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Annotation
Hardware algorithms for computing of 
all elementary complex variable functions 
are proposed.
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Introduction
In connection with existence of codes of complex numbers [1, 2] 

arise , naturally, new opportunities for functions computation of complex 
argument and the decision of the equations with complex variables.

In the given book methods of the decision of these problems, 
named by a method «digit-by-digit» is described. This method is known 
as applied to real numbers [3]. It is shown below, that it can be 
generalized on codes of complex numbers by introduction of some 
generalized operation of comparison of codes. 

The hardware for these calculations is described in [4]

1. A method «digit-by-digit»
Let Z - some complex number. We shall consider the sequence of 

complex numbers  Z h mh  1,..., :

Z Z Z Z Z Zh h m1 2 3 1, , , ... , , ... ,

the sequence of complex codes  K Z Zh :

       K Z Z K Z Z K Z Z K Z Zh m   1 2, , ... , ...
Let us suppose that the complex number code has a certain 

characteristic, further referred to as code size. We shall express this code 

characteristic of the complex number Z by the symbol,  NK Z . The 
highest significant digit number or the modulus of the encoded number can be 
used as code size. Let us consider the sequence of sizes,  NK Z Zh :

       NK Z Z NK Z Z NK Z Z NK Z Zh m   1 2, , ... , ...
We will refer to the numbers sequence Zh  as the generating 

sequence  Zh , if with a random h m 1,...,  the following 
condition is satisfied:

   NK Z Z NK Z Zh h  1 (1)
The method of comparison of the size of codes is considered further.
The numbers Zh  are formed in such a manner as to satisfy the recurrent 
condition:

 1
11 ,, 

  h
hhh ZZ  , (2)
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where  h  0 1 2, , ,...;  - is the basis of the encoding system. The 

expression h
 will be further used to express the basic function 

 f h, , which (as shown above) does not always equal the value of 

h
.

Considering (1) and (2) simultaneously, we find that:

    NK Z Z NK Z Zh h
h

h  
 , , 1

1 . (3)

For codes of real numbers on the real radix the inequality (3) is 
equivalent to an inequality with modules

 Z Z Z Zh h
h

h  
 , , 1

1 ,

as in this case the code with big number of the senior meaning category 
has the greater module and on the contrary.

Let's return again to generating sequence  Zh . Everyone h-

member Zh  this sequence represents number Z with some accuracy, 
namely to within the maximal module of the code having the size 

 NK Z Zh . Hence, representation of number Z with an allowable 

maximal absolute error   equivalently to calculation such m-member 
Zm  of generating sequence at which  NK Z Zm  has the size 

equal to the maximal size of number with the module, not exceeding  .
Let us denote:

  )(mHZZNK m  . (4)

2. Decomposition
2.1. Introduction
Let us proceed to describing the Zm  calculation algorithm, for 

which purpose we have first to consider the transition process from Zh  

to Zh1 . The h generator of Zh  is known. In order to determine the 

(h+1) generator of Zh1  we must find the maximum value, ah1 , at 

which Zh1  calculated using formula (1.2) will still satisfy condition 
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(1.1). Obviously,  Z Zh h 1
0

 satisfies this condition if ah 1 0 , 

where ah 1 1. The value,    Z Zh h
h


1

1 11 , ,  , should be 

tested to see if it satisfies condition (1.1). The test consists in comparing 

the code values of numbers  Z Zh  and   Z Z
h


1
1 . There are 

three possible options in this comparison:

a)     NK Z Z NK Z Zh h  1
1  - this inequality indicates 

that ah 1 1 and  Z Zh h 
1 1

1 ;

b)     NK Z Z NK Z Zh h  1
1  - this inequality indicates 

that ah 1 0  and Z Zh h 1 ;

c)     NK Z Z NK Z Zh h  1
1

- this inequality indicates 

that ah 1 1 and values    Z Zh h
h


1

2 12 , ,   or 

    Z Zh h
h

 
1

2
1

1 11 , ,   should be tested for satisfying 

condition (1.3). This test is carried out in a similar way by 

comparing the codes of numbers   Z Z
h


1

1  and 

  Z Z
h


1

2 . The test results either in the determination of the 

values of a ah h  1 11 2or  and 

   Z Z Z Zh h h h   
 1 1

1
1 1

2or , or in the transition to 

code inquiry of numbers   Z Z
h


1
2  and   Z Z

h


1
3 , 

where     Z Zh h
h

 
1

3
1

2 11 , ,  .

