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Abstract
In this preliminary work, we use a dynamic iso-unit function to

iso-topically lift the “static” Inopin holographic ring (IHR) of the
unit sphere to an interconnected pair of “dynamic iso-sphere IHRs”
(iso-DIHR), where the IHR is simultaneously iso-dual to both a mag-
nified “exterior iso-DIHR” and de-magnified “interior iso-DIHR”. For
both the continuously-varying and discretely-varying cases, we define
the dynamic iso-amplitude-radius of one iso-DIHR as being equiva-
lent to the dynamic iso-amplitude-curvature of its counterpart, and
conversely. These initial results support the hypothesis that a new
IHR-based mode of iso-geometry and iso-topology may be in order,
which is significant because the interior and exterior zones delin-
eated by the IHR are fundamentally “iso-dual inverses” and may be
inferred from one another.

Keywords: Santilli iso-mathematics; Inopin holographic ring; Iso-geometry;
Iso-topology; Dynamic iso-sphere; Iso-duality.
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To the memory of my good friend Gavin Koester-Backstrom.

1 Introduction
In a forward attempt to establish order in chaos, A.E. Inopin intro-

duced the dual space-time IHR topology in a proof of quark confinement
[1], which received a preliminary topological upgrade in the triplex general-
ization of [2]. In Euclidean complex space, Inopin’s dual 3D space-time IHR
topology comprises a 1-sphere IHR “time zone” that delineates two spatial
2-branes, whereas in Euclidean triplex space, Inopin’s dual 4D space-time
IHR topology generalizes the 1-sphere IHR to a 2-sphere IHR that delin-
eates two spatial 3-branes [1, 2]. In other words, the brane states can be
inferred from the IHR states and vice-versa because the IHR acquires Berry
phase transitions for (spontaneous gauge symmetry breaking) topological
deformation order parameters and is simultaneously dual to both branes
[1, 2].

Recently, R.M. Santilli’s iso-mathematics [3, 4, 5, 6, 7] was applied to the
dual 4D space-time IHR topology (with the 2-sphere IHR) [1, 2, 8] to initiate
the iso-dual 4D space-time IHR topology (with the iso-2-sphere IHR) [9].
Subsequently, the new class of dynamic iso-spaces was constructed [10]; a
dynamic iso-space is an iso-space that is characterized by constant change
[10]. More specifically, a dynamic iso-space is built with a dynamic iso-
topic lifting that arises due to a dynamic iso-unit function that varies over
time [10]. Santilli’s discovery of iso-mathematics gave way to these dynamic
constructs because he proved that his iso-unit can be, among many things, a
function [3, 4, 5, 6, 7]. Therefore, in this paper, we engage this cutting-edge
notion of dynamic iso-spaces [10] with the emerging iso-dual 4D space-time
IHR topology [9] to define an interconnected pair of iso-DIHRs, where the
exterior iso-DIHR is iso-dual to an interior iso-DIHR.

We launch our investigation with Section 2, where we augment the iso-
sphere IHR (iso-IHR) [9] by initiating definitions for the exterior iso-IHR
and the interior iso-IHR—for this, we propose a fundamental and criti-
cal inverse iso-duality between the exterior and interior iso-IHRs that are
both locally iso-morphic to the original IHR. Next, in Section 3, we de-
ploy the dynamic iso-topic lifting of [10] to upgrade the initial results of
Section 2, where we mobilize general, continuous, and discrete definitions
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for the exterior iso-DIHR and interior iso-DIHR that preserve the original
iso-morphism. Finally, we conclude our exploration with the recapitulation
of results and future outlook of Section 4.

