
1

Solomon I. Khmelnik, Inna S. Doubson

Computing of the
complex variable

functions

Copyright © 2011 by Solomon I. Khmelnik
All right reserved. No portion of this book may be reproduced
or transmitted in any form or by any means, eltctronic or
mechanical, without written permission of the author.

Published by “MiC” - Mathematics in Computers Comp.
BOX 15302, Bene-Ayish, Israel, 60860
Fax: ++972-8-8691348
solik@netvision.net.il

Printed in United States of America, Lulu Inc., ID 10803662, 2011
ISBN 978-1-257-82660-5

Israel
2011

2

Annotation
Hardware algorithms for computing of
all elementary complex variable functions
are proposed.

Contents

Introduction \ 4
1. A method «digit-by-digit» \ 4
2. Decomposition \ 5

1. Introduction \ 5
2. Algorithm of decomposition \ 7
3. Variants of decompositions \ 9

3. Compositions \ 16
4. Two-step-by-step operations \ 22

1. Introduction \ 22
2. Algorithm of function calculation \ 22
3. About hardware realization \ 23

5. Taking the logarithm \ 25
1. Definition of the natural logarithm of complex number

(a variant 1) \ 25
2. Calculation of the logarithm of the module of complex

number \ 25
3. Definition of the natural logarithm of complex number

(a variant 2) \ 26
4. Definition of the natural logarithm of a positive real

number \ 27
5. Definition of the natural logarithm of a negative real

number \ 27
6. Definition of the natural logarithm of a real number \

27
6. Potentiation \ 28

1. Potentiation of complex number \ 28
2. Potentiation of a real number \ 30

7. Operations with logarithmic forms \ 31
1. The logarithmic form representation of complex

number \ 31
2. Formations of the logarithmic form - FormLogar \ 32
3. Return from the logarithmic form - RetLogar \ 33
4. Algebraic addition of logarithmic forms \ 34

3

5. Multiplication of the logarithmic form to an integer -
PowerLogar \ 35

6. Overflow \ 35
8. Extraction of a square root \ 35

1. Extraction of a square root from complex number \ 35
2. Extraction of a square root from conjugation number \

36
3. Extraction of a root from a positive real number \ 36

9. Polar coordinates \ 36
1. Calculation of the module of complex number \ 37
2. Calculation of argument of complex number (a variant

1) \ 37
3. Calculation of argument of complex number (a variant

2) - AngleSqr \ 37
4. Calculation of polar coordinates - CartesianToPolar \

38
5. Return from polar coordinates - PolarToCartesian \ 39
6. Calculation of a sine and cosine a real number – Ort \

39
7. Definition semi-quadrant - Semiquadrant \ 41
8. Segmentation before extraction of a root -

SemiquadrantTransOne \ 41
9. Segmentation after extraction of a root -

SemiquadrantTransTwo \ 42
10. Segmentation for taking the logarithm -

SemiquadrantTransThree \ 43
10. Operations with polar forms \ 44

1. The polar form of representation of complex number \
44

2. Multiplication of polar forms \ 45
3. Turn of the polar form \ 45

References / 46

4

Introduction
In connection with existence of codes of complex numbers [1, 2]

arise , naturally, new opportunities for functions computation of complex
argument and the decision of the equations with complex variables.

In the given book methods of the decision of these problems,
named by a method «digit-by-digit» is described. This method is known
as applied to real numbers [3]. It is shown below, that it can be
generalized on codes of complex numbers by introduction of some
generalized operation of comparison of codes.

The hardware for these calculations is described in [4]

1. A method «digit-by-digit»
Let Z - some complex number. We shall consider the sequence of

complex numbers  Z h mh  1,..., :

Z Z Z Z Z Zh h m1 2 3 1, , , ... , , ... ,

the sequence of complex codes  K Z Zh :

       K Z Z K Z Z K Z Z K Z Zh m   1 2, , ... , ...
Let us suppose that the complex number code has a certain

characteristic, further referred to as code size. We shall express this code

characteristic of the complex number Z by the symbol,  NK Z . The
highest significant digit number or the modulus of the encoded number can be
used as code size. Let us consider the sequence of sizes,  NK Z Zh :

       NK Z Z NK Z Z NK Z Z NK Z Zh m   1 2, , ... , ...
We will refer to the numbers sequence Zh as the generating

sequence  Zh , if with a random h m 1,..., the following
condition is satisfied:

   NK Z Z NK Z Zh h  1 (1)
The method of comparison of the size of codes is considered further.
The numbers Zh are formed in such a manner as to satisfy the recurrent
condition:

 1
11 ,, 

  h
hhh ZZ  , (2)

5

where  h  0 1 2, , ,...; - is the basis of the encoding system. The

expression h
 will be further used to express the basic function

 f h, , which (as shown above) does not always equal the value of

h
.

Considering (1) and (2) simultaneously, we find that:

    NK Z Z NK Z Zh h
h

h  
 , , 1

1 . (3)

For codes of real numbers on the real radix the inequality (3) is
equivalent to an inequality with modules

 Z Z Z Zh h
h

h  
 , , 1

1 ,

as in this case the code with big number of the senior meaning category
has the greater module and on the contrary.

Let's return again to generating sequence  Zh . Everyone h-

member Zh this sequence represents number Z with some accuracy,
namely to within the maximal module of the code having the size

 NK Z Zh . Hence, representation of number Z with an allowable

maximal absolute error  equivalently to calculation such m-member
Zm of generating sequence at which  NK Z Zm has the size

equal to the maximal size of number with the module, not exceeding  .
Let us denote:

 )(mHZZNK m  . (4)

2. Decomposition
2.1. Introduction
Let us proceed to describing the Zm calculation algorithm, for

which purpose we have first to consider the transition process from Zh

to Zh1 . The h generator of Zh is known. In order to determine the

(h+1) generator of Zh1 we must find the maximum value, ah1 , at

which Zh1 calculated using formula (1.2) will still satisfy condition

6

(1.1). Obviously,  Z Zh h 1
0

 satisfies this condition if ah 1 0 ,

where ah 1 1. The value,    Z Zh h
h


1

1 11 , ,  , should be

tested to see if it satisfies condition (1.1). The test consists in comparing

the code values of numbers  Z Zh and   Z Z
h


1
1 . There are

three possible options in this comparison:

a)     NK Z Z NK Z Zh h  1
1 - this inequality indicates

that ah 1 1 and  Z Zh h 
1 1

1 ;

b)     NK Z Z NK Z Zh h  1
1 - this inequality indicates

that ah 1 0 and Z Zh h 1 ;

c)     NK Z Z NK Z Zh h  1
1

- this inequality indicates

that ah 1 1 and values    Z Zh h
h


1

2 12 , ,  or

    Z Zh h
h

 
1

2
1

1 11 , ,  should be tested for satisfying

condition (1.3). This test is carried out in a similar way by

comparing the codes of numbers   Z Z
h


1

1 and

  Z Z
h


1

2 . The test results either in the determination of the

values of a ah h  1 11 2or and

   Z Z Z Zh h h h   
 1 1

1
1 1

2or , or in the transition to

code inquiry of numbers   Z Z
h


1
2 and   Z Z

h


1
3 ,

where     Z Zh h
h

 
1

3
1

2 11 , ,  .

