is its pedal triangle and 1 1 1, ,A B C  three points such that  
*

1 1 1' ' ' ,   PA PA PB PB PC PC k k R⋅ = ⋅ = ⋅ = ∈
uuuuruuur uuuuruuur uuuuruuuur

, 
then the lines 1 1 1,  ,  AA BB CC  are concurrent. 

Bellow, will prove, using this theorem, the following: 

Theorem  
If the triangles ABC  and 1 1 1A B C  are orthological and their orthological centers coincide, 

then the lines 1 1 1,  ,  AA BB CC  are concurrent (the triangles ABC  and 1 1 1A B C  are homological). 
Proof: 

 Let O  be the unique orthological center of the triangles ABC  and 1 1 1A B C  and  

A 

         C1 X1           B1
Y2

Y3
O 

X2
B X3

Y1           C 

A1

{ }
{ }
{ }

1 1 1

2 1 1

3 1 1

X AO B C

X BO AC

X CO A B

=

=

=

I

I

I

We denote  
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{ }
{ }
{ }

1 1

2 1

3 1

Y OA BC

Y OB AC

Y OC AB

=

=

=

I

I

I

We observe that 3 1 1OAY OC X=� �  (angles with perpendicular sides). 
Therefore: 

3
3

1
1 1

1

sin

sin

OYOAY
OA
OXOC X
OC

=

=
, 

then 
1 3 1OX OA OY OC⋅ = ⋅ (1) 

 Also 
1 2 3OC X OBY=� �

 therefore 
2

1 2
1

3
3

sin

sin

OXOC X
OC

OYOBY
OB

=

=

and consequently: 
2 3 1OX OB OY OC⋅ = ⋅ (2) 

Following the same path: 
2 1

1 2 1
1

sin sinOX OYOA X OBY
OC OB

= = =

from which 
2 1 1OX OB OA OY⋅ = ⋅ (3) 

Finally  
3 1

1 3 1
1

sin sinOX OYOA X OCY
OA OC

= = =

from which: 
3 1 1OX OC OA OY⋅ = ⋅ (4) 

The relations (1), (2), (3), (4) lead to 
1 2 3OX OA OX OB OX OC⋅ = ⋅ = ⋅ (5) 

From (5) using the Coşniţă’s generalized theorem, it results that 1 1 1,  ,  A A B B C C  are 
concurrent. 

Observation: 
If we denote P  the homology center of the triangles ABC  and 1 1 1A B C  and d  is the 

intersection of  their homology axes, them in conformity with the Sondat’s theorem, it results 
that OP d⊥ . 
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Two Triangles with the Same Orthocenter and a Vectorial Proof of 
Stevanovic’s Theorem  

Prof. Ion Pătraşcu – The National College “Fraţii Buzeşti”, Craiova, Romania 
Prof. Florentin Smarandache – University of New Mexico, U.S.A. 

Abstract. In this article we’ll emphasize on two triangles and provide a vectorial proof of 
the fact that these triangles have the same orthocenter.  This proof will, further allow us to 
develop a vectorial proof of the Stevanovic’s theorem relative to the orthocenter of the 
Fuhrmann’s triangle. 

Lemma 1 
 Let ABC  an acute angle triangle, H  its orthocenter, and ', ', 'A B C  the symmetrical 
points of  H  in rapport to the sides , ,BC CA AB . 

We denote by , ,X Y Z  the symmetrical points of , ,A B C in rapport to ' ', ' ', ' 'B C C A A B
The orthocenter of the triangle XYZ  is H . 

          A 
C’ 

            V      

  X B’ 
 H    Y 

Z 

       U           C 
     B 

            A’ 
Fig. 1 

Proof 
We will prove that XH YZ⊥ , by showing that 0XH YZ⋅ =

JJJG JJG
. 

We have (see Fig.1)  

VH AH AX= −
JJJG JJJG JJJG

  
BC BY YZ ZC= + +
JJJG JJJG JJG JJG

,  
from here  

YZ BC BY ZC= − −
JJG JJJG JJJG JJG

 
 Because Y  is the symmetric of B  in rapport to ' 'A C  and Z  is the symmetric of C  in 
rapport to ' 'A B , the parallelogram’s rule gives us that: 
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' 'BY BC BA= +
JJJG JJJG JJJG

 
' 'CZ CB CA= +

JJG JJJG JJJG
. 

 Therefore 

( )' ' ' 'YZ BC BC BA B C A C= − + + +
JJG JJJG JJJG JJJG JJJJG JJJJG

 But 
' 'BC BH HC= +

JJJG JJJG JJJJG
 

' 'BA BH HA= +
JJJG JJJG JJJG

 
' 'CB CH HB= +

JJJG JJJG JJJG
 

' 'CA CH HA= +
JJJG JJJG JJJG

 
By substituting these relations in the YZ

JJG
, we find: 

' 'YZ BC C B= +
JJG JJJG JJJJG

 
We compute  

( ) ( )' ' ' ' ' 'XH YZ AH AX BC C B AX BC AH C B AX BC AX C B⋅ = − ⋅ + = ⋅ + ⋅ − ⋅ − ⋅
JJJG JJG JJJG JJJG JJJG JJJJG JJJG JJJG JJJG JJJJG JJJG JJJG JJJG JJJJG

 Because 
AH BC⊥   

we have 
0AH BC⋅ =

JJJG JJJG
,  

also  
' 'AX B C⊥   

and therefore  
' ' 0AX B C⋅ =

JJJG JJJJG
. 

We need to prove also that  
' 'XH YZ AH C B AX BC⋅ = ⋅ − ⋅

JJJG JJG JJJG JJJJG JJJG JJJG

 We note: 
{ }U AX BC= ∩  and { } ' 'V AH B C= ∩  

( ) ( ),AX BC AX BC cox AX BC AX BC cox AUC⋅ = ⋅ ⋅ = ⋅ ⋅
JJJG JJJG

) )  

( ) ( )' ' ' ' , ' ' ' ' 'AH C B AH C B cox AH C B AH C A cox AVC⋅ = ⋅ ⋅ = ⋅ ⋅
JJJG JJJJG

) )  
We observe that  

'AUC AVC≡) )  (angles with the sides respectively perpendicular). 
 The point 'B  is the symmetric of  H  in rapport to AC , consequently  

'HAC CAB≡) ) ,  
also the point 'C  is the symmetric of the point H  in rapport to AB , and therefore  

'HAB BAC≡) ) .  
From these last two relations we find that  

' ' 2B AC A=) ) . 
The sinus theorem applied in the triangles ' 'AB C  and ABC  gives: 

' ' 2 sin 2
2 sin

B C R A
BC R A

= ⋅
=

 

We’ll show that  
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' 'AX BC AH C B⋅ = ⋅ ,  
and from here  

2 sin 2 sin 2AX R A AH R A⋅ = ⋅ ⋅   
which is equivalent to  

2 cosAX AH A=  
We noticed that  

' ' 2B AC A=) ,  
Because 

' 'AX B C⊥ ,  
it results that  

TAB A≡) ) ,  
we noted { } ' 'T AX B C= ∩ .  
On the other side 

1' ,   
2

AC AH AT AY= = ,  

and  
' cos cosAT AC A AH A= = ,  

therefore  
0XH YZ⋅ =

JJJG JJG
. 

Similarly, we prove that  
YH XZ⊥ ,  

and therefore  H  is the orthocenter of triangle XYZ . 

Lemma 2 

 Let ABC a triangle inscribed in a circle, I  the intersection of its bisector lines, and 
', ', 'A B C  the intersections of the circumscribed circle with the bisectors , ,AI BI CI  respectively. 

The orthocenter of the triangle ' ' 'A B C  is I .  
          A 

        C’ 

B’ 

I 

B           C 

            A’ 
Fig. 2 
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Proof 
 We’ll prove that ' ' 'A I B C⊥ . 
 Let  

q( ) q( )' 'm A C m A Bα= = ,

q( ) q( )
q( ) q( )

' '

' '

m B C m B A

m C A m C B

β

γ

= =

= =

Then 

( ) ( )1' '
2

m A IC α β γ= + +)  

 Because 
( )2 360α β γ+ + = °

it results  
( )' ' 90m A IC = °) ,  

therefore  
' ' 'A I B C⊥ . 

Similarly, we prove that  
' ' 'B I A C⊥ ,  

and consequently the orthocenter of the triangle ' ' 'A B C  is I , the center of the circumscribed 
circle of the triangle ABC . 

Definition 
 Let ABC  a triangle inscribed in a circle with the center in O  and ', ', 'A B C  the middle of 
the arcs p p p,  ,  BC CA AB  respectively. The triangle XYZ  formed by the symmetric of the points 

', ', 'A B C  respectively in rapport to , ,BC CA AB  is called the Fuhrmann triangle of the triangle 
ABC . 

Note 
In 2002 the mathematician Milorad Stevanovic proved the following theorem: 

Theorem (M. Stevanovic) 
In an acute angle triangle the orthocenter of the Fuhrmann’s triangle coincides with the 

center of the circle inscribed in the given triangle. 
Proof 

 We note ' ' 'A B C  the given triangle and let , ,A B C  respectively the middle of the arcs 
q q q' ',  ' ',  ' 'B C C A A B  (see Fig. 1). The lines ', ', 'AA BB CC  being bisectors in the triangle ' ' 'A B C  
are concurrent in the center of the circle inscribed in this triangle, which will note H , and which, 
in conformity with Lemma 2 is the orthocenter of the triangle ABC . Let XYZ  the Fuhrmann 
triangle of the triangle ' ' 'A B C , in conformity with Lemma 1, the orthocenter of XYZ  coincides 
with H  the orthocenter of ABC , therefore with the center of the inscribed circle in the given 
triangle ' ' 'A B C . 
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Two Remarkable Ortho-Homological Triangles 

Prof. Ion Pătraşcu - The National College “Fraţii Buzeşti”, Craiova, Romania 
Prof. Florentin Smarandache – University of New Mexico, U.S.A.  

In a previous paper [5] we have introduced the ortho-homological triangles, which are 
triangles that are orthological and homological simultaneously. 

In this article we call attention to two remarkable ortho-homological triangles (the given 
triangle ABC  and its first Brocard’s triangle), and using the Sondat’s theorem relative to 
orthological triangles, we emphasize on four important collinear points in the geometry of the 
triangle. Orthological / homological / orthohomological triangles in the 2D-space are generalized 
to orthological / homological / orthohomological polygons in 2D-space, and even more to  
orthological / homological / orthohomological triangles, polygons, and polyhedrons in 3D-space.  

Definition 1 
 The first Brocard triangle of a given triangle ABC  is the triangle formed by the 

projections of the symmedian center of the triangle ABC  on its perpendicular bisectors. 

Observation  
In figure 1 we note with K  the symmedian center, ',  ',  'OA OB OC  the perpendicular 

bisectors of the triangle ABC  and 1 1 1A B C  the first Brocard’s triangle.  

A 

 B’ 
       C’ 

           C1 
O 

           K A1 
      B1 

 B 
C 

A’ 
Fig. 1 
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Theorem 1 
 If ABC  is a given triangle and 1 1 1A B C  is its first triangle Brocard, then the triangles 
ABC  and 1 1 1A B C  are ortho-homological. 

We’ll perform the proof of this theorem in two stages. 
I. We prove that the triangles 1 1 1A B C  and ABC  are orthological. 

The perpendiculars from 1 1 1,  ,  A B C  on ,  BC CA  respective AB  are perpendicular 
bisectors in the triangle ABC , therefore are concurrent in O , the center of the 
circumscribed circle of triangle ABC  which is the orthological center for 
triangles 1 1 1A B C  and ABC . 

II. We prove that the triangles 1 1 1A B C  and ABC  are homological, that is the lines 

1 1 1,  ,  AA BB CC  are concurrent.
To continue with these proves we need to refresh some knowledge and some helpful 

results.  

Definition 2  
In any triangle ABC  there exist the points Ω  and 'Ω  and the angle ω  such that: 

( )
( )' ' '

m AB BC CA

m BA CA AB

ω
ω

Ω = Ω = Ω =

Ω = Ω = Ω =

) ) )

) ) )

A 

ω  

Ω ’•

      Ω
ω  

ω  
     B           A” C 

Fig. 2 

 The points Ω  and 'Ω  are called the first, respectively the second point of Brocard and ω  
is called the Brocard’s angle. 