2 Inverse iso-duality between the exterior and interior iso-sphere
IHRs
Here, we discuss and extend the iso-IHR [9] by proposing an inverse

iso-duality between the exterior and interior branes.
Following [1, 2], let T 1

r be the unit 1-sphere IHR of amplitude-radius
r = 1 and amplitude-curvature κ = 1

r
that is iso-metrically embedded in

the complex space S2, such that eq. (13) of [2] identifies

T 1
r = {~s ∈ S2 : |~s| = r}, (1)

where T 1
r ⊂ S2 is the multiplicative group of all non-zero complex coordinate-

vectors of normalized amplitude-radius r. Next, let T 2
r be a unit 2-sphere

IHR that is iso-metrically embedded in the triplex space S3, such that eq.
(40) of [2] identifies

T 2
r = {~s ∈ S3 : |~s| = r}, (2)

where T 2
r ⊂ S3 is the multiplicative group of all non-zero triplex coordinate-

vectors of normalized amplitude-radius r; T 1
r is the great circle of T 2

r so both
non-linear structures share the same amplitude-radius r with the constant
characterizing curvature of κ, where S2 ⊂ S3 and T 1

r = T 2
r ∩ S2 [2]. In

this IHR-based topology [1, 2], eqs. (14) and (40) in [2] demonstrate that
the micro 2-brane sub-space S2

− ⊂ S2 and the micro 3-brane sub-space
S3
− ⊂ S3 correspond to interior dynamical systems, while the macro 2-brane

sub-space S2
+ ⊂ S2 and the micro 3-brane sub-space S3

+ ⊂ S3 correspond
to exterior dynamical systems, where T 1

r delineates S2
− and S2

+, and T 2
r

delineates S3
− and S3

+.
Now, following Santilli’s iso-number methodology [3, 4, 5, 6, 7] and the

iso-IHR definition [9], we select some positive-definite iso-unit r̂+ > r with
the corresponding positive-definite inverse r̂− = 1

r̂+
< r to establish the

array of exterior iso-topic liftings

f(r̂+) : T nr → T nr̂+
f−1(r̂+) : T nr̂+ → T nr

, n ∈ {1, 2}, (3)
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for the magnified

1. exterior iso-1-sphere IHR (iso-1-IHR) T 1
r̂+

and

2. exterior iso-2-sphere IHR (iso-2-IHR) T 2
r̂+

.

In this case of eq. (3), a given T nr̂+ is “outside” T nr because r̂+ > r. Thus, r̂+
is termed the exterior iso-unit, which serves as the exterior iso-amplitude-
radius for both T 1

r̂+
and T 2

r̂+
, while r̂− serves as the exterior iso-amplitude-

curvature for both T 1
r̂+

and T 2
r̂+

, such that T 1
r̂+
⊂ T 2

r̂+
is the great circle of

T 2
r̂+

.
So a question comes to mind: how might the exterior iso-amplitude-

curvature r̂− fit into the structure and function of the said iso-IHR topology?
Our hypothesis is that the selected iso-unit relation r̂+ = 1

r̂−
> r identifies

a critical and fundamental iso-duality for IHR-based topological implemen-
tations in terms of spherical radii and curvature. In the iso-IHR topology
introduction of [9], we recall that the iso-amplitude-curvature property was
only mentioned in a brief context due to the limited scope of that analy-
sis. Therefore, in this section, we wish to further probe the applicability of
the iso-amplitude-curvature by deploying it to define an additional topolog-
ical iso-structure. Hence, in addition to being the exterior iso-amplitude-
curvature of T 1

r̂+
and T 2

r̂+
, we furthermore define r̂− as the interior iso-

amplitude-radius and interior iso-unit of two new iso-IHRs, namely the
de-magnified

1. interior iso-1-IHR T 1
r̂−

and

2. interior iso-2-IHR T 2
r̂−

,

with the corresponding array of interior iso-topic liftings

f(r̂−) : T nr → T nr̂−
f−1(r̂−) : T nr̂− → T nr

, n ∈ {1, 2}. (4)

In this case of eq. (4), a given T nr̂− is “inside” T nr because r̂− < r. Hence,

upon recalling the relation r̂− = 1
r̂+

, we realize that r̂+ is also the inte-

rior iso-amplitude-curvature of both T 1
r̂−

and T 2
r̂−

! Thus, in terms of iso-
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amplitude-radius and iso-amplitude-curvature, we’ve identified a fundamen-
tal iso-duality between T nr̂+ and T nr̂− written as