Consequently, as a result of the consistent use of testing with respect to

code values of   Z Z
h




1

1 and   Z Z
h


1
 , where

7

  0 1 2 1, , ,...ah , the value,  Z Zh
a

h
h

 



1 1

1 , is determined

based on the known value Zh . Obviously, the calculation process of the
(h + 1) generator by the known h generator may be initiated from the first
Z1 generator and finished with the mth generator of Zm . The algorithm

describing the hth calculation cycle of Zm looks like this:

2.2. Algorithm of decomposition
In the future calculation of the generating sequence will be called the

decomposition, ie the representation of a complex number as a sum or
product of some other famous numbers - the elements of the expansion.

The algorithm, describing h-cycle of calculation Zm , has the
following appearance.

The difference is known previous generatrix
   Z Z
h prev
   012, , ,... , hmH),(and difference

E Z Zprev prev  .

1. The next expected generator  Z Z
h next
 1

 is

determined using the formula

 Z Znext prev
h  , ,1 1 (1)

2. Calculate the difference E Z Znext next  .

3. Compare values  H NK Eprev prev and

 H NK Enext next . Then, according to the

comparison results of Hprev and Hnext :

4. Determine the number  


 









h
h H H

h H H
next prev

next prev

if

if1
 of

the next cycle.

8

5. Determine the value of the previous generator


















prevnextnext

prevnextprev
prev HHZ

HHZ
Z

if

if
 for the next

cycle.
6. Determine the difference    E Z Zprev prev for the

next cycle.
7. Examine the fulfillment of the condition

H H mnext  () : if this equality is satisfied, it indicates

that the mth generator has been found for Zm , i.e. the
calculation is finished; if it is not satisfied, then the
h calculation cycle is carried out.

Table 1
Result of check h Zprev Z Zprev  Wprev

H Hnext prev h+1 Znext Z Znext Wnext

H Hnext prev h Znext Z Znext Wnext

H Hnext prev h+1 Zprev Z Zprev Wprev

Items 4, 5, 6 are carried out according to table 1 (without a column Wprev).

Thus if    NK Enext NK Eprev , then corresponding

element is included in structure of decomposition, i.e. the number ah

increases on 1; besides value of size E is updated  Eprev=Enext
and carried out transition to the following step with former value h.
Otherwise transition to the following step with reduced on 1 value h and
value ah  0 is carried out.

9

Результат

 1 hprevnext xZZ 

nextZZ 

prevnext HH  1 hh
)(mHHnext  prevnext HH 

prevnext HH prevnext HH 

nextprev ZZ 

nextprev ZZZZ 

nextprev WW  prevprev WW 

prevprev ZZZZ 
prevprev ZZ 

 1 hprevnext xZZ 

h-цикл
h -цикл

Fig. 1.

The sequence of numbers ah grows out decomposition. Each
potential element of decomposition can be absent in concrete
decomposition or be present at it, repeating ah time, i.e. some cycles

can have same number (at ah 1 1); therefore the number of cycles

 can surpass number of generatrixes m.
Thus, on algorithm of decomposition the generating sequence

 Zh is calculated. This algorithm contains only elementary
instructions of addition, subtraction and comparison of the sizes and
consequently is easily realized in the arithmetic unit. More evidently the
sequence of elementary operations of algorithm of decomposition is
represented on fig. 1 (without the allocated block).

2.3. Variants of decomposition
Table 2 and table 3 lists the types of decomposition, which are used

later, and the formula for calculating them.

10

Table 2
Designation Application

D2 DecompLogar Decomposition of the sum of
logarithms

D3 DecompBinom Decomposition of the product
binomials

D32 DecompBinomInv Decomposition into an inverted
product binomials

D4 DecompBinom2 Decomposition of the product of
the squares of binomials

D42 DecompBinom2inv Decomposition into product of
inverse squares of binomials

D2R DecompLogarReal Decomposition of the sum of the
logarithms of real numbers (h -
even)

D3R DecompBinomReal Decomposition of the product of
real binomials (h - even)

D32R DecompBinomInvReal Decomposition into an inverted
product of real binomials (h - even)

D4R DecompBinom2real Decomposition into product of
squares of real binomials (h - even)

D42R DecompBinom2invReal Decomposition into product of
inverse squares of real binomials (h
– even)

Detailed algorithms for these decomposition are resulted further. In
these algorithms the following designations are accepted:

Compar– function of comparison of complex numbers on the
module,

Accum– function of record in the given category of the
accumulator,

Even– function of check of parity of number,

Logar – function of a choice of a constant  ln 1  h ,

Z– given complex number,
Eprev– previous value of result,
Enext– next value of result,
DZ– increment,
H – current number of the category, Hmin =< H =< Hmax
Iter– counter of iterations,

11

R– current value of the category of a collector,
A, B –intermediate results (complex numbers).

Table 3.
Decomposition Zo Enext = Eo

D2    h
haZ 1ln 0  h 1lnEprev Z

D3  hahZ   1 1  Eprev Eprev  Z h Z-1

D32  hah

Z   11 Z  Eprev Eprev  1  h 1-Z

D4   hahZ
 

2
1  1   Z Z h   Eprev 1

2
 Z-1

D42   hah

Z
 

2
11 

Z   1 1 1
2

   Eprev  h 1-Z

D2R    h
haZ 1ln 0  h 1lnEprev Z

D3R  hahZ   1 1  Eprev Eprev  Z h Z-1

D32R  hahZ   11 Z  Eprev Eprev  1  h 1-Z

D4R   hahZ
 

2
1  1   Z Z h   Eprev 1

2
 Z-1

D42R   hahZ
 

2
11  Z   1 1 1

2
   Eprev  h 1-Z

Function DecompBinom (Z)
Function DecompBinom2 (Z)