Consequently, as a result of the consistent use of testing with respect to 

code values of   Z Z
h




1

1  and   Z Z
h


1
 , where 
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  0 1 2 1, , ,...ah , the value,  Z Zh
a

h
h

 



1 1

1 , is determined 

based on the known value Zh . Obviously, the calculation process of the 
(h + 1) generator by the known h generator may be initiated from the first 
Z1 generator and finished with the mth generator of Zm . The algorithm 

describing the hth calculation cycle of Zm  looks like this: 

2.2. Algorithm of decomposition
In the future calculation of the generating sequence will be called the 

decomposition, ie the representation of a complex number as a sum or 
product of some other famous numbers - the elements of the expansion.

The algorithm, describing h-cycle of calculation Zm , has the 
following appearance.

The difference is known previous generatrix 
   Z Z
h prev
   012, , ,... , hmH ),(  and difference 

E Z Zprev prev  .

1. The next expected generator  Z Z
h next
 1

 is 

determined using the formula

 Z Znext prev
h  , ,1 1 (1)

2. Calculate the difference E Z Znext next  .

3. Compare values  H NK Eprev prev  and 

 H NK Enext next . Then, according to the 

comparison results of Hprev  and Hnext :

4. Determine the number  


 









h
h H H

h H H
next prev

next prev

if

if1
 of 

the next cycle.
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5. Determine the value of the previous generator 


















prevnextnext

prevnextprev
prev HHZ

HHZ
Z

if

if
 for the next 

cycle.
6. Determine the difference    E Z Zprev prev  for the 

next cycle.
7. Examine the fulfillment of the condition 

H H mnext  ( ) : if this equality is satisfied, it indicates 

that the mth generator has been found for Zm , i.e. the 
calculation is finished; if it is not satisfied, then the 
h calculation cycle is carried out.

Table 1
Result of check h Zprev Z Zprev  Wprev

H Hnext prev h+1 Znext Z Znext Wnext

H Hnext prev h Znext Z Znext Wnext

H Hnext prev h+1 Zprev Z Zprev Wprev

Items 4, 5, 6 are carried out according to table 1 (without a column Wprev ). 

Thus if    NK Enext NK Eprev , then corresponding 

element is included in structure of decomposition, i.e. the number ah  

increases on 1; besides value of size E is updated  Eprev=Enext  
and carried out transition to the following step with former value h. 
Otherwise transition to the following step with reduced on 1 value h and 
value ah  0  is carried out.
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Результат 

 1 hprevnext xZZ 

nextZZ 

prevnext HH  1 hh
)(mHHnext  prevnext HH 

prevnext HH prevnext HH 

nextprev ZZ 

nextprev ZZZZ 

nextprev WW  prevprev WW 

prevprev ZZZZ 
prevprev ZZ 

 1 hprevnext xZZ 

h-цикл 
h -цикл 

Fig. 1.

The sequence of numbers ah  grows out decomposition. Each 
potential element of decomposition can be absent in concrete 
decomposition or be present at it, repeating ah  time, i.e. some cycles 

can have same number (at ah 1 1); therefore the number of cycles 

 can surpass number of generatrixes m.
Thus, on algorithm of decomposition the generating sequence 

 Zh  is calculated. This algorithm contains only elementary 
instructions of addition, subtraction and comparison of the sizes and 
consequently is easily realized in the arithmetic unit. More evidently the 
sequence of elementary operations of algorithm of decomposition is 
represented on fig. 1 (without the allocated block). 