Lemma 1 
In the triangle ABC  let Ω  the first point of Brocard and { }"A { }"A A BC= Ω∩ , then:
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2

2

"
"

BA c
CA a

=

Proof 
1" "sin
2

Aria ABA AB AA ω= ⋅+  (1) 

( )1" "sin
2

Aria ACA AC AA A ω= ⋅ −+   (2) 

From (1) and (2) we find: 

( )
" sin
" sin

Aria ABA AB
Aria ACA AC A

ω
ω

⋅=
⋅ −

+
+

     (3)

On the other side, the mentioned triangles have the same height built from A , therefore: 
" "
" "

Aria ABA BA
Aria ACA CA

=+
+

 (4) 

From (3) and (4) we have: 

( )
" sin
" sin

BA AB
CA AC A

ω
ω

⋅=
⋅ −

(5) 

Applying the sinus theorem in the triangle A CΩ  and in the triangle B CΩ , it results: 

( )sin sin
C AC
A A Cω
Ω =
− Ω

(6) 

sin sin
C BC

B Cω
Ω =

Ω
(7) 

Because  
( )
( )

180

180

o

o

m A C A

m B C C

Ω = −

Ω = −

)

)
From the relations (6) and (7) we find: 

( )
sin sin

sin sin
AC C

A BC A
ω

ω
= ⋅

−
(8) 

Applying the sinus theorem in the triangle ABC  leads to: 
sin
sin

C AB
A BC

= (9) 

The relations (5), (8), (9) provide us the relation: 
2

2

"
"

BA c
CA a

=

Remark 1 
By making the notations: { }"B B C AC= Ω ∩  and { }"C C A AB= Ω ∩  we obtain also the

relations: 
2

2

"
"

CB a
AB b

=  and 
2

2

"
"

AC b
BC c

=
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Lemma 2 
In a triangle ABC , the Brocard’s Cevian BΩ , symmedian from C  and the median from 

A  are concurrent. 

Proof 
It is known that the symmedian CK of triangle ABC  intersects AB  in the point 2C  such 

that 
2

2
2

2

AC b
BC c

= . We had that the Cevian BΩ  intersects AC  in "B  such that 
2

2

"
"

BC a
B A b

= . 

The median from A  intersects BC  in 'A  and ' 'BA CA= . 

 Because 2

2

' " 1
' "

C AA B B C
A C B A C B

⋅ ⋅ = , the reciprocal of Ceva’s theorem ensures the concurrency 

of the lines ,  B CKΩ  and 'AA . 

Lemma 3 
Give a triangle ABC  and ω  the Brocard’s angle, then  

ctg ctgA ctgB ctgCω = + + (9) 
Proof 
From the relation (8) we find: 

( ) sinsin sin
sin

a AA
b C

ω ω− = ⋅ ⋅    (10) 

From the sinus’ theorem in the triangle ABC  we have that  
sin
sin

a A
b B

=

Substituting it in (10) it results: ( )
2sin sinsin

sin sin
AA
B C

ωω ⋅− =
⋅

 

Furthermore we have: 
sin( ) sin cos sin cosA A Aω ω ω− = ⋅ − ⋅  

2sin sinsin cos sin cos
sin sin

AA A
B C

ωω ω ⋅⋅ − ⋅ =
⋅

 (11) 

Dividing relation (11) by sin sinA ω⋅  and taking into account that sin sin( )A B C= + , and 
sin( ) sin cos sin cosB C B C C B+ = ⋅ + ⋅  we obtain relation (5) 

Lemma 4 
If in the triangle ABC , K  is the symmedian center and 1 2 3, ,K K K  are its projections on 

the sides ,  ,  BC CA AB , then: 
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A 

    K3
    K      K2  

      F 
   E 

      C 
     B            A2

Fig. 3 
31 2 1

2
KKKK KK tg

a b c
ω= = =  

Proof: 
 Let 2AA  the symmedian in the triangle ABC , we have: 

2 2

2 2

BA Aria BAA
CA Aria CAA

= +
+

, 

where E  and F  are the projection of 2A  on AC  respectively AB . 

It results that 2

2

A F c
A E b

=

From the fact that 3 2AKK AA F+ ∼+  and 2 2AKK AA E+ ∼+  we find that 3 2

2 2

KK A F
KK A E

=

Also: 32 KKKK
b c

= , and similarly: 1 2KK KK
a b

= , consequently: 

31 2 KKKK KK
a b c

= = (12) 

The relation (12) is equivalent to: 
3 1 2 31 2

2 2 2 2 2 2

cKK aKK bKK cKKaKK bKK
a b c a b c

+ += = =
+ +

Because  
1 2 3 2 2aKK bKK cKK Aria ABC S+ + = =+ ,  

we have: 
31 2

2 2 2

2KKKK KK S
a b c a b c

= = =
+ +

If we note 1 2 3, ,H H H  the projections of ,  ,  A B C  on ,  ,  BC CA AB , we have 

2

2

cos
2

H A bc ActgA
BH S

= =
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 A 
       H2

B 

C 

Fig. 4 

From the cosine’s theorem it results that : 
2 2 2

cos
2

b c ab c A + −⋅ ⋅ = , and therefore

2 2 2

4
b c actgA

S
+ −=

Taking into account the relation (9), we find:  
2 2 2

4
a b cctg

S
ω + += ,

then  

2 2 2

4Stg
a b c

ω =
+ +

and then  
1

2 2 2

2 1
2

KK S tg
a a b c

ω= =
+ +

. 

Lemma 5 

The Cevians  1 1 1,  ,  AA BB CC  are the isotomics of the symmedians 2 2 2,  ,  AA BB CC  in the 
triangle ABC . 

Proof: 



64 

A 

             Ω
        J       K 

        A1          J’ 

C 
K1 

       A’     A2 
       A’2 

B 
Fig. 5 

In figure 5 we note J the intersection point of the Cevians from the Lemma 2. 

Because 1KA BC& , we have that 1 1
1'
2

A A KK atgω= = . On the other side from the right triangle 

1'A A B  we have: 1
1

''
'

A Atg A BA tg
BA

ω= =) , consequently the point 1A , the vertex of the first 

triangle of Brocard belongs to the Cevians  BΩ . 
We note { } 1' 'J A K AA= ∩ , and evidently  from 1A K BC&  it results that 'JJ  is the 

median in the triangle 1JA K , therefore 1 ' 'A J J K= .  
We note with 2'A  the intersection of the Cevians 1AA  with BC ,  because 1 2 2'A K A A&

and 'AJ  is a median in the triangle 1AA K  it results that 'AA  is a median in triangle 2 2'AA A
therefore the points 2'A  and 2A  are isometric. 

Similarly it can be shown that  2 'BB  and 2 'CC  are the isometrics of the symmedians 

2BB  and 2CC . 
The second part of this proof: Indeed it is known that the isometric Cevians of certain 

concurrent Cevians are concurrent and from Lemma 5 along with the fact that the symmedians of 
a triangle are concurrent, it results the concurrency of the Cevians 1 1 1,  ,  AA BB CC  and therefore 
the triangle ABC and the first triangle of Brocard are homological. The homology’s center (the 
concurrency point) of these Cevians is marked in some works with "Ω with and it is called the 
third point of Brocard.  

From the previous proof, it results that "Ω is the isotomic conjugate of the symmedian 
center K . 

Remark 2 
The triangles ABC and A1B1C1 (first Brocard triangle) are triple-homological, since first 

time the Cevians AB1, BC1, CA1 are concurrent (in a Brocard point), second time the Cevians 
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AC1, BA1, CB1 are also concurrent (in the second Brocard point), and third time the Cevians 
AA1, BB1, CC1 are concurrent as well (in the third point of Brocard). 

Definition 3 
It is called the Tarry point of a triangle ABC , the concurrency point of the perpendiculars 

from ,  ,  A B C  on the sides 1 1 1 1 1 1,  ,  B C C A A B  of the Brocard’s first triangle. 

Remark 3 
The fact that the perpendiculars from the above definition are concurrent results from the 

theorem 1 and from the theorem that states that the relation of triangles’ orthology is symmetric. 
We continue to prove the concurrency using another approach that will introduce 

supplementary information about the Tarry’s point. 
We’ll use the following: 

Lemma 6: 
The first triangle Brocard of a triangle and the triangle itself are similar. 

Proof 
From 1KA BC&  and 'OA BC⊥  it results that  

( )1 90m KAO = °)   
(see Fig. 1), similarly  

( ) ( )1 1 90m KB O m KC O= = °) )   
and therefore the first triangle of Brocard is inscribed in the circle with OK  as diameter (this 
circle is called the Brocard circle). 

Because  
( )1 1 180m AOC B= ° −)

and 1 1 1, , ,A B C O  are concyclic, it results that 1 1 1A B C B=) ) , similarly  

( )' ' 180m B OC A= ° −) ,
it results that  

( )1 1 ( )m B OC m A=)   
but  

1 1 1 1 1B OC B AC≡) ) ,  
therefore  

1 1 1B AC A=) )   
and the triangle 1 1 1A B C  is similar wit the triangle ABC . 

Theorem 2 
The orthology center of the triangle ABC  and of the first triangle of Brocard is the 

Tarry’s point T  of the triangle ABC  , and T  belongs to the circumscribed circle of the triangle 
ABC .  

Proof 
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We mark with T  the intersection of the perpendicular raised from B  on 1 1AC  with the 
perpendicular raised from C  on 1 1A B  and let  

{ }1 1 1'B BT AC= ∩ , { }1 1 1 1'A C A B CT= ∩ . 
We have  

( ) ( )1 1 1 1 1' ' 180m B TC m C A B= ° −+ +

A 

    K 
       B1

           S         B1 C1’ 
      O 

C1  T 

B C 
       A’      B1’ 

    Fig 6 

But because of Lemma 6 1 1 1C A B A=) ) . 
It results that ( )1 1' ' 180m B TC A= ° −) , therefore 

( ) ( )' 180m BTC m BAC+ = °) )
Therefore T  belongs to the circumscribed circle of triangle ABC
If { }1 1 1'A B C AT= ∩  and if we note with 'T  the intersection of the perpendicular raised from A
on 1 1B C  with the perpendicular raised from B  on 1 1AC , we observe that  

( ) ( )1 1 1 1 1' ' 'm B T A m AC B=) )
therefore  

( ) ( )'m BT A m BCA+) )
and it results that 'T  belongs to the circumscribed triangle ABC . 
Therefore 'T T=  and the theorem is proved. 

Theorem 3 
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If through the vertexes , ,A B C  of a triangle are constructed the parallels to the sides 

1 1 1 1,B C C A  respectively 1 1A B  of the first triangle of Brocard of this triangle, then these lines are 
concurrent in a point S (the Steiner point of the triangle) 

Proof 
We note with S  the polar intersection constructed through A  to 1 1B C  with the polar 

constructed through B  to 1 1AC  (see Fig. 6).  
We have  

( ) ( )1 1 1180m ASB m AC B= ° −) )  (angles with parallel sides)
because   

( )1 1 1m AC B m C=) ) ,  
we have  

( ) 180m ASB m C= ° −) ) ,
therefore 1 1A SB C  are concyclic. 

Similarly, if we note with 'S  the intersection of the polar constructed through A  to 1 1B C
with the parallel constructed through C  to 1 1A B  we find that the points 1 1 1'A S B C  are concyclic. 

Because the parallels from A  to 1 1B C  contain the points , , 'A S S  and the points , ',S S A  
are on the circumscribed circle of the triangle, it results that 'S S=  and the theorem is proved. 

Remark 4 
 Because 1 1SA B C&  and 1 1B C AT⊥ , it results that  

( ) 90m SAT = °) ,
but S  and T  belong to the circumscribed circle to the triangle ABC , consequently the Steiner’s 
point and the Tarry point are diametric opposed. 

 Theorem 4 
In a triangle ABC  the Tarry point T , the center of the circumscribed circle O , the third 

point of Brocard "Ω  and Steiner’s point S  are collinear points  

Proof 
The P. Sondat’s theorem relative to the orthological triangles (see [4]) says that the points 

,  ,  "T O Ω  are collinear, therefore the points: ,  ,  ",  T O SΩ  are collinear. 