H = Hmax
Iter = 0

Begin:
R = 0
If H = Hmax Then Eprev = Z - 1
Im(A)=0
If Even(H) Then Re(A) = (-2)^H Else Re(A) = (-2)^(H-1)

Compar:
B = Z - Eprev
If Even(H) Then ' shift on 2H categories to the right

DZ = A
Else ' shift on 2 (H-1) categories to the right and multiplication on j

DZ = j * A

12

End If
B = B + DZ * B
B = B + DZ * B ‘ is present only at function DecompBinom2
Enext = Z - B
Iter = Iter + 1
If Compar(Enext, Eprev) = 1 Then ‘ Enext=<Eprev

R = R + 1
Eprev = Enext
GoTo Compar

Else ‘ Enext>Eprev
Enext = Eprev

End If
Accum(-H + Hmax) = R

 H = H - 1
 If H = Hmin Then GoTo End Else GoTo Begin
End:

Function DecompBinomReal (Z)
Function DecompBinom2Real (Z)

H = Hmax
Iter = 0

Begin:
R = 0
If H = Hmax Then Eprev = Z - 1
Im(A)=0
Re(A) = (-2)^H

Compar:
B = Z - Eprev
DZ = A ' shift on 2H categories to the right
B = B + DZ * B
B = B + DZ * B ‘ is present only at function DecompBinom2Real
Enext = Z - B
Iter = Iter + 1
If Compar(Enext, Eprev) = 1 Then ‘ Enext=<Eprev

R = R + 1
 Eprev = Enext

GoTo Compar
 Else ‘ Enext>Eprev

Enext = Eprev
 End If

Accum(Hmax - H) = R

13

 H = H - 2
 If H <= Hmin Then GoTo End Else GoTo Begin
End:

Function DecompLogar (Z)
Function DecompLogarReal (Z)

H = Hmax
Iter = 0

Begin:
R = 0
If H = Hmax Then Eprev = Z Else Eprev=Enext
DZ = Logar(H)
Enext=Eprev-DZ

Compar:
Iter = Iter + 1
If Compar(Enext, Eprev) = 1 Then 'Enext=<Eprev

R = R + 1
 Eprev = Enext

Enext = Eprev - DZ
GoTo Compar

Else 'Enext>Eprev
Enext = Eprev

End If
Accum(-H + Hmax) = R

 H = H – 1 ‘for function DecompLogar
 H = H – 2 ‘for function DecompLogarReal
 If H = Hmin Then GoTo End Else GoTo Begin
End:

Fig. 2 shows a diagram of decomposition algorithms DecompBinom
and DecompBinom2. Highlighted in this figure refers only to block the last
of these decompositions. Fig. 3 shows the decomposition algorithms
DecompBinomReal and DecompBinom2Real. Highlighted in this figure refers
only to block the last of these decompositions.

14

H = Hmax

H = Hmax
Iter = 0

R = 0

Eprev = Z-1

No

Yes

Even(H)
No, odd

Yes, even

Compar(Enext, Eprev)

1, Enext=<Eprev

Enext = Z - B
Iter = Iter + 1

Im(A) = 0

Re(A) = (-2)^H

Re(A) = (-2)^H

B = Z - Eprev

Even(H)
No, odd

Yes, even

DZ = A

DZ = j * A

B = B + DZ * B

B = B + DZ * B

R = R + 1
Eprev = Enext

H = Hmin

Enext = Eprev
Accum(Hmax-H) = R

H = H - 1

YesNo

Enext>Eprev,
0

Fig. 2

15

H = Hmax

H = Hmax
Iter = 0

R = 0

Eprev = Z-1

No

Yes

Compar(Enext, Eprev)

1, Enext=<Eprev

Enext = Z - B
Iter = Iter + 1

Im(A) = 0

Re(A) = (-2)^H

B = Z - Eprev

DZ = A

B = B + DZ * B

B = B + DZ * B

R = R + 1
Eprev = Enext

H <= Hmin

Enext = Eprev
Accum(Hmax-H) = R

H = H - 2

YesNo

Enext>Eprev,
0

Fig. 3

Fig. 4 shows a algorithm diagram of decompositions
DecompBinomLogar and DecompBinomLogarReal. Highlighted in this figure
blocks «Н-1» and «Н-2» relate only to the decomposition
DecompBinomLogar and DecompBinomLogarReal respectively.

16

H = Hmax

H = Hmax
Iter = 0R = 0

Eprev = Z-1
No Yes

Iter = Iter + 1

DZ = Logar(H)
Enext=Eprev-DZ

R = R + 1
Eprev = Enext

Enext = Eprev - DZ

Eprev = Enext

Compar(Enext, Eprev)

Enext=<Eprev,
1

Enext>Eprev, 0

H = Hmin

Enext = Eprev
Accum(Hmax-H) = R

YesNo

H = H - 1H = H - 2

Fig. 4

3. Compositions
As stated earlier, the result of decomposition is the ah sequence of

numbers. Obviously, it is possible to restore the number that was
decomposited from this sequence. We are going to refer to this
calculation as composition. This operation is the opposite of
decomposition and consists in calculating a complex number as a sum or
product of certain other known numbers that are elements of
decomposition. In this context such representation of a number will be
called composition. It should also be noted that in the process of

17

composition the elements of decomposition may be converted or
substituted by other elements. That is the essence of composition and we
will use this method later on.

Table 4.
№ Designation Application Formula

С2 CompBinom Composition
binomials  hahW   1

С2А CompBinomA Composition
binomials   hahAW   1

С3 CompLogar Composition for
the logarithm

   h
haW 1ln

С4 CompLogarAngle Composition for
the argument of
complex
number

    h
hajW 1lnIm

С5 CompLogarModul Composition for
the logarithm of
the modulus

    h
haW 1lnRe

С7 CompBinomConjug Composition for
the adjoint of
the square root

  hahW   ~1

С8 CompBinomModul Composition for
the module    hahhW     ~11

С8A CompBinomModul Composition for
the module    hahhAW     ~11

С9 CompBinom2 Composition
binomials
squared

  hahW 21  

С9А CompBinom2A Composition
binomials
squared

  hahAW 21  

C4
and
C9A

Argument and
the module
(once)

    hjZ 1lnIm2)arg(

  hhZ    ~11

In the table 4 variants of compositions are submitted. The
composition represents iterative process, where on each step the number
ah is known and change of the previous value of required complex
number under the formulas resulted in table 1 is carried out. Each
potential element of decomposition can be absent in concrete
decomposition or be present at it, repeating ah time.