2.3. Variants of decomposition
Table 2 and table 3 lists the types of decomposition, which are used 

later, and the formula for calculating them.
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Table 2
# Designation Application

D2 DecompLogar Decomposition of the sum of 
logarithms

D3 DecompBinom Decomposition of the product 
binomials 

D32 DecompBinomInv Decomposition into an inverted 
product binomials

D4 DecompBinom2 Decomposition of the product of 
the squares of binomials

D42 DecompBinom2inv Decomposition into product of 
inverse squares of binomials

D2R DecompLogarReal Decomposition of the sum of the 
logarithms of real numbers (h - 
even)

D3R DecompBinomReal Decomposition of the product of 
real binomials (h - even)

D32R DecompBinomInvReal Decomposition into an inverted 
product of real binomials (h - even)

D4R DecompBinom2real Decomposition into product of 
squares of real binomials (h - even)

D42R DecompBinom2invReal Decomposition into product of 
inverse squares of real binomials (h 
– even) 

Detailed algorithms for these decomposition are resulted further. In 
these algorithms the following designations are accepted:

Compar– function of comparison of complex numbers on the 
module,

Accum– function of record in the given category of the 
accumulator,

Even– function of check of parity of number,

Logar – function of a choice of a constant  ln 1  h ,

Z– given complex number,
Eprev– previous value of result,
Enext– next value of result,
DZ– increment,
H – current number of the category, Hmin =< H =< Hmax
Iter– counter of iterations,
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R– current value of the category of a collector,
A, B –intermediate results (complex numbers).

Table 3. 
# Decomposition Zo Enext = Eo

D2    h
haZ 1ln 0  h 1lnEprev Z

D3  hahZ   1 1  Eprev Eprev  Z h Z-1

D32  hah

Z   11 Z  Eprev Eprev  1  h 1-Z

D4   hahZ
 

2
1  1   Z Z h   Eprev 1

2
 Z-1

D42   hah

Z
 

2
11 

Z   1 1 1
2

   Eprev  h 1-Z

D2R    h
haZ 1ln 0  h 1lnEprev Z

D3R  hahZ   1 1  Eprev Eprev  Z h Z-1

D32R  hahZ   11 Z  Eprev Eprev  1  h 1-Z

D4R   hahZ
 

2
1  1   Z Z h   Eprev 1

2
 Z-1

D42R   hahZ
 

2
11  Z   1 1 1

2
   Eprev  h 1-Z

Function DecompBinom (Z)
Function DecompBinom2 (Z)

H = Hmax
Iter = 0

Begin:
R = 0
If H = Hmax Then Eprev = Z - 1
Im(A)=0
If Even(H) Then Re(A) = (-2)^H Else Re(A) = (-2)^(H-1)

Compar:
B = Z - Eprev
If Even(H)  Then ' shift on 2H categories to the right

DZ = A
Else ' shift on 2 (H-1) categories to the right and multiplication on j

DZ = j * A
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End If
B = B + DZ * B
B = B + DZ * B ‘ is present only at function DecompBinom2
Enext = Z - B
Iter = Iter + 1
If Compar(Enext, Eprev) = 1 Then ‘ Enext=<Eprev

R = R + 1
Eprev = Enext
GoTo Compar

Else ‘ Enext>Eprev
Enext = Eprev

End If
Accum(-H + Hmax) = R

    H = H - 1
    If H = Hmin Then GoTo End Else GoTo Begin
End:

Function DecompBinomReal (Z)
Function DecompBinom2Real (Z)

H = Hmax
Iter = 0

Begin:
R = 0
If H = Hmax Then Eprev = Z - 1
Im(A)=0
Re(A) = (-2)^H

Compar:
B = Z - Eprev
DZ = A ' shift on 2H categories to the right
B = B + DZ * B
B = B + DZ * B ‘ is present only at function DecompBinom2Real
Enext = Z - B
Iter = Iter + 1
If Compar(Enext, Eprev) = 1 Then ‘ Enext=<Eprev

R = R + 1
 Eprev = Enext

GoTo Compar
    Else ‘ Enext>Eprev

Enext = Eprev
    End If

Accum(Hmax - H) = R
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    H = H - 2
    If H <= Hmin Then GoTo End Else GoTo Begin
End:

Function DecompLogar (Z)
Function DecompLogarReal (Z)