Open Questions 
1) Is it possible to have two triangles which are four times, five times, or even six times

orthological? But triangles which are four times, five times, or even six times 
homological? What about orthohomological?  What is the largest such rank? 
For two triangles A1B1C1 and A2B2C2, we can have (in the case of orthology, and 
similarity in the cases of homology and orthohomology) the following 6 possibilities: 

1) the perpendicular from A1 onto B2C2, the perpendicular from B1 onto C2A2, and
the perpendicular from C1 onto A2B2 concurrent; 
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2) the perpendicular from A1 onto B2C2, the perpendicular from B1 onto A2B2, and
the perpendicular from C1 onto C2A2 concurrent;

3) the perpendicular from B1 onto B2C2, the perpendicular from A1 onto C2A2, and
the perpendicular from C1 onto A2B2 concurrent;

4) the perpendicular from B1 onto B2C2, the perpendicular from A1 onto A2B2, and
the perpendicular from C1 onto C2A2 concurrent;

5) the perpendicular from C1 onto B2C2, the perpendicular from B1 onto C2A2, and
the perpendicular from A1 onto A2B2 concurrent;

6) the perpendicular from C1 onto B2C2, the perpendicular from B1 onto A2B2, and
the perpendicular from A1 onto C2A2 concurrent.

2) We generalize the orthological, homological, and orthohomological triangles to
respectively orthological, homological, and orthohomological polygons and polyhedrons.
Can we have double, triple, etc. orthological, homological, or orthohomological polygons
and polyhedrons?  What would be the largest rank for each case?

3) Let’s have two triangles in a plane. Is it possible by changing their positions in the plane
and to have these triangles be orthological, homological, orthohomological? What is the
largest rank they may have in each case?

4) Study the orthology, homology, orthohomology of triangles and poligons in a 3D space.

5) Let’s have two triangles, respectively two polygons, in a 3D space. Is it possible by
changing their positions in the 3D space to have these triangles, respectively polygons, be
orthological, homological, or orthohological?
Similar question for two polyhedrons?
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A Generalization of Certain Remarkable Points of the Triangle Geometry 

Prof. Claudiu Coandă – National College “Carol I”, Craiova, Romania 
Prof. Florentin Smarandache – University of New Mexico, Gallup, U.S.A. 
Prof. Ion Pătrașcu – National College “Fraţii Buzeşti”, Craiova, Romania 

In this article we prove a theorem that will generalize the concurrence theorems that are 
leading to the Franke’s point, Kariya’s point, and to other remarkable points from the triangle 
geometry. 

Theorem 1: 
Let ( ), ,P α β γ  and ', ', 'A B C  its projections on the sides ,  BC CA  respectively AB of the

triangle ABC . 
We consider the points ",  ",  "A B C  such that " 'PA k PA= , " 'PB k PB= , " 'PC k PC= , 

where *k R∈ . Also we suppose that ',  ',  'AA BB CC  are concurrent. Then the lines 
",  ",  "AA BB CC  are concurrent if and only if are satisfied simultaneously the following 

conditions: 

cos cos cos cos cos cos 0c A B a B C b C A
b a c b a c
β α γ β α γαβ βγ γα⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + − + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
2 2 2

2 2 2cos cos cos cos cos cos cos cos cos 0A B C B C A C A B
a c b b a c c b a
α γ β β α γ γ β α⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + − + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
Proof: 
We find that  

( ) ( )2 2 2 2 2 2
2 2' 0, ,  

2 2
A a b c a b c

a a
α αβ γ⎛ ⎞+ − + − + +⎜ ⎟

⎝ ⎠

( ) ( )2 2 2 2 2 2
2 2" '

2 2A B CPA kPA k r a b c r a b c r
a a
α αα⎡ ⎤= = − + + − + − +⎢ ⎥⎣ ⎦

( ) ( ) ( )" " " "A B CPA r r rα α β β γ γ= − + − + −  
We have: 

( )

( )

2 2 2
2

2 2 2
2

"

"
2

"
2

k
k a b c
a

k a b c
a

α α α
αβ β

αγ γ

⎧
⎪ − = −
⎪
⎪ − = + −⎨
⎪
⎪ − = − +⎪⎩

, 

Therefore: 
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( )

( )

( )

2 2 2
2

2 2 2
2

" 1

"
2

"
2

k
k a b c
a

k a b c
a

α α

αβ β

αγ γ

⎧
= −⎪

⎪
⎪ = + − +⎨
⎪
⎪ = − + +⎪⎩

 

Hence: 

( ) ( ) ( )2 2 2 2 2 2
2 2" 1 ,  ,  

2 2
k kA k a b c a b c
a a
α αα β γ⎛ ⎞− + − + − + +⎜ ⎟

⎝ ⎠
 

Similarly: 

( ) ( )2 2 2 2 2 2
2 2' ,  0,  

2 2
B a b c a b c

b b
β βα γ⎛ ⎞− − − + + − − − +⎜ ⎟

⎝ ⎠

( ) ( ) ( )2 2 2 2 2 2
2 2" ,  1- ,  

2 2
k kB a b c k a b c
b b
β βα β γ⎛ ⎞− − − + + − − − +⎜ ⎟

⎝ ⎠
 

( ) ( )2 2 2 2 2 2
2 2' ,  ,  0

2 2
C a b c a b c

c c
γ γα β⎛ ⎞− − + − + − − − +⎜ ⎟

⎝ ⎠
 

( ) ( ) ( )2 2 2 2 2 2
2 2" ,  ,  1-

2 2
k kC a b c a b c k
c c
γ γα β γ⎛ ⎞− − + − + − − − +⎜ ⎟

⎝ ⎠
 

Because ',  ',  'AA BB CC are concurrent, we have: 

( )
( )

( )
( )

( )
( )

2 2 2 2 2 2 2 2 2
2 2 2

2 2 2 2 2 2 2 2 2
2 2 2

2 2 2 1

2 2 2

a b c a b c a b c
a b c

a b c a b c a b c
a b c

α β γβ γ α

α β γγ α β

− − − + + − − − − + − − + − +
⋅ ⋅ =

− − + − + − − − + + − − − +
 

We note  

( )

( )

2 2 2
2

2 2 2
2

cos
2

cos
2

M a b c b C
a a

N a b c c B
a a

α α

α α

= + − = ⋅

= − + = ⋅

( )

( )

2 2 2
2

2 2 2
2

cos
2

cos
2

P a b c c A
b b

Q a b c a C
b b

β β

β β

= − + + = ⋅

= + − = ⋅

( )

( )

2 2 2
2

2 2 2
2

cos
2

cos
2

R a b c a B
c c

S a b c a A
c c

γ γ

γ γ

= − + = ⋅

= − + + = ⋅

The precedent relation becomes 

1M P R
N Q S

β γ α
γ α β

+ + +
⋅ ⋅ =

+ + +
 

The coefficients , , , , ,M N P Q R S  verify the following relations: 
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M N
P Q
R S

α
β
γ

+ =
+ =
+ =

2 2

2

2

2 2

2

2

2 2

2

2

M b a
Q a

b

P c b
S b

c

R a c
N c

a

α
α

ββ

β
β

γγ

γ
γ

αα

= ⋅ =

= ⋅ =

= ⋅ =

Therefore 1M P R
Q S N

⋅ ⋅ =

( )( )( )M P R P R M MP PR RM MPRβ γ α αβγ αβ βγ γα α β γ+ + + = + + + + + + +

( )( )( )N Q S N Q S NS NQ QS NQSγ α β αβγ αβ βγ γα α β γ+ + + = + + + + + + + . 
We deduct that: 

P R M MP PR RM N Q S NS NQ QS NQSαβ βγ γα α β γ αβ βγ γα α β γ+ + + + + = + + + + + +   (1) 
We apply the theorem: 

 Given the points ( , , ),  1,3i i i iQ a b c i =  in the plane of the triangle ABC , the lines 

1 2 3, ,AQ BQ CQ  are concurrent if and only if 31 2

1 2 3

1ab c
c a b
⋅ ⋅ = . 

For the lines ", ", "AA BB CC  we obtain  

1kM kP kR
kN kS kS

β α α
γ β β

+ + +
⋅ ⋅ =

+ + +
. 

It result that  
( ) ( )2k P R M k MP PR RMαβ βγ γα α β γ+ + + + + =  

( ) ( )2k N Q S k NS NQ QSαβ βγ γα α β γ= + + + + + (2) 
For relation (1) to imply relation (2) it is necessary that  

P R M N Q Sαβ βγ γα αβ βγ γα+ + = + +  
and 

NS NQ QS MP PR RMα β γ α β γ+ + = + +  
or 
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2 2 2

2 2 2

cos cos cos cos cos cos 0

cos cos cos cos cos cos cos cos cos 0

c A B a B C b C A
b a c b a c

A B C B B C C A B
a c b b c b c b a

β α γ β α γαβ βγ γα

α γ β β γ β γ β α

⎧ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + − + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪
⎨

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ − + − + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩
As an open problem, we need to determine the set of the points from the plane of the 

triangle ABC  that verify the precedent relations. 
We will show that the points I  and O  verify these relations, proving two theorems that 

lead to Kariya’s point and Franke’s point. 

Theorem 2 (Kariya -1904)  
 Let I  be the center of the circumscribe circle to triangle ABC  and ', ', 'A B C its 
projections on the sides ,  ,  BC CA AB . We consider the points ", ", "A B C  such that: 

*" ', " ', " ',  IA k IA IB k IB IC k IC k R= = = ∈ . 
Then ",  ",  "AA BB CC  are concurrent (the Kariya’s point) 

Proof: 

The barycentric coordinates of the point I  are , ,
2 2 2
a b cI
p p p

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 Evidently: 
( ) ( ) ( )cos cos cos cos cos cos 0abc A B abc B C abc C A− + − + − =  

and 
( ) ( ) ( )cos cos cos cos cos cos cos cos cos 0A B C B C A C A B− + − + − = . 

 In conclusion ",  ",  "AA BB CC  are concurrent. 

Theorem 3 (de Boutin - 1890) 
 Let O  be the center of the circumscribed circle to the triangle ABC  and ', ', 'A B C  its 
projections on the sides ,  ,  BC CA AB . Consider the points ",  ",  "A B C  such that 

*' ' ' ,   
" " "

OA OB OC k k R
OA OB OC

= = = ∈ . Then the lines ",  ",  "AA BB CC  are concurrent (The point of 

Franke – 1904). 
Proof: 

2 2 2

sin 2 , sin 2 , sin 2
2 2 2
R R RO A B C
S S S

⎛ ⎞
⎜ ⎟
⎝ ⎠

, P N= , because sin 2 cos sin 2 cos 0
sin sin
B A A B

B A
− = . 

Similarly we find that R Q=  and M S= . 
Also ,  ,  MP NS PR NQ RM QSα α β β γ γ= = = . It is also verified the second relation from the 
theorem hypothesis. Therefore the lines ",  ",  "AA BB CC are concurrent in a point called the 
Franke’s point. 

Remark 1: 
It is possible to prove that the Franke’s points belong to Euler’s line of the triangle ABC . 

Theorem 4: 
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 Let aI  be the center of the circumscribed circle to the triangle ABC  (tangent to the side 
BC ) and ',  ',  'A B C  its projections on the sites ,  ,  BC CA AB . We consider the points 

",  ",  "A B C such that *" ', " ', " ',  IA k IA IB k IB IC k IC k R= = = ∈ . Then the lines 
",  ",  "AA BB CC are concurrent. 

Proof 

( ) ( ) ( )
, ,

2 2 2a
a b cI

p a p a p a
⎛ ⎞−
⎜ ⎟⎜ ⎟− − −⎝ ⎠

; 

The first condition becomes: 
( ) ( ) ( )cos cos cos cos cos cos 0abc A B abc B C abc C A− + + − − − − = , and the 

second condition: 
( ) ( ) ( )cos cos cos cos cos cos cos cos cos 0A B C B C A C A B− + − − + + =  

Is also verified. 
From this theorem it results that the lines ",  ",  "AA BB CC are concurrent. 

Observation 1:  
Similarly, this theorem is proven for the case of bI and cI  as centers of the ex-inscribed 

circles. 
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 Generalization of a Remarkable Theorem 

Professor Ion Pătraşcu – National College Frații Buzeşti, Craiova 
Florentin Smarandache, Ph. D. –University of New Mexico, U.S.A. 

In [1] Professor Claudiu Coandă proved, using the barycentric coordinates, the following 
remarkable theorem: 

Theorem (C. Coandă) 
Let ABC be a triangle, where ( ) 90m A ¹ °  and 1 2 3Q ,Q ,Q  are three points on the 

circumscribed circle of the triangle ABC . We’ll note { }i iBQ AC B= , 1 3i ,= .  Then the lines 

1 1 2 2 3 3B C , B C , B C  are concurrent. 