Detailed algorithms for these composition are resulted further. In
these algorithms the following designations are accepted:

18

A – given complex number; argument of some compositions (is
present at compositions with the termination 'A'; in other
compositions A=1),

Accum– function of record in the given category of the
accumulator,

Even– function of check of parity of number,

Logar – function of a choice of a constant  ln 1  h ,

Unit – function of a choice of a constant «1 in the h-category» or
shift of complex number A on h-categories (at And <> 1),

Wprev– previous value of result,
Wnext– next value of result,
DW– increment,
H – current number of the category, Hmin =< H =< Hmax
Iter– counter of iterations,
k – counter of value of the category of a collector,
R– current value of the category of a collector,
В – intermediate variable (complex number).

Fig. 5 shows a chart of algoritm CompBinom.
Fig. 6 shows a chart of algoritm CompLogar.

19

H = Hmax

H = Hmax
Iter = 0

Wprev = 1

No

Yes

Even(H)
No, odd

Yes, even

Im(A) = 0

Re(A) = (-2)^H

Re(A) = (-2)^(H-1)

k = 0

Even(H)
No, odd

Yes, even

DZ = A

DZ = j * A

Wnext = Wprev + Wprev * DW
Wprev=Wnext

k = k + 1

R = Accum(Hmax - H)

R = 0
Yes

No

Iter = Iter + 1

k < R
Yes

No

H > Hmin
Yes No

H = H - 1

Fig. 5.

20

H = Hmax

H = Hmax
Iter = 0

Wprev = 1

No

Yes

DW = Logar(H)
k = 0

R = Accum(Hmax - H)

R = 0
Yes

No

Iter = Iter + 1
Wnext = Wprev + DW

Wprev = Wnext
k = k + 1

k < R
Yes

No

H > Hmin
Yes No

H = H - 1

R = 0

Fig. 6.

Function CompBinom ()
H = Hmax
Iter = 0

Begin:
If H = Hmax Then Wprev=1
R = Accum(Hmax - H)
If R = 0 Then GoTo Lab2
Im(A)=0
If Even(H) Then Re(A) = (-2)^H Else Re(A) = (-2)^(H-1)
k = 0

Lab1:
Iter = Iter + 1
If Even(H) Then ' shift on 2H categories to the right

DW = A

21

Else ' shift on 2 (H-1) categories to the right and multiplication on j
DW = j * A

End If
Wnext = Wprev + Wprev * DW
Wprev=Wnext
k = k + 1
If k < R Then GoTo Lab1

Lab2:
H = H - 1
If H > Hmin Then GoTo Begin

End:

Function CompLogar ()
H = Hmax
Iter = 0

Begin:
R = 0
If H = Hmax Then Wprev = 1
R = Accum(Hmax - H)
If R = 0 Then GoTo Lab1
DW = Logar(H)
k = 0

Lab2:
Iter = Iter + 1
Wnext = Wprev + DW
Wprev = Wnext
k = k + 1
If k < R Then GoTo Lab2

Lab1:
H = H - 1
If H > Hmin Then GoTo Begin

End:

22

4. Two-step Operations
4.1. Introduction
Let us now consider a certain function, W f Z () . If the

generating sequence  Zh for the number Z is known, then the

generating sequence  Wh of the number W can be calculated, since

W f Zh h () . Specifically, the previous generator,

W f Zprev prev () , and the next generator, W f Znext next () , or

taking into account the formula (1.2),

  W f Znext prev
h  , ,1 1 (1)

It is often possible to represent the expression (1) as follows:

 W Wnext prev
h  , ,1 1 (2)

Thus, calculation m-generatrix Wm , representing function W f Z ()

with an allowable maximal absolute error  , is reduced to algorithm of
decomposition and calculations under the formula (2). The number
generatrixes m is defined, still, from a condition (1.4), where Zm - m-

generatrix of argument, having an absolute error  . The necessary value
of an error  is defined by value of an error  and a kind of function
W f Z () .

4.2. Algorithm of function evaluation
So, calculation of value of function with an allowable error can be

made on algorithm, which basically coincides with algorithm of
decomposition and describes h-cycle of calculation. Difference consists
only that still the value prevW in the beginning is known, and the item 5
of algorithm has the following view:

5. Value previous generatrix Zprev and Wprev for the following

cycle, where

















prevnextnext

prevnextprev
prev HHZ

HHZ
Z

if

if
 and

23

 















W

W H H

W H Hprev
prev next prev

next next prev

if

if
, is defined. Thus it

Wnext is calculated (if it is necessary) under the formula (2).
Items 4, 5, 6 are carried out according to table 1 (with a column Wprev).

More evidently the sequence of elementary operations of algorithm of
decomposition is represented on fig. 1 (with the allocated block).

The expediency of function computing on this algorithm is
completely defined by complexity of calculations under formulas (1) and
(2), i.e. a kind of function W f Z () . In the event that calculations
under formulas (1) and (2) are reduced to such operations which are
simply realized on digital schemes, application of a method «digit-by-
digit» for function W f Z () computing it is effect. This method can
be realized both program, and hardware way. The set of operations of the
processor should contain operation of comparison of the sizes of codes,
after which signals of conditional transition on this or that direction in
the program of calculations are developed, in the first case. The hardware
way can be used, if calculations under formulas (1) and (2) are made only
by means of so-called "short" or elementary machine operations: shift,
addition, subtraction.

4.3. About hardware realization
At hardware realization of the specified algorithm, as a rule, it is

expedient to carry out it in two stages:
1) decomposition of argument Z, i.e. calculation of sequence

of numbers ah ,

2) composition, i.e. iterative function W f Z ()
calculation under the formula

 W W anext prev h
h  , ,  1 .

So, hardware calculation of some functions W f Z () will consist of
two steps with use of a collector (described above):

1. decomposition of number Z and filling of a collector,
2. composition of number W at the given filling a collector.

24

Table 5.
Operation D С

  hhZ     ~11 D4 C8

   hZ 1 D4 C2

   hZ ~1~ D4 C7

   hZe 1 D2 C2

   hZ 1ln)ln(D3 C3

   hZ 1ln2)ln(D4 C3

     hjZ 1lnImarg D3 C4

     hjZ 1lnIm2arg D4 C4

   hZ 1lnReln D3 C5

   h

Z
1 D1 C1

   hj ZeZZ  1 D2 C2A

    hjZ 1lnIm2)arg(,

  hhZ     ~11

D4 C4
and
C8

In table 5 such operations are listed. Communication is specified in
table 6 between functions, compositions and decomposition.