H = Hmax
Iter = 0

Begin:
R = 0
If H = Hmax Then Eprev = Z Else Eprev=Enext
DZ = Logar(H)
Enext=Eprev-DZ

Compar:
Iter = Iter + 1
If Compar(Enext, Eprev) = 1 Then 'Enext=<Eprev

R = R + 1
 Eprev = Enext

Enext = Eprev - DZ
GoTo Compar

Else  'Enext>Eprev
Enext = Eprev

End If
Accum(-H + Hmax) = R

    H = H – 1 ‘for function DecompLogar
    H = H – 2 ‘for function DecompLogarReal
    If H = Hmin Then GoTo End Else GoTo Begin
End:

Fig. 2 shows a diagram of decomposition algorithms DecompBinom 
and DecompBinom2. Highlighted in this figure refers only to block the last 
of these decompositions. Fig. 3 shows the decomposition algorithms 
DecompBinomReal and DecompBinom2Real. Highlighted in this figure refers 
only to block the last of these decompositions.
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H = Hmax

H = Hmax
Iter = 0

R = 0

Eprev = Z-1

No

Yes

Even(H)
No, odd

Yes, even

Compar(Enext, Eprev)

1, Enext=<Eprev

Enext = Z - B
Iter = Iter + 1

Im(A) = 0

Re(A) = (-2)^H

Re(A) = (-2)^H

B = Z - Eprev

Even(H)
No, odd

Yes, even

DZ = A

DZ = j * A

B = B + DZ * B

B = B + DZ * B

R = R + 1
Eprev = Enext

H = Hmin

Enext = Eprev
Accum(Hmax-H) = R

H = H - 1

YesNo

Enext>Eprev,
0

Fig. 2
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H = Hmax

H = Hmax
Iter = 0

R = 0

Eprev = Z-1

No

Yes

Compar(Enext, Eprev)

1, Enext=<Eprev

Enext = Z - B
Iter = Iter + 1

Im(A) = 0

Re(A) = (-2)^H

B = Z - Eprev

DZ = A

B = B + DZ * B

B = B + DZ * B

R = R + 1
Eprev = Enext

H <= Hmin

Enext = Eprev
Accum(Hmax-H) = R

H = H - 2

YesNo

Enext>Eprev,
0

Fig. 3

Fig. 4 shows a algorithm diagram of decompositions  
DecompBinomLogar and DecompBinomLogarReal. Highlighted in this figure 
blocks «Н-1» and «Н-2» relate only to the decomposition 
DecompBinomLogar and DecompBinomLogarReal respectively.
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H = Hmax

H = Hmax
Iter = 0R = 0

Eprev = Z-1
No Yes

Iter = Iter + 1

DZ = Logar(H)
Enext=Eprev-DZ

R = R + 1
Eprev = Enext

Enext = Eprev - DZ

Eprev = Enext

Compar(Enext, Eprev)

Enext=<Eprev,
1

Enext>Eprev, 0

H = Hmin

Enext = Eprev
Accum(Hmax-H) = R

YesNo

H = H - 1H = H - 2

Fig. 4

3. Compositions
As stated earlier, the result of decomposition is the ah  sequence of 

numbers. Obviously, it is possible to restore the number that was 
decomposited from this sequence. We are going to refer to this 
calculation as composition. This operation is the opposite of 
decomposition and consists in calculating a complex number as a sum or 
product of certain other known numbers that are elements of 
decomposition. In this context such representation of a number will be 
called composition. It should also be noted that in the process of 
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composition the elements of decomposition may be converted or 
substituted by other elements. That is the essence of composition and we 
will use this method later on. 