T nr̂− ← T nr → T nr̂+ (5)

because the iso-amplitude-radii and iso-amplitude-curvatures are interde-
pendent with respect to T nr . Therefore, in addition to the lemmas of [9],
the results of eqs. (3–5) indicate the trichotomy:

1. (r̂− < 1): interior iso-amplitude-radius of T nr̂− , exterior iso-amplitude-
curvature of T nr̂+ , interior iso-multiplicative iso-unit of T nr̂− , exterior
iso-multiplicative iso-unit inverse of T nr̂+ ;

2. (r = 1): amplitude-radius, amplitude-curvature, multiplicative unit;
and

3. (r̂+ > 1): exterior iso-amplitude-radius of T nr̂+ , interior iso-amplitude-
curvature of T nr̂− , exterior iso-multiplicative iso-unit of T nr̂+ , interior
iso-multiplicative iso-unit inverse of T nr̂− .

Therefore, we have establish the following:

Lemma 1. An n-sphere IHR T nr of amplitude-radius (and unit) r = 1 that
is iso-topically lifted via T nr → T nr̂+ to the exterior iso-n-IHR T nr̂+ of exterior
iso-amplitude-radius (and exterior iso-multiplicative iso-unit) r̂+ > r can
be simultaneously lifted via T nr → T nr̂− to the interior iso-n-IHR T nr̂− of
interior iso-amplitude-radius (and interior iso-multiplicative iso-unit) r̂− <
r if r̂− = 1

r̂+
, where r̂+ is the interior iso-amplitude-curvature of T nr̂− and

r̂− is the exterior iso-amplitude-curvature of T nr̂+, such that T nr̂+ and T nr̂− are
iso-dual inverses and locally iso-morphic to T nr .

At this point, we’ve discussed and extended the iso-IHR of [9] to include
the exterior and interior iso-IHRs of eqs. (3–4) and Lemma 1. See Figure 1
for a depiction of this scenario.

3 Dynamic iso-sphere IHR
Here, we apply the dynamic iso-topic lifting of [10] to the iso-IHR results

of Section 2, where we’ll introduce the general definitions for the exterior
and interior iso-DIHRs in Section 3.1. Subsequently, in Section 3.2, we’ll
push beyond the general form to construct the continuous and discrete cases.
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Fig. 1: The iso-1-IHR T 1
r is iso-topically lifted to both the exterior iso-1-IHR T 1

r̂+
and

the interior iso-1-IHR T 1
r̂−

simultaneously, where T 1
r̂+

and T 1
r̂−

are iso-dual.
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3.1 General
Thus, following the dynamic methodology of [10], we define the positive-

definite dynamic iso-unit function as

r̂+ ≡ δ̂+(t) > r (6)

with its corresponding positive-definite inverse

r̂− ≡
1

δ̂+(t)
≡ δ̂−(t) < r, (7)

where δ̂+(t) increases and δ̂−(t) decreases simultaneously as the parameter
t varies as t→∞, for the general form. Hence, eq. (3) can be rewritten to
establish the exterior dynamic iso-topic lifting form

f(δ̂+(t)) : T nr → T n
δ̂+(t)

f−1(δ̂+(t)) : T n
δ̂+(t)

→ T nr
, n ∈ {1, 2}, (8)

to define the

1. exterior iso-1-DIHR T 1
δ̂+(t)

and

2. exterior iso-2-DIHR T 2
δ̂+(t)

.

Similarly, eq. (4) can be rewritten to express the interior dynamic iso-topic
lifting form

f(δ̂−(t)) : T nr → T n
δ̂−(t)

f−1(δ̂−(t)) : T n
δ̂−(t)

→ T nr
, n ∈ {1, 2}, (9)

to define the

1. interior iso-1-DIHR T 1
δ̂−(t)

and

2. interior iso-2-DIHR T 2
δ̂−(t)

.