Table 6.
D1 D2 D3 D4

C1 Division
C2 Exponentiation Identically Square-rooting
C3 Identically Logarithm
C4 Argument
C5 Modulus

Logarithm
C7 Conjugated

Square-rooting
C8 Modulus
C9 Identically

25

5. Taking the logarithm
5.1. Definition of the natural logarithm of complex number (a
variant 1).
Taking the logarithm it is based on the following: if

 y h ah   1  , then    h
hay 1ln)ln(. The algorithm of

definition of the natural logarithm of complex number will consist in the
following:

1. The number yZ k)2( , where y - mantissa, k – exponent, is
given.

2. Decomposition under the formula  y h ah   1  -

“DecompBinom”.
3. Composition under the formula  ln() lny w ah

h   1 

- “CompLogar”.
4. Calculation of     ln ln() ln ln()Z k y S      2 1 .

Here  ln ln() ln() ln()     2 1 2 2j .

Thus,  ln ln() () Re ImZ k w k S j Z Z      2  ,

where  Re ln() Re , Im ImZ k w Z j k S w     2  .

5. Definition of a principal value of the natural logarithm. In it the
imaginary part is in limits    ImZ . Therefore the
imaginary part of a principal value is defined under the formula:

 g Z Z
g g

g gmain 








 












int Im , Im

,

.2 2



 

if

if
.

6. Normalization of result.

5.2. Calculation of the logarithm of the module of complex
number
The algorithm of calculation of the logarithm of the module of

complex number is based that  ln Re ln()Z Z , and differs from
algorithm taking the logarithm by a variant 1 only that in item 3 instead

26

of a composition “CompLogar” the composition “CompLogarModul” is
used:

3. Composition under the formula   W ah
h  Re ln 1  -

“CompLogarModul”.

5.3. Definition of the natural logarithm of complex number (a
variant 2)
Taking the logarithm in this case it is based on the following: if

  hahy
 

2
1  , then    h

hay 1ln2)ln(.
Accuracy taking the logarithm by this variant is less than accuracy taking
the logarithm by the first variant, but as it will be clear from the further,
this variant is well combined with other calculations. The algorithm will
consist in the following:

1. The number yZ k)2( , where y - a mantissa, k – exponent,
is given.

2. Decomposition under the formula   hahy
 

2
1  -

(“DecompBinom2”).

3. Composition under the formula  w ah
h  ln 1  -

(“CompLogar”).
4. Calculation of     ykZ ln)2ln(ln  .

Here  ln ln() ln() ln()     2 1 2 2j . Thus,

 ln ln() Re ImZ k Y kj Z Z     2  , where

Re ln() Re , Im ImZ k Y Z kj Y    2  .

5. Definition of a principal value of the natural logarithm. In it the
imaginary part is in limits    ImZ . Therefore the
imaginary part of a principal value is defined under the
formula:

 g Z Z
g g

g gmain 








 












int Im , Im

,

.2 2



 

if

if
.

6. Normalization of result.

27

5.4. Definition of the natural logarithm of positive real number
The algorithm of definition of the natural logarithm of a positive real

number will consist in the following:

1. The number yZ k)2( , where y>0 - a mantissa, k –
exponent, is given.

2. Decomposition of number y>0 under the formula

 y h ah   1  - “DecompBinomReal”.

3. Composition under the formula  w ah
h  ln 1  -

(“CompLogar”).
4. Calculation of    wkZ )2ln(ln . Here,

 if k – even, then  ln ln()Z k w  2 ,

 if k – odd, then   wkZ )2ln(ln  .
5. Normalization of result.

5.5. Definition of the natural logarithm of negative real number
The algorithm of definition of the natural logarithm of a negative

real number will consist in the following:
1. The number yZ k)2( , where y<0 - mantissa, k –

exponent, is given.
2. Decomposition of number (-y)>0 under the formula

 y h ah   1  - (“DecompBinomReal”).

3. Composition under the formula  w ah
h  ln 1  -

(“CompLogar”).
4. Calculation of    )1ln()2ln(ln  wkZ . Here,

 if k – even, then   wkZ )2ln(ln  ,

 if k – odd, then  ln ln()Z k w  2 .
5. Normalization of result.

5.6. Definition of the natural logarithm of real number
Calculation in this case begins with the analysis of a sign taking the

logarithm numbers and the reference to taking the logarithm positive or a
negative number.

28

6. Potentiation
6.1. Potentiation of complex number - Potentiating
Potentiation will consist in definition of number Z eX in a

complex degree  X mp  2 , where m - mantissa, p - exponent. The
algorithm of potentiation is based on the following: if

   h
haX 1ln then  hahXe   1 . We shall notice,

that

,)2(,)2()2ln()2ln(  ee
 ln ln() ln() ln()     2 1 2 2j .

Let's transform the given number Х:

 .2)2(
2

)2ln(

)
2

2()2ln(2

)
2

2()2ln(2

Im)2ln(2ImRe

xjxj

xjjx

xjx

XjxXjXX

















Thus,

.2)2(
2

Im,2)2ln(Re 





  xjXjxX 

In these parities

 - the whole part from quotient ,
)2ln(

Re XX 

 - the whole part from quotient .
2

Im


XX 

x2 - the fractional part from quotient ,
)2ln(

Re XX 

x 2 - the fractional part from quotient .
2

Im


XX 

From here follows, that

29

 

 

,)2(

)2()2(

2)2(
2

2)2ln(exp)exp(

2
0

22)2(
22












y

jyjxjx

e

eeee

xjxX

















 



where  y x jx    ,     2 , 0
2 
j

e ,


















oddif1

evenif1
0




 .

Here







































2if1

1if

0if1

1if 0










j

j

, where  1,0,1,2  - the rest

about divisions of an integer  on 4.

The algorithm of potentiation will consist in the following:
1. The number  X mp  2 , where m - mantissa, p - exponent, is

given.
2. If X  0 , then Z  1.

3. Calculation of    X X X XRe
ln()

, Im .
2 2

4. Allocation from numbers  X X, the whole  , and

fractional  x x, parts accordingly.

30

5. Calculation of fractional parts
4

,
2

)2ln(xyxy 

and formation of a code of number  yjyy  , which
does not contain exponent.

6. Decomposition of number  yjyy  under the

formula  y ah
h  ln 1  - “DecompLogar”.

7. Composition under the formula  W h ah   1  -

“CompBinom”.
8. Calculation of value  under the above-stated formula depending

on younger categories of codes of numbers ., 
9. Definition of 2)2()exp(WX  

10. Normalization of result.

6.2. Potentiation of real number - PotentiatingReal

Potentiation will consist in definition of number Z eX in a real

degree  X mp  2 , where m - mantissa, p - exponent. By analogy
with previous we shall notice, that

,)2(,)2()2ln()2ln(  ee
 ln ln() ln() ln()     2 1 2 2j .