We will generalize this theorem using some results from projective geometry relative to 
the pole and polar notions. 

Theorem (Generalization of C. Coandă theorem) 
Let ABC  be a triangle where ( ) 90m A ¹ °  and 1 2 nQ ,Q ,...,Q  points on its 

circumscribed circle ( )3n N , nÎ ³ , 1i ,n= . Then the lines 1 1 2 2 n nB C , B C ,...,B C   are concurrent 

in fixed point. 
To prove this theorem we’ll utilize the following lemmas: 

Lemma 1 
 If ABCD  is an inscribed quadrilateral in a circle and { }P AB CD=  , then the polar of 

the point P  in rapport with the circle is the line EF , where { }E AC BD=   and 

{ }F BC AD= 

Lemma 2  
The pole of a line is the intersection of the corresponding polar to any two points of the 

line. 
The pols of concurrent lines in rapport to a given circle are collinear points and the 

reciprocal is also true: the polar of collinear points, in rappoer with a given circle, are concurrent 
lines. 

Lemma 3  
If ABCD  is an inscribed quadrilateral in a circle and { }P AB CD=  , { }E AC BD= 

and { }F BC AD=  , then the polar of point E  in rapport to the circle is the line PF .  

The proof for the Lemmas 1 - 3 and other information regarding the notions of pole and 
polar in rapport to a circle can be found in [2] or [3]. 

Proof of the generalized theorem of C. Coandă  
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 Let 1 2 nQ ,Q ,...,Q  points on the circumscribed circle to the triangle ABC  (see the figure) 

We’ll consider the inscribed quadrilaterals nABCQ , 1i ,n=  and we’ll note

{ }i iT AQ BC=  . 

In accordance to Lemma 1 and Lemma 3, the lines i iB C  are the respectively polar  

C1

B3

C2

A   
Q3

C3              Q2

B2     

B1     Q1   

B C 

Qn

Bn   

T 

                Cn

(in rapport with the circumscribed circle to the triangle ABC ) to the points iT . 

 Because the points iT  are collinear (belonging to the line BC ), from Lemma 2 we’ll 

obtain that their polar, that is the lines i iB C , are concurrent in a point T . 

Remark 
The concurrency point T  is the harmonic conjugate in rapport with the circle of the 

symmedian center K  of the given triangle. 
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Pantazi’s Theorem Regarding the Bi-orthological Triangles 

Prof. Ion Pătraşcu, The National College “Fraţii Buzeşti”, Craiova, Romania 
Prof. Florentin Smarandache, University of New Mexico, U.S.A. 

In this article we’ll present an elementary proof of a theorem of Alexandru Pantazi (1896-
1948), Romanian mathematician, regarding the bi-orthological triangles. 

1. Orthological triangles

Definition 
 The triangle ABC  is orthologic in rapport to the triangle 1 1 1A B C  if the perpendiculars 
constructed from , ,A B C  respectively on 1 1 1 1,B C C A  and 1 1A B  are concurrent. The concurrency 
point is called the orthology center of the triangle ABC  in rapport to triangle 1 1 1A B C . 

      A1

         B 

     C 
     P 

   B1
        C1

   A 
Fig. 1 

In figure 1 the triangle ABC  is orthologic in rapport with 1 1 1A B C , and the orthology 
center is P . 

2. Examples
a) The triangle ABC  and its complementary triangle 1 1 1A B C  (formed by the sides’

middle) are orthological, the orthology center being the orthocenter H  of the
triangle ABC .
Indeed, because 1 1B C  is a middle line in the triangle ABC , the perpendicular 
from A  on 1 1B C  will be the height from A . Similarly the perpendicular from B
on 1 1C A  and the perpendicular from C  on 1 1A B  are heights in ABC , therefore 
concurrent in H  (see Fig. 2)



78 

A 

H 
     C1

B1

 B 
      A1

C 

Fig. 2 
b) Definition

Let D  a point in the plane of triangle ABC . We call the circum-pedal triangle (or 
meta-harmonic) of the point D  in rapport to the triangle ABC , the triangle 

1 1 1A B C  of whose vertexes are intersection points of the Cevianes , ,AD BD CD  
with the circumscribed circle of the triangle ABC . 

A 

     C1       B1

        O        I 

C 
     B 

      A1

Fig. 3 
The triangle circum-pedal 1 1 1A B C  of the center of the inscribed circle in the 
triangle ABC  and the triangle ABC are orthological (Fig. 3).  
The points 1 1 1, ,A B C  are the midpoints of the arcs ,BC CA  respectively AB . We 

have 1 1A B AC≡ , it results that 1 1A B AC= , therefore 1A  is on the perpendicular 
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bisector of BC , and therefore the perpendicular raised from 1A  on BC  passes 
through  O ,the center of the circumscribed circle to triangle ABC . Similarly the 
perpendiculars raised from 1 1,B C  on AC  respectively AB  pass through O . The 
orthology center of triangle 1 1 1A B C  in rapport to ABC  is O  

3. The characteristics of the orthology property
The following Lemma gives us a necessary and sufficient condition for the triangle ABC
to be orthologic in rapport to the triangle 1 1 1A B C . 
Lemma  
The triangle ABC  is orthologic in rapport with the triangle 1 1 1A B C  if and only if: 

1 1 1 1 1 1 0MA B C MB C A MC A B⋅ + ⋅ + ⋅ =  (1) 
for  any point M  from plane. 

Proof 
In a first stage we prove that the relation from the left side, which we’ll note ( )E M  is 

independent of the point M . 
 Let N M≠  and 1 1 1 1 1 1( )E N NA B C NB C A NC A B= ⋅ + ⋅ + ⋅

Compute ( )( ) ( )E M E N MN BC CA AB− = ⋅ + + . 

Because 0BC CA AB+ + =  we have that ( ) ( ) 0 0E M E N MN− = ⋅ = . 
If the triangle ABC  is orthologic in rapport to 1 1 1A B C , we consider M  their orthologic 

center, it is obvious that (1) is verified. If (1) is verified for a one point, we proved that it is 
verified for any other point from plane. 

Reciprocally, if (1) is verified for any point M , we consider the point M  as being the 
intersection of the perpendicular constructed from A  on 1 1B C  with the perpendicular constructed 

from B  on 1 1C A . Then (1) is reduced to 1 1 0MC A B⋅ = , which shows that the perpendicular 

constructed from C  on 1 1A B  passes through M . Consequently, the triangle ABC  is orthologic 
in rapport to the triangle 1 1 1A B C . 

4. The symmetry of the orthology relation of triangles
It is natural to question ourselves that given the triangles ABC  and 1 1 1A B C  such that 

ABC  is orthologic in rapport to 1 1 1A B C , what are the conditions in which the triangle 1 1 1A B C  is 
orthologic in rapport to the triangle ABC . 

The answer is given by the following 

Theorem (The relation of orthology of triangles is symmetric) 
If the triangle ABC  is othologic in rapport with the triangle 1 1 1A B C  then the triangle 

1 1 1A B C  is also orthologic in rapport with the triangle ABC . 
Proof 
We’ll use the lemma. If the triangle ABC  is orthologic in rapport with 1 1 1A B C  then 
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1 1 1 1 1 1 0MA B C MB C A MC A B⋅ + ⋅ + ⋅ =  
for any point M . We consider M A= , then we have

1 1 1 1 1 1 0AA B C AB C A AC A B⋅ + ⋅ + ⋅ = . 
This expression is equivalent with  

1 1 1 1 1 1 0A A BC A B CA AC AB⋅ + ⋅ + ⋅ =  
That is with (1) in which 1M A= , which  shows that the triangle 1 1 1A B C  is orthologic in rapport 
to triangle ABC . 

Remarks 
1. We say that the triangles ABC and 1 1 1A B C  are orthological if one of the triangle is 

orthologic in rapport to the other. 
2. The orthology centers of two triangles are, in general, distinct points.
3. The second orthology center of the triangles from a) is the center of the

circumscribed circle of triangle ABC . 
4. The orthology relation of triangles is reflexive. Indeed, if we consider a triangle,

we can say that it is orthologic in rapport with itself because the perpendiculars constructed from  
, ,A B C  respectively on , ,BC CA AB  are its heights and these are concurrent in the orthocenter 

H . 

5. Bi-orthologic  triangles

Definition  
If the triangle ABC  is simultaneously orthologic to triangle 1 1 1A B C  and to triangle

1 1 1B C A , we say that the triangles ABC  and 1 1 1A B C  are bi-orthologic. 

Pantazi’s Theorem 
If a triangle ABC  is simultaneously orthologic to triangle 1 1 1A B C  and 1 1 1B C A , then the 

triangle ABC  is orthologic also with the triangle 1 1 1C A B . 
Proof 
Let triangle ABC  simultaneously orthologic  to 1 1 1A B C  and to 1 1 1B C A , using lemma, it 

results that  

1 1 1 1 1 1 0MA B C MB C A MC A B⋅ + ⋅ + ⋅ =  (2) 

1 1 1 1 1 1 0MA C A MB A B MC B C⋅ + ⋅ + ⋅ =  (3) 
For any M from plane. 

Adding the relations (2) and (3) side by side, we have: 

( ) ( ) ( )1 1 1 1 1 1 1 1 1 1 1 1 0MA B C C A MB C A A B MC A B B C⋅ + + ⋅ + + ⋅ + =

Because  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1,  ,  B C C A B A C A A B C B A B B C AC+ = + = + =
(Chasles relation), we have: 

1 1 1 1 1 1 0MA B A MB C B MC AC⋅ + ⋅ + ⋅ =  



81 

for any M from plane, which shows that the triangle ABC  is orthologic with the triangle 1 1 1C A B
and the Pantazi’s theorem is proved. 

Remark 
The Pantazi’s theorem can be formulated also as follows: If two triangles are bi-

orthologic then these are tri-orthologic. 

Open Questions 
1) Is it possible to extend Pantazi’s Theorem (in 2D-space) in the sense that if two

triangles A1B1C1 and A2B2C2 are bi-orthological, then they are also k-orthological,
where k = 4, 5, or 6?

2) Is it true a similar theorem as Pantazi’s for two bi-homological triangles and bi-
orthohomological triangles (in 2D-space)? We mean, if two triangles A1B1C1 and
A2B2C2 are bi-homological (respectively bi-orthohomological), then they are also k-
homological (respectively k-orthohomological), where k = 4, 5, or 6?

3) How the Pantazi Theorem behaves if the two bi-orthological non-coplanar triangles
A1B1C1 and A2B2C2 (if any) are in the 3D-space?

4) Is it true a similar theorem as Pantazi’s for two bi-homological (respectively bi-
orthohomological) non-coplanar triangles A1B1C1 and A2B2C2 (if any) in the 3D-
space?

5) Similar questions as above for bi-orthological / bi-homological / bi-orthohomological
polygons (if any) in 2D-space, and respectively in 3D-space.

6) Similar questions for bi-orthological / bi-homological / bi-orthohomological
polyhedrons (if any) in 3D-space.
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A New Proof and an Application of Dergiades’ Theorem 

Ion Pătraşcu, Professor, The Frații Buzeşti College, Craiova, Romania 
Florentin Smarandache, Professor, The University of New Mexico, U.S.A. 

In this article we’ll present a new proof of Dergiades’ Theorem, and we’ll use this theorem 
to prove that the orthological triangles with the same orthological center are homological triangles. 

Theorem 1 (Dergiades) 
Let ( ) ( ) ( )1 1 1 2 2 2 3 3 3C O ,R , C O ,R , C O ,R  three circles which pass through the vertexes B

and C , C  and A , A  and B  respectively of a given triangle ABC . We’ll note D,E,F  respectively 

the second point of intersection between the circles ( )1C  and ( )3C , ( )3C  and ( )2C , ( )1C  and

( )2C . The perpendiculars constructed in the points D,E,F  on AD, BE  respectively CF  intersect 

the sides BC, CA, AB  in the points X , Y , Z . Then the points X , Y , Z  are collinear 

Proof 
To prove the collinearity of the points X , Y , Z , we will use the reciprocal of the Menelaus 

Theorem (see Fig. 1). 
We have  







Δ

Δ

XB Aria XDB DB sin XDB DB cos ADB
XC Aria XDC DC sin XDC DC cos ADC

× ×
= = =

× ×
Similarly we find 




YC EC cos BEC
YA EA cos BEA

×
=

×



ZA FA cosCFA
ZB FB cosCFB

×
=

×
 

From the inscribed quadrilaterals ADEB;BEFC; ADFC , we can observe that  
ADB BEA; BEC CFB; CFA ADCº º º     

Consequently, 
XB YC ZA DB EC FA
XC YA ZB DC EA FB

× × = × × (1) 

On the other side 
32DB R sin BAD= ; 

32EA R sin ABE= ; 
22DC R sinCAD= ; 


22FA R sin ACF= ; 

12FB R sin BCF= ; 
12EC R sinCBE= . 