Therefore, the implications and results of eqs. (6–9) authorize us to establish
the following:
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Lemma 2. An n-sphere IHR T nr of amplitude-radius (and unit) r = 1 that
is dynamically iso-topically lifted via T nr → T n

δ̂+(t)
to the exterior iso-n-DIHR

T n
δ̂+(t)

of exterior dynamic iso-amplitude-radius (and exterior dynamic iso-

unit) δ̂+(t) > r can be simultaneously lifted via T n → T n
δ̂−(t)

to the interior

iso-n-DIHR T n
δ̂−(t)

of interior dynamic iso-amplitude-radius (and interior

dynamic iso-unit) δ̂−(t) < r if δ̂−(t) = 1

δ̂+(t)
as the parameter t varies,

where δ̂+(t) is the interior dynamic iso-amplitude-curvature of T n
δ̂−(t)

and

δ̂−(t) is the exterior dynamic iso-amplitude-curvature of T n
δ̂+(t)

, such that

T n
δ̂+(t)

and T n
δ̂−(t)

are dynamically, inversely iso-dual and locally iso-morphic

to T nr .

At this point, we’ve successfully applied the general dynamic iso-topic
lifting definitions of [10] to the iso-IHR results of Section 2 by introducing
the definitions for the exterior and interior iso-DIHRs in Section 3.1, where
the resulting constructions of eqs. (6–9) are characterized by Lemma 2. See
Figure 2 for a depiction of this scenario.

3.2 Continuous and discrete
Next, we combine the continuous and discrete dynamic iso-space defini-

tions of [10] with the general iso-DIHR definitions of Section 3.1 to assemble
the continuous and discrete iso-DIHR implementations.

First, we will show that T n
δ̂−(t)

and T n
δ̂+(t)

can be defined as continuous

iso-n-DIHRs if the dynamic iso-unit functions δ̂+c(t) and δ̂−c(t) are both
continuous as their parameter t varies, where insert the additional subscript
label c to denote the “continuous” case. Hence, for example, let t be the
continuously varying parameter for the continuous exterior and interior
dynamic iso-unit functions

r̂+ ≡ δ̂+c(t) ∈ Rc

r̂− ≡ δ̂−c(t) ≡ 1

δ̂+c (t)
∈ Rc

, 0 < δ̂−c(t) < r < δ̂+c(t) <∞, t→∞,

(10)
such that Rc is a positive-definite continuous set (i.e. the positive real
numbers), to consequently define the
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Fig. 2: The iso-1-IHR T 1
r is dynamically iso-topically lifted to both the exterior iso-1-

DIHR T 1
δ̂+(t)

and the interior iso-1-DIHR T 1
δ̂−(t)

simultaneously as the parameter t varies

as t→∞, where T 1
δ̂+(t)

and T 1
δ̂−(t)

are iso-dual inverses.
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1. continuous exterior iso-n-DIHR T n
δ̂+c (t)

and

2. continuous interior iso-n-DIHR T n
δ̂−c (t)

,

where we rewrite eqs. (8–9) in the continuous exterior and interior dynamic
iso-topic lifting form

f(δ̂+c(t)) : T nr → T n
δ̂+c (t)

f−1(δ̂+c(t)) : T n
δ̂+c (t)

→ T nr
, n ∈ {1, 2}, (11)

and
f(δ̂−c(t)) : T nr → T n

δ̂−c (t)

f−1(δ̂−c(t)) : T n
δ̂−c (t)

→ T nr ,
, n ∈ {1, 2}, (12)

respectively. In eqs. (11–12), T nr remains locally iso-morphic to both T n
δ̂−c (t)

and T n
δ̂+c (t)

as t continuously varies. Thus, the results of eqs. (10–12) permit

us to identify the following:

Lemma 3. An exterior iso-n-DIHR T n
δ̂+c (t)

is a continuous exterior iso-n-

DIHR if the exterior dynamic iso-unit function δ̂+c(t) is continuous as its
parameter t varies.