Let's transform the given number Х:
.)2ln()2ln( jxxX 

In these parities

 - the whole part from quotient ,
)2ln(

XX 

y - the fractional part from quotient .
)2ln(

XX 

From here follows, that
  

,)2()2(2

2)2ln(exp)exp(
2

0
22 


 xjxjx eeeee

jxX
 



31

where 0 je ,


















oddif1

evenif1
0




 . Obviously, 1 .

Hence, yeX )2()exp( .

The algorithm of potentiation of real number will consist in the
following:

1. The number  X mp  2 , where m - mantissa, p - exponent,
is given.

2. If X  0 , then Z  1.

3. Calculation .
)2ln(

XX 

4. Allocation from number X  the whole  and fractional y
parts.

5. Decomposition of number y under the formula

 y ah
h  ln 1  - “DecompLogarReal”.

6. Composition under the formula  W h ah   1  -

“CompBinom”.
7. Definition WX  )2()exp(
8. Normalization of result.

7. Operations with logarithmic forms
7.1. Logarithmic form representation
The logarithmic form is submitted on fig. 7 and used for

representation of complex number as  jemZ  2 , where  - an
integer, m – fractional positive number,  - a real number, a principal

value of argument which to be in limits       . At the same
time,

  is written to the exponent,
  log2 m is written to the real part of the

mantissa,

32

 number
16
 jj  is written to the imaginary part

of the mantissa, while
1616



 .

63 62 ….… 54 53 52 ….… 2 1 0
Exponent  Logarithm of mantissa  M2log

Fig. 7.

7.2. Formations of the logarithmic form - FormLogar
1. The number Z Mk  ()2 is given.
2. It will be transformed to a kind

Z z z M
d

k d k

k d k
 

  

    












2

1

1 2





, ,

,

,
where

if even

if odd
3. Taking the logarithm mantissas z - calculation the natural

logarithm    ln lnz z j   ; in the process, the principal
value of argument of the mantissa logarithm, which has to fall
within the range       , is written to the imaginary
part

4. Calculation    m z z  log ln
ln()2

1
2

5. Writing the number  to the exponent.
6. Writing the number  m z log2 to the real part.

7. Writing the number
16
 jj  to the imaginary part.

Addressing the general algorithm of taking the logarithm, let us review
the algorithm of taking the logarithm of the value z , which involves the
following:

1. Transformation of the number M into a form that would enable the
decomposition required for taking the logarithm. As a result of the
transformation, the number S and the complex number y = Q *z are
determined

33

2. Decomposition formula  y h ah   1  - “DecompBinom”.

3. Composition formula  ln() lny w ah
h   1  - “CompLogar”.

4. Calculation   ZZZ ImReln  , where

wjSZwZ ImIm,ReRe   .

5. Determination of the principal value of the natural logarithm. Its
imaginary part falls within the range    ImZ . Therefore,
the imaginary part of the principal value is determined by the
formula:

 g Z Z
g g

g gmain 








 












int Im , Im

,

.2 2



 

if

if
.

7.3. Return from the logarithmic form – RetLogar
1. The given number is  jwV )log(.
2. Allocation of number  from exponent.
3. Allocation of number  m w log2 from real part.

4. Allocation of number
16
 jj  from imaginary part.

5. Calculation   MqZ 2 , где
 jmM 16)2ln(exp  ,


















oddif,1

evenif,1




q

Addressing to the general algorithm exponentiation, we shall consider
algorithm exponentiation number Х, which will consist in the following:

1. If X  0 , then 1M .

3. Calculation .32
2

Im,
)2ln(

Re






XXmXX

34

4. Allocation from among  X X, the whole  ,0 and

fractional xmx  , parts accordingly. Allocation of the

whole and fractional parts is carried out in such a manner, that
fractional parts of number  y x jx    are in the
following limits:

   
       

2 2
3

2
3 3 6

ln ln
, .x x 

5. Decomposition of the number  y x jx    under the formula

 y ah
h  ln 1  - “DecompLogar”.

6. Composition by the formula  W h ah   1  - “CompBinom”.

7. Definition WX )exp(. Here







































2if1

1if

0if1

1if










j

j
, where

 is the remainder from dividing an integer  by 4.

7.4. Algebraic addition of logarithmic forms
Multiplication and division of the numbers, submitted in the

logarithmic form, is equivalent to algebraic addition of these forms.

Really, if     Z m e j2  and     Z m e j2  , then

        Z Z m m e j2   () . In this group the following
operations are stipulated:

 Addition - AddLog
 Subtraction - SubLog
 Inversion - InvLog

Algebraic addition of logarithmic forms is carried out under the following
scheme:

 Algebraic addition of exponents

35

 Algebraic addition of mantissas

7.5. Multiplication of the logarithmic form by an integer -
PowerLogar
At a positive integer this operation is equivalent to erection in the

whole degree. At a negative integer this operation is equivalent to
division «1» on a root of the whole degree. Operation is carried out under
the following scheme:

 Multiplication of exponent of the logarithmic form
on an integer

 Multiplication of mantissa of the logarithmic form
to an integer

In this group the following operations are stipulated separately:
 Squaring - QuadrLogar
 Division «1» on a square root - MinusQuadrLogar

7.6. Overflow
At algebraic addition of logarithmic forms and multiplication of the

logarithmic form to an integer can arise overflow.
 At overflow of the logarithm  m z log2 on the real

integer s we have:     log log2 2z s z   and

     s , that is at occurrence of carry s from the
real part of a mantissa this carry develops with exponent.

 At occurrence of carry s from an imaginary part of a

mantissa from it the number is subtracted 8
s .

8. Extraction of a square root
8.1. Extraction of a square root from complex number
Extraction of a square root it is based on the following: if

 X h ah   
 1

2
 , then  hahX   1 . More, this

operation is considered a [5]. The algorithm will consist in the following:

1. The number Z Mk  ()2 , where mantissa, k – exponent,
is given.

36

2. Reduction of the given number a kind Z a Mm   ()2 2 .
Here,

if k - even, then 2m=k, a=1;
if k - odd, then 2m=k-1, a=-2.

3. Decomposition under the formula  X h ah   
 1

2
 -

“DecompBinom2”.

4. Composition under the formula  W h ah   1  -

“CompBinom”.