Using these relations in (1), we obtain 









XB YC ZA sin BAD sinCBE sin ACF
XC YA ZB sinCAD sin ABE sin BCF

× × = × × (2) 

According to one of Carnot’s theorem, the common strings of the circles 

( ) ( ) ( )1 2 3C , C , C  are concurrent, that is { }AD BE CF P=   (the point P  is the radical center

of the circles ( ) ( ) ( )1 2 3C , C , C ). 
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Fig 1. 
 In triangle ABC , the cevians AD,BE,CF  being concurrent, we can use for them the 
trigonometrically form of the Ceva’s theorem as follows 








 1

sin BAD sinCBE sin ACF
sinCAD sin ABE sin BCF

× × = (3) 

The relations (2) and (3) lead to  

1
XB YC ZA
XC YA ZB

× × =

Relation, which in conformity with Menelaus theorem proves the collinearity of the points 
X , Y , Z . 



84 

Definition 1 
 Two triangles ABC  and A’B’C’ are called orthological if the perpendiculars constructed 
from A on B’C’, from B  on C’A’ and from C on A’B’ are concurrent. The concurrency point of 
these perpendiculars is called the orthological center of the triangle ABC  in rapport to triangle 
A’B’C’. 

Theorem 2 (The theorem of orthological triangle of J. Steiner) 
If the triangle ABC  is orthological with the triangle A’B’C’, then the triangle A’B’C’ is 

also orthological in rapport to triangle ABC . 
For the proof of this theorem we recommend [1]. 

Observation 
A given triangle and its contact triangle are orthological triangles with the same 

orthological center. Their common orthological center is the center of the inscribed circle of the 
given triangle. 

Definition 3 
 Two triangles ABC  and A’B’C’ are called homological if and only if the lines 
AA', BB', CC'  are concurrent. The congruency point is called the homological center of the given 
triangles. 

Theorem 3 (Desargues – 1636) 
If ABC  and A’B’C’ are two homological triangles, then the lines 

( ) ( ) ( )BC, B'C' ; CA, C'A' ; AB, A'B'  are concurrent respectively in the points X, Y, Z , and

these points are collinear. The line that contains the points X, Y, Z  is called the homological axis 
of the triangles ABC  and A'B'C' . 

For the proof of Desargues theorem see [3]. 

Theorem 4 
Two orthological triangles that have a common orthological center are homological 

triangles.  

Lemma 1 
 Let ABC  and A'B'C'  two orthological triangles. The orthogonal projections of the 
vertexes B  and C  on the sides A'C'  respectively A'B'  are concyclic. 

Proof 
We note with E, F  the orthogonal projections f the vertexes B  and C  on A'C'  respectively 

A'B'  (see Fig. 2). Also, we’ll note O  the common orthological center of the orthological triangles 

ABC  and A'B'C'  and { }B" = EO AC , { }C" = FO AB . In the triangle A'B"C" , O  being the

intersection of the heights constructed from B", C" , is the orthocenter of this triangle, 
consequently, it results that A'O B" C"^ . On the other side A'O BC^ ; we obtain, therefore that 
B" C" BC . Taking into consideration that EF  and B" C"  are antiparallel in rapport to A'B' and 
A'C' , we obtain that EF  is antiparallel with BC , fact that shows that the quadrilateral BCFE  is 
inscribable.  
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Fig. 2 

Observation 
If we denote with D  the projection of A  on B'C' , similarly, it will result that the points 

A,D,F ,C  respectively A,D,E,B  are concyclic. 

Proof of Theorem 4 
 The quadrilaterals BCFE, CFDA, ADEB  being inscribable, it result that their 
circumscribed circles satisfy the Dergiades theorem (Fig. 2). Applying this theorem it results that 

the pairs of lines ( ) ( ) ( )BC, B'C' ; CA, C'A' ; AB, A'B'  intersect in the collinear points X, Y, Z ,

respectively. Using the reciprocal theorem of Desargues, it result that the lines AA', BB', CC'  are 
concurrent and consequently the triangles ABC  and A'B'C'  are homological. 

Observations 
1 Triangle 1 2 3O O O  formed by the centers of the circumscribed circles to 

quadrilaterals BCFE, CFDA, ADEB  and the triangle ABC  are orthological 
triangles. 
The orthological centers are the points P  - the radical center of the circles 

( ) ( ) ( )1 2 3O , O , O  and O  - the center of the circumscribed circle of the triangle 

ABC . 
2 The triangles 1 2 3O O O  and DEF  (formed by the projections of the vertexes A, B, C

on the sides of the triangle A'B'C' ) are orthological. The orthological centers are 
the center of the circumscribed circle to triangle DEF  and P  the radical center of 

the circles ( ) ( ) ( )1 2 3O , O , O .  
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Indeed, the perpendiculars constructed from 1 2 3O ,O ,O  on EF,FD,DA  respectively 

are the mediators of these segments and, therefore, are concurrent in the center of 
the circumscribed circle to triangle DEF , and the perpendiculars constructed from 
D,E,F  on the sides of the triangle 1 2 3O O O  are the common strings AD,BE,CF , 

which, we observed above, are concurrent in the radical center P  of the circles with 
the centers in 1 2 3O ,O ,O . 
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Mixt-Linear Circles Adjointly Ex-Inscribed Associated to a Triangle 

Ion Pătraşcu, Professor, The Frații Buzeşti College, Craiova, Romania 
Florentin Smarandache, Professor, The University of New Mexico, U.S.A. 

Abstract 
In [1] we introduced the mixt-linear circles adjointly inscribed associated to a triangle, 

with emphasizes on some of their properties. Also, we’ve mentioned about mixt-linear circles 
adjointly ex-inscribed associated to a triangle. 

In this article we’ll show several basic properties of the mixt-linear circles adjointly ex-
inscribed associate to a triangle. 

Definition 1 
We define a mixt-linear circle adjointly ex-inscribed associated to a triangle, the circle 

tangent exterior to the circle circumscribed to a triangle in one of the vertexes of the triangle, and 
tangent to the opposite side of the vertex of that triangle. 

M 

   N A” 

LA 

A  
C 

B  

A’ 

D’ 

Fig. 1 

Observation  
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In Fig.1 we constructed the mixt-linear circle adjointly ex-inscribed to triangle ABC , 
which is tangent in A to the circumscribed circle of triangle ABC , and tangent to the side BC . 
Will call this the A-mixt-linear circle adjointly ex-inscribed to triangle ABC . We note AL  the 

center of this circle. 

Remark 
In general, for a triangle exists three mixt-linear circles adjointly ex-inscribed. If the 

triangle ABC  is isosceles with the base BC , then we cannot talk about mixt-linear circles 
adjointly ex-inscribed associated to the isosceles triangle. 

Proposition 1 
The tangency point with the side BC of the A-mixt-linear circle adjointly ex-inscribed 

associated to the triangle is the leg of the of the external bisectrix of the angle BAC  
Proof 

 Let D'  the contact point with the side BC  of the A-mixt-linear circle adjointly ex-
inscribed and let A'  the intersection of the tangent in the point A  to the circumscribed circle to 
the triangle ABC  with BC  (see Fig. 1) 

We have  

( ) ( ) ( )1

2
m AA' B m B m Cé ù= -ê úë û ,

(we supposed that ( ) ( )m B m C> ). The tangents AA', A' D' to the A-mixt-linear circle adjointly

ex-inscribed are equal, therefore 

( )  ( )1

4
m D' AA' m B C= - .

 Because 

( ) ( )1

2
m A' AB m C=

we obtain that 

( ) ( ) ( )1

2
m D' AB m B m Cé ù= +ê úë û

This relation shows that D'  is the leg of the external bisectrix of the angle BAC . 

Proposition 2 
 The A-mixt-linear circle adjointly ex-inscribed to triangle ABC  intersects the sides 
AB, AC , respectively,  in two points of a cord which is parallel to BC . 

Proof 
 We’ll note with M , N the intersection points with AB  respectively AC  of the A-mixt-
linear circle adjointly ex-inscribed. We have BCA BAA'º   and A' AB A" AMº   (see 
Fig.1). 
 Because A" AM ANM=  , we obtain ANM ACBº   which implies that MN is 
parallel to BC . 

Proposition 3 
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 The radius AR  of the A-mixt-linear circle adjointly ex-inscribed to triangle ABC is given 

by the following formula  

( )( )
( )2

4
A

p b p c R
R

b c
- -

=
-

Proof 
The sinus theorem in the triangle AMN implies  

2A
MNR
sin A

=  

We observe that the triangles AMN  and ABC  are similar; it results that 
MN AM

a c
= . 

Considering the power of the point B in rapport to the A-mixt-linear circle adjointly ex-
inscribed of triangle ABC , we obtain  

2BA BM BD'× = . 

From the theorem of the external bisectrix we have 
D' B c
D' C b

=  from which we retain

acD' B
b c

=
-

. We obtain then 
( )

2

2

a cBM
b c

=
-

, therefore 

( )( )
( )

( )( )
( )2 2

4c a b c a b c c p b p c
AM

b c b c
- + + - - -

= =
- -

and  

( )( )
( )2

4a p b p c
MN

b c
- -

=
-

From the sinus theorem applied in the triangle ABC  results that 
2

a R
sin A

=  and we 

obtain that  

( )( )
( )2

4
A

p b p c R
R

b c
- -

=
-

. 

Remark 
If we note AP L A' AD'Î   and aAD' l '=  (the length of the exterior bisectrix constructed 

from A ) in triangle AL PA' , we find  

2
2

a
A

l 'R B Csin
=

-
. 

We’ll remind here several results needed for the remaining of this presentation. 

Definition 2 
We define an adjointly circle of triangle ABC  a circle which contains two vertexes of the 

triangle and in one of these vertexes is tangent to the respective side. 
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Theorem 1 

The adjointly circles AB,BC,C A  have a common point Ω ; similarly, the circles 

B A,CB,AC have a common point Ω' . 
 The points Ω  and Ω'  are called the points of Brocard: Ω is the direct point of Brocard 
and Ω'  is called the retrograde point.   
 The points Ω  and Ω'  are conjugate isogonal 
   Ω Ω ΩAB BC CA ω= = =     

Ω Ω Ω' AC ' CB ' BA ω= = =    
(see Fig. 2).  
 The angle ω is called the Brocard angle. More information can be found in [3]. 

A 

Ω

B C  

Fig. 2 

 Proposition 4 
 In triangle ABC in which D'  is the leg of the external bisectrix of the angle BAC , the 
A-mixt-linear circle adjointly ex-inscribed to triangle ABC is an adjointly circle of triangles 
AD' B,AD' C . 

Proposition 5 
In a triangle ABC  in which D'  is the leg of the external bisectrix of the angle BAC , the 

direct points of Brocard corresponding to triangles AD' B, AD' C , A, D’ are concyclic.  
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The following theorems show remarkable properties of the mixt-linear circles adjointly 
ex-inscribed associated to a triangle ABC . 

Theorem 2 
The triangle A B CL L L  determined by the centers of the mixt-linear circles adjointly ex-

inscribed to triangle ABC  and the tangential triangle a b cT T T corresponding to ABC  are 

orthological. Their orthological centers are O the center of the circumscribed circle to triangle 
ABC  and the radical center of the mixt-linear circles adjointly ex-inscribed associated to triangle 
ABC .  

Proof 
 The perpendiculars constructed from A B CL ,L ,L  on the corresponding sides of the 

tangential triangle contain the radiuses OA, OB, OC  respectively of the circumscribed circle.  
 Consequently, O  is the orthological center of triangles A B CL L L  and a b cT T T .  

In accordance to the theorem of orthological triangles and the perpendiculars constructed 
from a b cT ,T ,T respectively on the sides of the triangle A B CL L L  are concurrent.  

 The point aT  belongs to the radical axis of the circumscribed circles to triangle ABC  and 

the C -mixt-linear circle adjointly ex-inscribed to triangle ABC  (belongs to the common tangent 
constructed in C  to these circles). 