Lemma 4. An interior iso-n-DIHR T n
δ̂−c (t)

is a continuous interior iso-n-

DIHR if the interior dynamic iso-unit function δ̂−c(t) is continuous as its
parameter t varies.

Second, we will show that T n
δ̂−(t)

and T n
δ̂+(t)

can also be defined as discrete

iso-n-DIHRs if the dynamic iso-unit functions δ̂+d
(t) and δ̂−d

(t) are both
discrete as their parameter t varies, where let d denote the “discrete” case.
Hence, for example, let t be the discretely varying parameter for the discrete
exterior and interior dynamic iso-unit functions

r̂+ ≡ δ̂+d
(t) ∈ Rd

r̂− ≡ δ̂−d
(t) ≡ 1

δ̂+d
(t)
∈ Rd

, 0 < δ̂−d
(t) < r < δ̂+d

(t) <∞, t→∞,

(13)
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such that Rd is a positive-definite discrete set (i.e. positive Fibonacci num-
bers), to consequently define the

1. discrete exterior iso-n-DIHR T n
δ̂+d

(t)
and

2. discrete interior iso-n-DIHR T n
δ̂−d

(t)
,

where we rewrite eqs. (8–9) in the discrete exterior and interior dynamic
iso-topic lifting form

f(δ̂+d
(t)) : T nr → T n

δ̂+d
(t)

f−1(δ̂+d
(t)) : T n

δ̂+d
(t)
→ T nr

, n ∈ {1, 2}, (14)

and
f(δ̂−d

(t)) : T nr → T n
δ̂−d

(t)

f−1(δ̂−d
(t)) : T n

δ̂−d
(t)
→ T nr ,

, n ∈ {1, 2}, (15)

respectively. In eqs. (14–15), T)r
n remains locally iso-morphic to both

T n
δ̂−d

(t)
and T n

δ̂+d
(t)

as t discretely varies. Thus, the results of eqs. (13–15)

enable us to identify the following:

Lemma 5. An exterior iso-n-DIHR T n
δ̂+d

(t)
is a discrete exterior iso-n-

DIHR if the exterior dynamic iso-unit function δ̂+d
(t) is discrete as its

parameter t varies.

Lemma 6. An interior iso-n-DIHR T n
δ̂−d

(t)
is a discrete interior iso-n-DIHR

if the interior dynamic iso-unit function δ̂−d
(t) is discrete as its parameter

t varies.

At this point, we’ve successfully combined the continuous and discrete
dynamic iso-space definitions of [10] with the general iso-DIHR definitions
of Section 3.1 to assemble the continuous and discrete iso-DIHR implemen-
tations, where the resulting constructions of eqs. (10–15) are characterized
by Lemmas 3–6.
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4 Conclusion
The results of this work include original definitions and lemmas for con-

tinuous and discrete iso-DIHRs. Through this process, we proposed an
“inverse iso-duality” that fundamentally relates the exterior iso-DIHRs to
the interior iso-DIHRs, which are simultaneously, locally iso-morphic to the
original IHR. This emerging array of iso-DIHRs is significant because it
extends the Santilli’s pioneering work [3, 4, 5, 6, 7] to new realms of explo-
ration with potential (near future) application to the disciplines of science,
technology, and engineering.

Thus, there is still much work to do, as we must continue to relentlessly
scrutinize, challenge, and upgrade this emerging framework via the Scientific
Method. In particular, we suggest that in order to test the validity of our
results and advance the general capability and applicability of these dynamic
systems to subsequent levels, a thorough and rigorous iso-mathematical
investigation should be conducted along this research trajectory. For this,
we must prove the said lemmas and expand the framework by instantiating
additional pertinent IHR families of dynamic iso-spheres, and furthermore
the dynamic geno-spheres, dynamic hyper-spheres, and dynamic iso-dual-
spheres.
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