5. Formation of result  Z Ym  2 .
6. Normalization of result.

8.2. Extraction of a square root from conjugation number
The algorithm of extraction of a square root from the conjugation

complex number differs from algorithm of extraction of a square root
from complex number only that in item 5 instead of a composition
“CompBinom” the composition “CompBinomConjug” is used:

5. Composition under the formula  W h ah   1 ~ -

“CompBinomConjug”.

8.3. Extraction of a root from a positive real number
The algorithm of extraction of a square root will consist of a positive

real number in the following:
1. The number Z Mk  ()2 , where mantissa, k – exponent, is given.

2. Decomposition under the formula  X h ah   
 1

2
 -

“DecompBinom2real”.

3. Composition under the formula  W h ah   1  - “CompBinom”.

4. Formation of result  Z Ym  2 .
5. Normalization of result.

9. Polar coordinates
Below algorithms of calculation of polar coordinates, and also some

auxiliary algorithms are described.

37

9.1. Calculation of the module of complex number
The algorithm of calculation of the module of complex number

differs from algorithm of extraction of a square root from complex
number only that in item 5 instead of a composition “CompBinom” the
composition “CompBinomModul”: is used:

5. Composition under the formula    hahhW     ~11 -
“CompBinomModul”.

It follows from the formula ZZZ ~

9.2. Calculation of argument of complex number (a variant 1)
The algorithm of calculation of argument of complex number differs

from algorithm taking the logarithm by a variant 1 only that in item 4
instead of a composition “CompLogar” the composition “CompLogarAngle”
is used:

3. Composition under the formula   W j ah
h    Im ln 1 

- “CompLogarAngle”.
It follows from the formula   arg()Z j   Im ln Z .

9.3. Calculation of argument of complex number (a variant 2) -
AngleSqr
Calculation of argument of complex number is based on the formula

  Zln2Im)arg( jZ . The algorithm will consist in the
following:

1. The number Z Mk  ()2 , where mantissa, k – exponent, is
given.

2. Reduction of the given number a kind Z a Mm   ()2 2 .
Here,

if k - even, then 2m=k, a=1;
if k - odd, then 2m=k+1, a=-1/2.

3. Transformation  MafX  1 , where X is in the first semi-
quadrant - see operation «Segmentation before extraction of a root».

4. Decomposition under the formula  X h ah   
 1

2
 -

(“DecompBinom2”).

38

5. Composition under the formula

  W j ah
h    2 1Im ln  - “CompLogarAngle”.

6. Transformation  aWfY 3 - see operation «Segmentation for taking
the logarithm». Here   MY lnIm .

7. Calculation of        MmZZ ln)2ln(2ImlnImarg  .
Here  ln ln() ln() ln()     2 1 2 2j . So

  mjYZ 2arg  . Composed, multiple 2 , it is possible
to reject. Therefore   YZ arg .

8. Normalization of argument   YZ arg .

9.4. Calculation of polar coordinates - CartesianToPolar
Transformation of rectangular coordinates in polar is equivalent to

calculation of argument and the module of complex number. The
corresponding algorithm will consist in the following:

1. The number Z Mk  ()2 , where mantissa, k – exponent, is
given.

2. Reduction of the given number a kind Z a Mm   ()2 2 .
Here,

if k - even, then 2m=k+2, a=1/4;
if k - odd, then 2m=k+3, a=-1/8.

3. Transformation  MafX  1 , where X is in the first semi-
quadrant - see operation «Segmentation before extraction of a root».

4. Decomposition under the formula  X h ah   
 1

2
 -

“DecompBinom2”.
5. Composition under the formula

  W j aa h
h    2 1Im ln  - “CompLogarAngle”.

6. Composition under the formula    Wm
h h ah    1 1 ~ -

“CompBinomModul”.
7. Transformation  mWfV 2 – see operation «Segmentation after

extraction of a root».
8. Formation of result as VZ m 32  - see item 4.

39

9. Transformation  aWfY 3 – see operation «Segmentation for
taking the logarithm». Here   MY lnIm .

10. Calculation of        arg Im ln Im ln() lnZ Z k M    2 .

So  ln ln() ln() ln()     2 1 2 2j . Therefore,

 arg Z Y kj   .
11. Definition of a principal value of argument. In it the imaginary

part is in limits    ImZ . Therefore the principal
value of argument is defined under the formula:

 g Z Z
g g

g gmain 








 












int arg , arg

,

.2 2



 

if

if
.

9.5. Return from polar coordinates - PolarToCartesian
Transformation of polar coordinates in rectangular will consist in

calculation under the formula jeXX  , where ,X - polar
coordinates, real numbers.
The algorithm will consist in the following:

1. The number jeXX  , submitted by a mantissa m and

exponent p is given. Thus   16)Im(),Re(2 jmmX p  .

2. If 0X , then Z  1.

3. Formation of number  )Im(2 4 mj  .

4. Calculating of je (operation Ort).
5. Multiplication jeXZ  .

9.6. Calculation of a sine and cosine a real number – Ort
This problem will consist in definition of number jXeZ  , where

a real number  X mp  2 , m - mantissa, p - exponent. Number
XjXZ SinCos  received in result. This calculation in many

respects is similar to potentiation.

Let's transform the given number: .2
2 






  xjjX 

In these parities

40

 - the whole part from quotient .
2

XX 

x 2 - the fractional part from quotient .
2

XX 

From here follows, that

  ,2
2

exp)exp(222 
 yjxj eeexjjX 











  

where  xjy  ,


 2
j

e .

Here







































2if1

1if

0if1

1if










j

j
, where  1,0,1,2  - the rest about

divisions of an integer  on 4.
The algorithm will consist in the following:

1. The number  X mp  2 , where m - mantissa, p - exponent, is
given.

2. If X  0 , then Z  1.
3. Calculation of .

2
XX 

4. Allocation from number X  the whole  and fractional x 
parts accordingly.

5. Calculation of fractional parts
4
xy  and formation of a

code of number y , which does not contain exponent.
6. Decomposition of number y under the formula

 y ah
h  ln 1  - “DecompLogar”.

41

7. Composition under the formula  W h ah   1  -

“CompBinom”.
8. Calculation of value  under the above-stated formula depending

on younger categories of codes of number .
9. Definition of 2)exp(WX 
10. Normalization of result.

9.7. Definition semi-quadrant - Semiquadrant
In this operation number of semi-quadrant, in which there is a

complex number - see fig. 8 is defined. Definition carries out «Block of
definition of semi-quadrant».

Fig. 8.

9.8. Segmentation before extraction of a root -
SemiquadrantTransOne
In this operation such transformation complex numbers

jeXX  , at which it moves in semi-quadrant 11 (see table 7), is

carried out. Further it is transformations we shall designate as  f X1 .