On the other side aT  belongs to the radical axis of the B and C -mixt-linear circle 

adjointly ex-inscribed, which means that the perpendicular constructed from aT  on the B CL L
centers line passes through the radical center of the mixt-linear circle adjointly ex-inscribed 
associated to the triangle; which is the second orthological center of the considered triangles. 

Proposition 6 
 The triangle a b cL L L  (determined by the centers of the mixt-linear circles adjointly 

inscribed associated to the triangle ABC ) and the triangle A B CL L L  (determined by the centers of 

the mixt-linear circles adjointly ex-inscribed associated to the triangle ABC ) are homological. 
The homological center is the point O , which is the center of the circumscribed circle of triangle 
ABC . 

The proof results from the fact that the points A aL ,A,L ,O  are collinear. Also, B bL ,B,L ,O
and C cL ,C,L ,O  are collinear. 

Definition 3 
Given three circles of different centers, we define their Apollonius circle as each of the 

circles simultaneous tangent to three given circles. 

Observation 
The circumscribed circle to the triangle ABC  is the Apollonius circle for the mixt-linear 

circles adjointly ex-inscribed associated to ABC . 
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Theorem 3 
The Apollonius circle which has in its interior the mixt-linear circles adjointly ex-

inscribed to triangle ABC  is tangent with them in the points 1 2 3T ,T ,T  respectively. The lines 

1 2 3AT ,BT ,CT  are concurrent. 

Proof 
We’ll use the D’Alembert theorem: Three circles non-congruent whose centers are not 

collinear have their six homothetic centers placed on four lines, three on each line. 
The vertex A  is the homothety inverse center of the circumscribed circle ( )O  and of the

A -mixt-linear circle adjointly ex-inscribed ( )AL ; 1T  is the direct homothety center of the

Apollonius circle which is tangent to the mixt-linear circles adjointly ex-inscribed and of circle 

( )AL , and J  is the center of the direct homothety of the Apollonius circle and of the 

circumscribed circle ( )O .

According to D’Alembert theorem, it results that the points 1A,J ,T  are collinear. 

Similarly is shown that the points  2B,J ,T  and 3C,J ,T  are collinear.  

 Consequently, J  is the concurrency point of the lines 1 2 3AT ,BT ,CT . 

 [1] I. Pătraşcu, Cercuri mixtliniare adjunct inscrise associate unui triunghi, Revista  
Recreatii Matematice , No. 2/2013. 

[2] R. A. Johnson, Advanced Euclidean Geometry, Dover Publications Inc., New  
York, 2007. 

[3] F. Smarandache, I. Pătraşcu, The Geometry of Homological Triangles, The 
Education Publisher Inc., Columbus, Ohio, U.S.A., 2012. 



A PROPERTY OF THE CIRCUMSCRIBED OCTAGON 

Prof. Ion Pătraşcu – “Fraţii Buzeşti” College, Craiova, Romania 
Prof. Florentin Smarandache – University of New Mexico, USA 

Abstract 
In this article we’ll obtain through the duality method a property in relation to the contact 

cords of the opposite sides of a circumscribable octagon.  

In an inscribed hexagon the following theorem proved by Blaise Pascal in 1640 is true. 

Theorem 1 (Blaise Pascal) 
The opposite sides of a hexagon inscribed in a circle intersect in collinear points. 
To prove the Pascal theorem one may use [1]. 
In [2] there is a discussion that the Pascal’s theorem will be also true if two or more pairs 

of vertexes of the hexagon coincide. In this case, for example the side AB  for 𝐵 → 𝐴 must be 
substituted with the tangent in A . For example we suppose that two pairs of vertexes coincide. 
The hexagon ' 'AA BCC D  for A’→ 𝐴, C’→ 𝐶 becomes the inscribed quadrilateral ABCD . This 
quadrilateral viewed as a degenerated hexagon of sides 𝐴𝐵, 𝐵𝐶, 𝐶𝐶ᇱ → the tangent in 𝐶, 𝐶ᇱ𝐷 →𝐶𝐷,𝐷ᇱ𝐴 → 𝐷𝐴, 𝐴𝐴ᇱ → the tangent in A  and the Pascal theorem leads to: 

Theorem 2 
In an inscribed quadrilateral the opposite sides and the tangents in the opposite vertexes 

intersect in four collinear points. 

Remark 1 
In figure 1 is presented the corresponding configuration of theorem 2. 

        A 

  D 

 B 
C 

L 

      F 
    K 

    E 
Fig. 1 
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For the tangents constructed in B  and D  the property is also true if we consider the 
ABCD  as a degenerated hexagon ' 'ABB CDD A . 

Theorem 3 
In an inscribed octagon the four cords determined by the contact points with the circle of 

the opposite sides are concurrent. 

Proof 
We’ll transform through reciprocal polar the configuration from figure 1. To point E will 

correspond, through this transformation the line determined by the tangent points with the circle 
of the tangents constructed from E  (its polar). To point K  corresponds the side BD . 

   A 

         U 
          H 

M 
  T 

     B 
   G 

  W    S 
        N 

C    F 

      P       R 
 D 

Q         E Fig.2 

To point F  corresponds the line determined by the contact points of the tangents 
constructed from F to the circle. To point L  corresponds its polar AC . To point A  
corresponds, by duality, the tangent AL , also to points ,  ,  B C D  correspond the tangents

,  ,  BK CL DK . These four tangents together with the tangents constructed from E  and F  (also 
four) will contain the sides of an octagon circumscribed to the given circle.  

In this octagon ( )AC  and ( )BD  will connect the contact points of two pairs of opposite 
sides with the circle; the other two lines determined by the contact points of the opposite sides of 
the octagon with the circle will be the polar of the points E  and F . Because the polar 
transformation through reciprocal polar leads to the fact that to collinear points correspond 
concurrent lines; the points’ polar 𝐸,𝐾, 𝐹, 𝐿 are concurrent; these lines are the cords to which the 
theorem refers to. 

Remark 2 
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In figure 2 we represented an octagon circumscribed ABCDEFGH . As it can be seen the 
cords ,  ,  ,  MR NS PT QU  are concurrent in the point W . 
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From Newton’s Theorem to a Theorem of the Inscribable Octagon 

Prof. Ion Pătraşcu, The Fraţii Buzeşti National College, Craiova, Romania 
Prof. Florentin Smarandache, The University of New Mexico, U.S.A. 

In this article we’ll prove the Newton’s theorem relative to the circumscribed 
quadrilateral, we’ll transform it through duality, and we obtain another theorem which is true for 
an inscribable quadrilateral, which transformed through duality, we’ll obtain a theorem which is 
true for a circumscribable octagon. 

Theorem 1 (I. Newton) 
In a circumscribable quadrilateral its diagonals and the cords determined by the contact points of 
the opposite sides of the quadrilateral with the circumscribed circle are four concurrent lines. 

Proof 

N 

O3

P S 

O2

V B             B1

C  
A1

I 
A Q 

C1

D1

D 

O4

M 
O1 U 

R 

Fig. 1 
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We constructed the circles 1 2 3 4O , O , O , O  tangent to the extensions of the quadrilateral ABCD
such that  

1 1 1 1 1 1 1 1A M A N B P B Q C R C S DU DV= = = = = = =
See Fig. 1. 
 From 1 1 1 1A M A N C R C S= = =  it results that the points 1A  and 1C  have equal powers in 

relation to the circles 1O  and 3O , therefore 1 1A C  is the radical axis of these circles. Similarly 

1 1B D  is the radical axis of the circles 2O  and 4O . 

 Let 1 1 1 1I AC B DÎ  . The point I has equal powers in rapport to circles 1 2 3 4O , O , O , O . 

Because 1BA =BB1 from 1 1B P A N=  it results that BP BN= , similarly, from 1 1DD DC=  and 

1 1DV C S=  it results that DV DS= , therefore B  and D  have equal powers in rapport with the 

circles 3O  and 4O , which shows that BD  is the radical axis of these circles. Consequently,

I BDÎ , similarly it results that I ACÎ , and the proof is complete. 

Theorem 2. 
In an inscribed quadrilateral in which the opposite sides intersect, the intersection points 

of the tangents constructed to the circumscribed circle with the opposite vertexes and the points 
of intersection of the opposite sides are collinear. 

Proof 
We’ll prove this theorem applying the configuration from the Newton theorem, o 

transformation through duality in rapport with the circle inscribed in the quadrilateral. Through 
this transformation to the lines AB, BC, CD, DA  will correspond, respectively, the points 

1 1 1 1A , B , C , D  their pols. Also to the lines 1 1 1 1 1 1 1 1A B , B C  ,C D  ,D A  correspond, respectively, the 

points B, C, D, A . We note X AB CDÎ   and Y AD BCÎ  , these points correspond, through 
the considered duality, to the lines 1 1A C  respectively 1 1B D . If 1 1 1 1I AC B DÎ   then to the point I
corresponds line XY , its polar.  
 To line BD  corresponds the point 1 1 1 1Z A D C BÎ  . 

 To line AC  corresponds the point 1 1 1 1T A D C BÎ  . 

To point { }I BD AC=   corresponds its polar ZT .

We noticed that to the point I corresponds the line XY , consequently the points 
X ,Y ,Z ,T are collinear. 

We obtained that the quadrilateral 1 1 1 1A B C D inscribed in a circle has the property that if 

{ }1 1 1 1A D C B Z= , { }1 1 1 1A D C B T= , the tangent in 1A and the tangent in 1C  intersect in the 

point X ; the tangent in 1B  and the tangent in 1D  intersect in Y , then X , Y , Z , T  are collinear 

(see Fig. 2). 

Theorem 3. 
In a circumscribed octagon, the four cords, determined by the octagon’s contact points 

with the circle of the octagon opposite sides, are concurrent.     
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Proof 
We’ll transform through reciprocal polar the configuration in figure 3. 

 To point Z  corresponds through this transformation the line determined by the tangency 
points with the circle of the tangents constructed from  
Z  - its polar; to the point Y it corresponds the line determined by the contact points of the 
tangents constructed from T at the circle; to the point X  corresponds its polar 1 1A C . 

 To point 1A  corresponds through duality the tangent 1A X , also to the points 1 1 1B , C , D
correspond the tangents 1 1 1B Y , C T , D Z . 

A1

D1

B1

C1

              Z 
Y T 

Fig. 2 
These four tangents together with the tangents constructed from X  and Y  (also four) 

will contain the sides of an octagon circumscribed to the given circle.  
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Fig .3 

In this octagon 1 1A C  and 1 1B D  will connect the contact points of two pairs of sides 

opposed to the circle, the other two cords determined by the contact points of the opposite sides 
of the octagon with the circle will be the polar of the points Z  and T . 

Because the transformation through reciprocal polar will make that to collinear points 
will correspond concurrent lines, these lines are the cords from our initial statement. 

Observation 
In figure 3 we represented an octagon ABCDEFGH circumscribed to a circle. 
As it can be observed the cords MR, NS , PT , QU  are concurrent in a point notated W

References  

[1] Coxeter H. S. M, Greitzer S. L. –Geometry revisited – Toronto – New York, 1957 
(translation in Russian, 1978) 

[2] Smarandache F., Pătraşcu I. – The Geometry of Homological Triangles –  The  
Education Publisher, Inc. Columbus, Ohio, U.S.A. -2012. 



TRIPLETS OF TRI-HOMOLOGICAL TRIANGLES 

Prof. Ion Pătraşcu, The “Fraţii Buzeşti” National College, Craiova, Romania 
Prof. Florentin Smarandache, The University of New Mexico, USA 

In this article will prove some theorems in relation to the triplets of homological triangles 
two by two. These theorems will be used later to build triplets of triangles two by two tri-
homological.  
I  Theorems on the triplets of homological triangles 

Theorem 1 
Two triangles are homological two by two and have a common homological center (their 

homological centers coincide) then their homological axes are concurrent. 

Proof 
Let’s consider the homological triangles 1 1 1 2 2 2 3 3 3,  ,  A B C A B C A B C whose common 

homological center is O  (see figure 1.) 

   P 

    O        R 

          M     K 
        Q   

             A1            C1
B1 L 

          A2        C2
         C3  

B2   A3

B3

Fig. 1 

We consider the triangle formed by the intersections of the lines: 1 1 2 2 3 3,  ,  A B A B A B  and 
we note it PQR  and the triangle formed by the intersection of the lines 1 1 2 2 3 3,  ,  B C B C B C  and 
we’ll note it KLM . 
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 We observe that 𝑃𝑅 ∩ 𝐾𝑀 = {𝐵ଵ}, 𝑅𝑄 ∩ 𝑀𝐿 = {𝐵ଶ}, PQ∩ KL={𝐵ଷ} and because 
1 2 3,  ,  B B B  are collinear it results, according to the Desargues reciprocal theorem that the 

triangles PQR  and KLM are homological, therefore ,  ,  PK RM QL  are concurrent lines. 
The line PK  is the homological axes of triangles 1 1 1A B C  and 2 2 2A B C , the line RM  is the 

homological axis for triangles 1 1 1A B C  and 3 3 3A B C , and the line QL  is the homological axis for 
triangles 2 2 2A B C  and 3 3 3A B C , which proves the theorem. 

Remark 1 
Another proof of this theorem can be done using the spatial vision; if we imagine figure 1 

as being the correspondent of a spatial figure, we notice that the planes ( )1 1 1A B C  and ( )2 2 2A B C  
have in common the line𝑃𝐾, similarly the planes  ( )1 1 1A B C  and ( )3 3 3A B C  have in common the 
line  QL . If {𝑂ᇱ} = 𝑃𝐾 ∩LQ  then 'O  will be in the plane ( )2 2 2A B C and in the plane ( )3 3 3A B C , 
but these planes intersect by the line RM , therefore 'O  belongs to this line as well. The lines 

,  ,  PK RM QL  are the homological axes of the given triangles and therefore these are concurrent 
in 'O . 

Theorem 2 
If three triangles are homological two by two and have the same homological axis (their 

homological axes coincide) then their homological axes are collinear. 

Proof 
O1

         O3

        O2

          B3      A3
     A2         P 

   B2 C3

C2
           A1

         M 
      B1 C1

  N 

Fig. 2 
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Let’s consider the homological triangles two by two 1 1 1 2 2 2 3 3 3,  ,  A B C A B C A B C . We note 
, ,M N P  their common homological axis (see figure 2). We note 1O  the homological center of 

the triangles 1 1 1A B C  and 2 2 2A B C , with 2O  the homological center of the triangles 2 2 2A B C  and 

3 3 3A B C  and with 3O  the homological center of the triangles 3 3 3A B C  and 1 1 1A B C .  
We consider the triangles 1 2 3A A A  and 1 2 3B B B , and we observe that these are homological 

because 1 1 2 2 3 3,  ,  A B A B A B  intersect in the point P  which is their homological center. The 
homological axis of these triangles is determined by the points  
 , {𝑂ଵ}=𝐴ଵ𝐴ଶ ∩ 𝐵ଵ𝐵ଶ, {𝑂ଶ} = 𝐴ଶ𝐴ଷ ∩ 𝐵ଶ𝐵ଷ, {𝑂ଷ} = 𝐴ଵ𝐴ଷ ∩ 𝐵ଵ𝐵ଷ
therefore the points 1 2 3, ,O O O are collinear and this concludes the proof of this theorem. 

Theorem 3 (The reciprocal of theorem 2) 
If three triangles are homological two by two and have their homological centers 

collinear, then these have the same homological axis.  

Proof 
We will use the triangles from figure 2. Let therefore 1 2 3, ,O O O  the three homological 

collinear points. We consider the triangles 1 2 3B B B  and 1 2 3C C C , we observe that these admit as 
homological axis the line 1 2 3O O O .  
Because  {𝑂ଵ } = 𝐵ଵ𝐵ଶ ∩ 𝐶ଵ𝐶ଶ, {𝑂ଶ } = 𝐵ଶ𝐵ଷ ∩ 𝐶ଶ𝐶ଷ, {𝑂ଷ } = 𝐵ଵ𝐵ଷ ∩ 𝐶ଵ𝐶ଷ, 
It results that these have as homological center the point {𝑀} = 𝐵ଵ𝐶ଵ ∩ 𝐵ଶ𝐶ଶ ∩ 𝐵ଷ𝐶ଷ. 

Similarly for the triangles 1 2 3A A A  and 1 2 3C C C  have as homological axis 1 2 3O O O  and the 
homological center M . We also observe that the triangles 1 2 3A A A  and 1 2 3B B B  are homological 
and 1 2 3O O O is their homological axis, and their homological center is the point P . Applying the 
theorem 2, it results that the points , ,M N P  are collinear, and the reciprocal theorem is then 
proved. 

Theorem 4 (The Veronese theorem) 
If the triangles 1 1 1 2 2 2,  A B C A B C  are homological and  { 𝐴ଷ } = 𝐵ଵ𝐶ଶ ∩ 𝐵ଶ𝐶ଵ, { 𝐵ଷ } = 𝐴ଵ𝐶ଶ ∩ 𝐴ଶ𝐶ଵ ,{ 𝐶ଷ } = 𝐴ଵ𝐵ଶ ∩ 𝐴ଶ𝐵ଵ 

then the triangle 3 3 3A B C  is homological with each of the triangles 1 1 1A B C  and 2 2 2A B C , and their 
homological centers are collinear. 

Proof 
 Let 1O  be the homological center of triangles 1 1 1A B C  and 2 2 2A B C  (see figure 3) and 

', ', 'A B C  their homological axis.  
 We observe that 1O is a homological center also for the triangles 1 1 2A B C  and 2 2 1A B C . The 
homological axis of these triangles is 3 3', ,C A B . Also 1O  is the homological center for the 
triangles  
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𝐵ଵ𝐶ଵ𝐴ଶand 2 2 1B C A , it results that their homological axis is 3 3', ,A B C  
O1

  C2

A2 
B2

           B3
A3        C’ 

 C3
A’ 

             B1

  C1

A1
             B’ 

Fig. 3 

Similarly, we obtain that the points 3 3', ,B A C  are collinear, these being on a homological 
axis of triangle 1 1 2C A B  and𝐶ଶ𝐴ଶ𝐵ଵ. The triplets of the collinear points ( )3 3', ,C A B , ( )3 3', ,B A C  
and( )3 3', ,A B C  show that the triangle 3 3 3A B C  is homological with triangle 1 1 1A B C  and with the 
triangle 2 2 2A B C . 
 The triangles 1 1 1 2 2 2 3 3 3,  ,  A B C A B C A B C  are homological two by two and have the same 
homological axis ', ', 'A B C . Using theorem 3, it results that their homological centers are 
collinear points. 

II. Double-homological triangles
Definition 1 
We say that the triangles 1 1 1A B C  and 2 2 2A B C  are double-homological or bi- homological 

if these are homological in two modes. 
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Theorem 5 
Let’s consider the triangles 1 1 1A B C  and 2 2 2A B C  such that  𝐵ଵ𝐶ଵ ∩ 𝐵ଶ𝐶ଶ = {𝑃ଵ}, 𝐵ଵ𝐶ଵ ∩ 𝐴ଶ𝐶ଶ = {𝑄ଵ}, 𝐵ଵ𝐶ଵ ∩ 𝐴ଶ𝐵ଶ = {𝑅ଵ} 𝐴ଵ𝐶ଵ ∩ 𝐴ଶ𝐶ଶ = {𝑃ଶ}, 𝐴ଵ𝐶ଵ ∩ 𝐴ଶ𝐵ଶ = {𝑄ଶ}, 𝐴ଵ𝐶ଵ ∩ 𝐵ଶ𝐶ଶ = {𝑅ଶ} 𝐴ଵ𝐵ଵ ∩ 𝐴ଶ𝐵ଶ = {𝑃ଷ}, 𝐴ଵ𝐵ଵ ∩ 𝐵ଶ𝐶ଶ = {𝑄ଷ}, 𝐴ଵ𝐵ଵ ∩ 𝐶ଶ𝐴ଶ = {𝑅ଷ} 

Then: 
1 1 2 1 3 1 1 1 2 1 3 1 1 1 2 1 3 1

1 1 2 1 3 1 1 1 2 1 3 1 1 1 2 1 3 1

1PB PC P A Q B Q C Q A R B R C R A
PC P A P B Q C Q A Q B R C R A R B

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
(1) 

Proof 

 A1
  B2

R2

Q2

          Q3
C2 C1

R3 R1 
B1    Q1

          P1           A2

  P2
  P3 

Fig. 4 

We’ll apply the Menelaus’ theorem in the triangle 1 1 1A B C  for the transversals

1 3 2 2 1 3 3 2 1,  ,  PQ R PQ R PQ R , (see figure 4). 
 We obtain 

1 1 2 1 3 1

1 1 2 1 3 1

1
PB R C Q A
PC R A Q B

⋅ ⋅
=

⋅ ⋅
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2 1 1 1 3 1

2 1 1 1 3 1

1PC Q B R A
P A Q C R B

⋅ ⋅
=

⋅ ⋅

3 1 1 1 2 1

3 1 1 1 2 1

1P A R B Q C
P B R C Q A

⋅ ⋅
=

⋅ ⋅
Multiplying these relations side by side and re-arranging the factors, we obtain relation (1). 

Theorem 6 
 The triangles 1 1 1A B C  and 2 2 2A B C  are homological (the lines 1 2 1 2 1 2,  ,  A A B B C C  are 
concurrent) if and only if: 

1 1 2 1 3 1 1 1 2 1 3 1

1 1 2 1 3 1 1 1 2 1 3 1

Q B Q C Q A R C R A R B
Q C Q A Q B R B R C R A

⋅ ⋅ ⋅ ⋅
=

⋅ ⋅ ⋅ ⋅
(2) 

Proof 
 Indeed, if 1 2 1 2 1 2,  ,  A A B B C C  are concurrent then the points 1 2 3, ,P P P  are collinear and the 
Menelaus’ theorem for the transversal 1 2 3PP P  in the triangle 1 1 1A B C  gives: 

1 1 2 1 3 1

1 1 2 1 3 1

1PB PC P A
PC P A P B

⋅ ⋅
=

⋅ ⋅
(3) 

This relation substituted in (1) leads to (2) 

Reciprocal 
If the relation (2) takes place then substituting it in the relation (1) we obtain (3) which 

shows that 1 2 3, ,P P P  is the homology axis of the triangles 1 1 1A B C  and 2 2 2A B C . 

Remark 2 
If in relation (1) two fractions are equal to 1, then the third fraction will be equal to 1, and 

this leads to the following: 

Theorem 7 
If the triangles 1 1 1A B C  and 2 2 2A B C  are homological in two modes (are double-

homological) then these are homological in three modes (are tri-homological). 

Remark 3 
The precedent theorem can be formulated in a different mod that will allow us to 

construct  tri-homological triangles with a given triangle and of some tri-homological triangles. 
Here is the theorem that will do this: 

Theorem 8 
 (i) Let ABC  a given triangle and ,P Q  two points in its plane such that BP  intersects 
CQ  in 1A , CP  intersects AQ  in 1B  and AP  intersects BQ  in 1C . 
 Then 1 1 1, ,AA BB CC  intersect in a point R . 
 (ii) If ∩ 𝐶𝑃 = {𝐴ଶ}, 𝐶𝑄 ∩ 𝐴𝑃 = {𝐵ଶ} , BP∩ 𝐴𝑄 = {𝐶ଶ}then the triangles 

1 1 1 2 2 2,  ,  ABC A B C A B C  are two by two homological and their homological centers are collinear. 
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Proof 
(i). From the way how we constructed the triangle 1 1 1A B C , we observe that ABC  and 

1 1 1A B C  are double homological, their homology centers being two given points ,P Q  (see figure 
5). Using theorem 7 it results that the triangles 1 1 1,  ABC A B C  are tri-homological, therefore 

1 1 1, ,AA BB CC  are concurrent in point noted R. 

A 

R1 

B2 C2

          A1 
R2

          Q 

        P 

A2

C1        B1

       R 
B 

   C 
Fig. 5 

(ii) The conclusion results by applying the Veronese theorem for the homological 
triangles 1 1 1,  ABC A B C  that have as homological center the point R . 

Remark 4 
We observe that the triangles ABC  and 2 2 2A B C  are bi-homological, their homological 

centers being the given points ,P Q . It results that these are tri-homological and therefore 

2 2 2, ,AA BB CC  are concurrent in the third homological center of these triangle, which we’ll note 

1R . 
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Similarly we observe that the triangles 1 1 1 2 2 2,  A B C A B C  are double homological with the 
homological centers ,P Q ;  it results that these are tri-homological, therefore 1 2 2 2 2 2, ,A A B B C C
are concurrent, their concurrence point being notated with 2R . In accordance to the Veronese’s 
theorem, applied to any pair of triangles from the triplet ( )1 1 1 2 2 2,  ,  ABC A B C A B C  we find that 
the points 1 2,  ,  R R R  are collinear. 