At this transformation the number X will be transformed to number
jeXX  with argument 045 � .

42

Table 7.
Site of number

X
Quad
-rant

Semi-
quad-
rant

ReX ImX
Parity between
|Re| and |Im|

 f X1
11 |Re| > |Im| Without changes1
12

ReX>0 ImX>0
|Re| < |Im| Mirror display

concerning a bisector of
the first quadrant

21 |Re| > |Im| Mirror display
concerning an axis of
ordinates

2

22

ReX<0 ImX>0

|Re| < |Im| Turn on (-90)
31 |Re| > |Im| Turn on (-180)3
32

ReX<0 ImX<0
|Re| < |Im| Mirror display

concerning a bisector of
the fourth quadrant

41 |Re| > |Im| Mirror display
concerning an axis of
ordinates

4

42

ReX>0 ImX>0

|Re| < |Im| Turn on (+90)

9.9. Segmentation after extraction of a root -
SemiquadrantTransTwo
In this operation transformation complex numbers

2
j

eXX  is carried out, where  XfX 1 . At this

transformation the number X  moves to that semi-quadrant, where

its argument equal
2


, i.e. the number accepts value 2
j

eXX 

- see table 8. Further it is transformations we shall designate as  Xf2 .

43

Table 8. Functions of transformation 21 ff  .
Site of number

X
Quad-
rant

Semi-
quad-
rant

ReX ImX
Parity between
|Re| and |Im|  f X2

11 |Re| > |Im| Without changes1
12

ReX>0 ImX>0
|Re| < |Im| Turn on (+45) and

mirror display concerning
a bisector of the first
quadrant

21 |Re| > |Im| Mirror display concerning
a bisector of the first
quadrant

2

22

ReX<0 ImX>0

|Re| < |Im| Turn on (+45)
31 |Re| > |Im| Turn on (-90)3
32

ReX<0 ImX<0
|Re| < |Im| Turn on (+135) and

mirror display concerning
a bisector of the second
quadrant

41 |Re| > |Im| Mirror display concerning
an axis abstsiss

4

42

ReX>0 ImX>0

|Re| < |Im| Turn on (-45)

9.10. Segmentation for taking the logarithm -
SemiquadrantTransThree
In this operation transformation complex numbers

  2lnlnln 2  jXeXX
j









 , is carried out, where

 XfX 1 . Thus the number is formed

  


jXeXX
j









 lnln2ln 2 .

Transformation is described by table 9. Further it is transformations we
shall designate as  Xf3 .

44

Table 9. Functions of transformation f f1 3 .
Site of number

X
Quad-
rant

Semi-
quad-
rant

ReX ImX
Parity

between
|Re|
and

|Im|

 f X3

11 |Re| >
|Im|  Re Ref X X3 2

 Im Imf X X3 2

1

12

ReX>0 ImX>0

|Re| <
|Im|  Re Ref X X3 2

 Im Imf X X3 2
2 



21 |Re| >
|Im|  Re Ref X X3 2

 Im Imf X X3 2 

2

22

ReX<0 ImX>0

|Re| <
|Im|  Re Ref X X3 2

 Im Imf X X3 2
2 



31 |Re| >
|Im|  Re Ref X X3 2

 Im Imf X X3 2  

3

32

ReX<0 ImX<0

|Re| <
|Im|  Re Ref X X3 2

 Im Imf X X3 2
2  



41 |Re| >
|Im|  Re Ref X X3 2

 Im Imf X X3 2 

4

42

ReX>0 ImX>0

|Re| <
|Im|  Re Ref X X3 2

 Im Imf X X3 2
2  



10. Operations with polar forms
10.1. The polar form of representation of complex number
On fig. 9 the polar form of a complex тгьиук)exp(2  jD  is

submitted. This form is used for representation of complex number in

polar coordinates, where D2 - module, real number,  - real

45

number, a principal value of argument, which to be in limits
      .

63 62 ….… 54 53 52 ….… 2 1 0
Exponent  Logarithm of mantissa М

Fig. 9.

Thus
 in an exponent enters  ,
 in a real part of a mantissa the number DM Re

enters,
 in an imaginary part of a mantissa the number

j j 
 

8
 enters; here


 

  
8 8

.

10.2. Multiplication of polar forms
In this operation operands are submitted in the indicative form of a

kind)exp(2  jD  , i.e. in polar coordinates. Multiplication of two
numbers submitted in such form will consist in the following:

o multiplication of real parts of mantissas - modules;
o addition an exponents;
o addition of imaginary parts of mantissas - arguments; at

occurrence of carry s from an imaginary part of a resulting
mantissa from it the number 4

s is subtracted.

10.3. Turn of the polar form
In this operation first operand are submitted in the indicative form of

a kind)exp(2  jD  , i.e. in polar coordinates. The second operand

is submitted as an imaginary part of a mantissa, which has value  and

represents a corner of turn  as
8
 jj  , where

88



 .

Thus, the second operand also is submitted in the indicative form of
number)exp(j . Turn of complex number А on a corner  will
consist in the following:

46

 transfer of the real part of a mantissa of an operand А to
the real part of a mantissa of result;

 transfer exponent of an operand А in an exponent of
result;

 addition of imaginary parts of mantissas of the first and
second operands; at occurrence of carry s from an
imaginary part of a resulting mantissa from it the number
is subtracted .

4
s

References
1. Khmelnik S.I. Coding of Complex Numbers and Vectors, publ.

«Mathematics in Computers», Israel, 2004, ISBN 978-0-557-74692-
7, http://mic34.com/Magazine/94846.pdf (in Russan)

2. Khmelnik S.I., Doubson I.S. Positional codes of complex numbers
and vectors, publ. «Mathematics in Computers», Israel, Printed in
USA, Lulu Inc., ID 10793760, 2011.

3. Baikov V.D., Smolov V.B. The specialized processors: iterative
algorithms and structures, publ. “Radio I swiaz”, Moscow, 1985
(in Russian).

4. Khmelnik S.I. Computer Arithmetic of Complex Numbers and
Vectors. Theory, Hardware, Modeling, publ. «Mathematics in
Computers», Israel, Printed in USA, Lulu Inc., ID 560836, 2006.,
(in Russan)

5. Khmelnik S.I. Complex Numbers Square-Rooting Unit, publ.
«Mathematics in Computers», Israel, Printed in USA, Lulu Inc., ID
2607144, Second Edition, 2011, ISBN: 978-1-4583-9202-2.