Remark 5 
Considering the points ,P R  and making the same constructions as in theorem 8 we 

obtain the triangle 3 3 3A B C  which along with the triangles 1 1 1,  ABC A B C  will form another triplet 
of triangles tri-homological two by two. 

Remark 6 
The theorem 8 provides us a process of getting a triplet of tri-homological triangles two 

by two beginning with a given triangle and from two given points in its plane. Therefore if we 
consider the triangle ABC  and as given points the two points of Brocard ΩΩ  and Ω´, the 
triangle 1 1 1A B C  constructed as in theorem 8 will be the first Brocard’s triangle and we’ll find 
that this is a theorem of J. Neuberg: the triangle ABC  and the first Brocard triangle are tri-
homological. The third homological center of these triangles is noted Ω´´and it is called the 
Borcard’s third point and Ω´´  is the isometric conjugate  of the simedian center of the triangle 
ABC

Open problems  
1) If 1 2 3, ,T T T  are triangles in a plane, such that ( )1 2,T T  are tri-homological, ( )2 3,T T  

are tri-homological, then are the ( )1 3,T T  tri-homological? 

2) If 1 2 3, ,T T T  are triangles in a plane such that ( )1 2,T T  are tri-homological, ( )2 3,T T  
are tri-homological, ( )1 3,T T  are tri-homological and these pairs of triangles have in common two 
homological centers, then are the three remaining non-common homological centers collinear? 
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A Class of Orthohomological Triangles 
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Abstract. 
In this article we propose to determine the triangles’ class i i iA B C  orthohomological with 

a given triangle ABC , inscribed în the triangle ABC  ( ,  ,  i i iA BC B AC C AB∈ ∈ ∈ ).

We’ll remind, here, the fact that if the triangle i i iA B C  inscribed in ABC  is 

orthohomologic with it, then the perpendiculars in ,  i iA B , respectively in iC  on ,  BC CA , 

respectively AB  are concurrent in a point iP  (the orthological center of the given triangles), and 

the lines ,  ,  i i iAA BB CC  are concurrent in point (the homological center of the given triangles). 

To find the triangles i i iA B C , it will be sufficient to solve the following problem. 

Problem. 
Let’s consider a point iP in the plane of the triangle ABC  and i i iA B C  its pedal triangle. 

Determine the locus of point iP  such that the triangles ABC  and i i iA B C  to be homological. 

Solution. 
Let’s consider the triangleABC , (1,0,0),  (0,1,0),  (0,0,1)A B C , and the point 

( , , ),  0iP α β γ α β γ+ + = . 

The perpendicular vectors on the sides are: 

( )
( )
( )

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 ,  ,  

,  2 ,  

,  ,  2

BC

CA

AB

U a a b c a b c

U a b c b a b c

U a b c a b c c

⊥

⊥

⊥

− − + − + −

− − + − −

− + − − −

The coordinates of the vector BC
uuur

 are (0, 1,1)− , and the line BC has the equation 0x = . 

The equation of the perpendicular raised from point iP  on BC  is: 

2 2 2 2 2 2 2

      

        0

2

x y z

a a b c a b c

α β γ =
− − + − + −

 

We note ( , , )iA x y z , because iA BC∈  we have: 

0x =  and 1y z+ = . 

The coordinates y  and z of iA  can be found by solving the system of equations 
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2 2 2 2 2 2 2

      

        0

2

0

x y z

a a b c a b c

y z

α β γ

 =


− − + − + −
 + =

We have: 

2 2 2 2 2 2 2 2

           

2  2  
y z

a a b c a a b c

α γ α β
⋅ = ⋅

− + − − − +
, 

( ) ( )2 2 2 2 2 2 2 2 2  2y a b c a z a b c aα γ α β   − + − − = − − + −    ,

( )
( )

2 2 2 2

2 2 2 2

 2
1

 2

a b c a
y y

a b c a

α γ
α β

− + − −
+ ⋅ =

− − + −
, 

( ) ( )
( )

2 2 2 2 2 2 2 2

2 2 2 2

 2  2
1

 2

a b c a a b c a
y

a b c a

α β α γ
α β

− − + − + − + − −
⋅ =

− − + −
, 

( )
( )

2

2 2 2 2

2
1

2

a
y

a b c a

α β γ
α β

− + +
⋅ =

− − + −
, 

it results 

( )2 2 2
22

y a b c
a

α β= + − +

( ) ( )2 2 2 2 2 2
2 2

1 1
2 2

z y a b c a b c
a a

α αβ α γ= − = − − + − = + − + − .

Therefore, 

( ) ( )2 2 2 2 2 2
2 2

0,  ,   
2 2iA a b c a b c

a a

α αβ γ + − + − + + 
 

. 

Similarly we find: 

( ) ( )2 2 2 2 2 2
2 2

,  0, 
2 2iB a b c a b c
b b

β βα γ + − + − + + + 
 

, 

( ) ( )2 2 2 2 2 2
2 2

,  ,   0
2 2iC a b c a b c

c c

γ γα β − + + − + + + 
 

. 

We have: 
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( )
( )

( )
( )

( )
( )

2 2 2
2

2 2 2
2

2 2 2
2

2 2 2
2

2 2 2
2

2 2 2
2

cos2
cos

2

cos2
cos

2

cos2
cos

2

i

i

i

i

i

i

a b cA B c B aa
b C aAC a b c

a

a b cB C a C bb
c A bB A a b c

a

a b cC A b A cc
a B cC B a b c

c

α γ α γ
α α ββ

β α β α
α β γγ

γ β γ β
γ γ αα

− + + += − = −
++ − +

+ − + += − = −
+− + + +

− + + + += − = −
+− + +

uuur

uuur

uuur

uuur

uuur

uuur

. 

(We took into consideration the cosine’s theorem: 2 2 2 2 cosa b c bc A= + − ). 
In conformity with Ceva’s theorem, we have: 

1i i i

i i i

A B B C C A

AC B A C B
⋅ ⋅ = −

uuur uuur uuur

uuur uuur uuur . 

( )( )( )cos cos cosa c B b a C c b Aγ α α β β γ+ + + =

( )( )( )cos cos cosa b C b c A c a Bβ α γ β α γ= + + +

( )( ) ( )( )2 2 2 2 2 2 2 2cos cos cos cos cos cosa b c A B C b c a B A Cα γ β β α γ− − + − − +

( )( )2 2 2 2 cos cos cos 0c a b C A Bγ β α+ − − = .

Dividing it by 2 2 2a b c , we obtain that the equation in barycentric coordinates of the locus 
L of the point iP  is: 

( ) ( )
2 2 2 2

2 2 2 2
cos cos cos cos cos cosA B C B A C

a c b b a c

α γ β β α γ   
− − + − − +   

   
 

( )
2 2

2 2
cos cos cos 0C A B

c b a

γ β α 
+ − − = 

 
.

We note ,  ,  A B Cd d d  the distances oriented from the point iP  to the sides ,  BC CA  

respectivelyAB , and we have: 

,  ,  
2 2 2

CA B dd d

a s b s c s

α β γ= = = .

The locus’ L equation can be written as follows: 

( )( ) ( )( )2 2 2 2cos cos cos cos cos cosA C B B A Cd d d A B C d d d B A C− − + − − +  

( )( )2 2 cos cos cos 0C B Ad d d C A B+ − − =

Remarks. 
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1. It is obvious that the triangle’s ABC  orthocenter belongs to locus L. The orthic
triangle and the triangle ABC  are orthohomologic; a orthological center is the
orthocenter H , which is the center of homology.

2. The center of the inscribed circle in the triangle ABC  belongs to the locus L, because
= = A B Cd d d r=  and thus locus’ equation is quickly verified.

Theorem (Smarandache-Pătraşcu). 
If a point P  belongs to locus L, then also its isogonal 'P  belongs to locus L.

Proof. 
Let ( ), ,P α β γ  a point that verifies the locus’ L. equation, and ( )' ' ' ', ,P α β γ  its isogonal

in the triangle ABC . It is known that 
' ' '

2 2 2a b c

αα ββ γγ= = . We’ll prove that 'P ∈ L, i.e. 

( )
' '2 '2

2 2
cos cos cos 0A B C

a c b

α γ β 
− − = 

 
∑  

( )
' '2 2 '2 2

2 2
cos cos cos 0

b c
A B C

a b c

α γ β − − = 
 

∑  

( )( )
'

'2 2 '2 2
2 2

cos cos cos 0b c A B C
ab c

α γ β− − = ⇔∑  

( )
' ' ' 2 2 ' '

2 2
cos cos cos 0

c c
A B C

ab c

α γ ββ γγ β
γ β

 
⇔ − − = ⇔ 

 
∑

( )
' ' ' 2 2

2 2
cos cos cos 0

c b
A B C

ab c

α β γ β γ
γ β

 
⇔ − − = ⇔ 

 
∑

( )
' ' ' 2 2 2 2

2 2
cos cos cos 0

c b
A B C

ab c

α β γ β γ
βγ

 −⇔ − = ⇔ 
 

∑

( )
' ' ' 2 2

2 2
2 2 2 2

1
cos cos cos 0b c A B C

a b c b c

α α β γ β γ
αβγ

   
⇔ ⋅ − − =   

   
∑ . 

We obtain that: 

( )
' ' ' 2 2

2 2
cos cos cos 0A B C

a c b

α β γ α γ β
αβγ

 
− − = 

 
∑ , 

this is true because P ∈  L. 

Remark. 
We saw that the triangle ‘sABC  orthocenter H  belongs to the locus, from the precedent 

theorem it results that also O , the center of the circumscribed circle to the triangle ABC  
(isogonable to H ), belongs to the locus. 

Open problem: 
What does it represent from the geometry’s point of view the equation of locus L? 
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In the particular case of an equilateral triangle we can formulate the following: 

Proposition: 
The locus of the point P from the plane of the equilateral triangle ABC  with the property 

that the pedal triangle of P  and the triangle ABC  are homological, is the union of the triangle’s 
heights. 

Proof: 
Let ( ), ,P α β γ  a point that belongs to locus L. The equation of the locus becomes:

( ) ( ) ( )2 2 2 2 2 2 0α γ β β α γ γ β α− + − + − =
Because: 

( ) ( ) ( )2 2 2 2 2 2 2 2 2 2 2 2α γ β β α γ γ β α αγ αβ βα βγ γβ γα− + − + − = − + − + − =
2 2 2 2 2 2αβγ αγ αβ βα βγ γβ γα αβγ= + − + − + − − =

( ) ( ) ( ) ( )2αβ γ β αγ γ β α γ β βγ γ β= − + − − − − − =

( ) ( ) ( ) ( )( )( )γ β α β α γ β α β α α γ γ β = − − − − = − − −  .

We obtain that α β=  or β γ=  or γ α= , that shows that P  belongs to the medians 
(heights) of the triangle ABC . 

References: 

[1] C. Coandă , Geometrie analitică în coordanate baricentrice, Editura Reprograph, 
Craiova, 2005. 

[2] Multispace & Multistructure. Neutrosophic Trandisciplinarity (100 Collected 
Papers of Sciences), vol. IV, North European Scientific Publishers, Hanko, 
Finland, 2010. 



This book contains 21 papers of plane geometry. 

It deals with various topics, such as: quasi-isogonal cevians, 

nedians, polar of a point with respect to a circle, anti-bisector, 

aalsonti-symmedian, anti-height and their isogonal.  

A nedian is a line segment that has its origin in a triangle’s vertex 

and divides the opposite side in n  equal segments. 

The papers also study distances between remarkable points in the 

2D-geometry, the circumscribed octagon and the inscribable octagon, 

the circles adjointly ex-inscribed associated to a triangle, and several 

classical results such as: Carnot circles, Euler’s line, Desargues 

theorem, Sondat’s theorem, Dergiades theorem, Stevanovic’s 

theorem, Pantazi’s theorem, and Newton’s theorem. 

Special attention is given in this book to orthological triangles, bi-

orthological triangles, ortho-homological triangles, and tri-

homological triangles. 

Each paper is independent of the others. Yet, papers on the same or similar 

topics are listed together one after the other. 

The book is intended for College and University students and instructors that 

prepare for mathematical competitions such as National and International 

Mathematical Olympiads, or for the AMATYC (American Mathematical 

Association for Two Year Colleges) student competition, Putnam competition, 

Gheorghe Ţiţeica Romanian competition, and so on. 

The book is also useful for geometrical researchers. 

 

 