Table 4.
№ Designation Application Formula

С2 CompBinom Composition 
binomials  hahW   1

С2А CompBinomA Composition 
binomials   hahAW   1

С3 CompLogar Composition for 
the logarithm

   h
haW 1ln

С4 CompLogarAngle Composition for 
the argument of 
complex 
number

    h
hajW 1lnIm

С5 CompLogarModul Composition for 
the logarithm of 
the modulus

    h
haW 1lnRe

С7 CompBinomConjug Composition for 
the adjoint of 
the square root

  hahW   ~1

С8 CompBinomModul Composition for 
the module    hahhW     ~11

С8A CompBinomModul Composition for 
the module    hahhAW     ~11

С9 CompBinom2 Composition 
binomials 
squared

  hahW 21  

С9А CompBinom2A Composition 
binomials 
squared

  hahAW 21  

C4 
and 
C9A

Argument and 
the module 
(once)

    hjZ 1lnIm2)arg(

  hhZ    ~11

In the table 4 variants of compositions are submitted. The 
composition represents iterative process, where on each step the number 
ah  is known and change of the previous value of required complex 
number under the formulas resulted in table 1 is carried out. Each 
potential element of decomposition can be absent in concrete 
decomposition or be present at it, repeating ah  time.

Detailed algorithms for these composition are resulted further. In 
these algorithms the following designations are accepted:
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A – given complex number; argument of some compositions (is 
present at compositions with the termination 'A'; in other 
compositions A=1),

Accum– function of record in the given category of the 
accumulator,

Even– function of check of parity of number,

Logar – function of a choice of a constant  ln 1  h ,

Unit – function of a choice of a constant «1 in the h-category» or 
shift of complex number A on h-categories (at And <> 1),

Wprev– previous value of result,
Wnext– next value of result,
DW– increment,
H – current number of the category, Hmin =< H =< Hmax
Iter– counter of iterations,
k – counter of value of the category of a collector,
R– current value of the category of a collector,
В – intermediate variable (complex number).

Fig. 5 shows a chart of algoritm CompBinom.
Fig. 6 shows a chart of algoritm CompLogar.
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H = Hmax

H = Hmax
Iter = 0

Wprev = 1

No

Yes

Even(H)
No, odd

Yes, even

Im(A) = 0

Re(A) = (-2)^H

Re(A) = (-2)^(H-1)

k = 0

Even(H)
No, odd

Yes, even

DZ = A

DZ = j * A

Wnext = Wprev + Wprev * DW
Wprev=Wnext

k = k + 1

R = Accum(Hmax - H)

R = 0
Yes

No

Iter = Iter + 1

k < R
Yes

No

H > Hmin
Yes No

H = H - 1

Fig. 5.
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H = Hmax

H = Hmax
Iter = 0

Wprev = 1

No

Yes

DW = Logar(H)
k = 0

R = Accum(Hmax - H)

R = 0
Yes

No

Iter = Iter + 1
Wnext = Wprev + DW

Wprev = Wnext
k = k + 1

k < R
Yes

No

H > Hmin
Yes No

H = H - 1

R = 0

Fig. 6.

Function CompBinom ()
H = Hmax
Iter = 0

Begin:
If H = Hmax Then Wprev=1
R = Accum(Hmax - H)
If R = 0 Then GoTo Lab2
Im(A)=0
If Even(H) Then Re(A) = (-2)^H Else Re(A) = (-2)^(H-1)
k = 0

Lab1:
Iter = Iter + 1
If Even(H)  Then ' shift on 2H categories to the right

DW = A
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Else ' shift on 2 (H-1) categories to the right and multiplication on j
DW = j * A

End If
Wnext = Wprev + Wprev * DW
Wprev=Wnext
k = k + 1
If k < R Then GoTo Lab1

Lab2:
H = H - 1
If H > Hmin Then GoTo Begin

End:

Function CompLogar ()
H = Hmax
Iter = 0

Begin:
R = 0
If H = Hmax Then Wprev = 1
R = Accum(Hmax - H)
If R = 0 Then GoTo Lab1
DW = Logar(H)
k = 0

Lab2:
Iter = Iter + 1
Wnext = Wprev + DW
Wprev = Wnext
k = k + 1
If k < R Then GoTo Lab2

Lab1:
H = H - 1
If H > Hmin Then GoTo Begin

End:
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4. Two-step Operations
4.1. Introduction
Let us now consider a certain function, W f Z ( ) . If the 

generating sequence  Zh  for the number Z is known, then the 

generating sequence  Wh  of the number W can be calculated, since 

W f Zh h ( ) . Specifically, the previous generator, 

W f Zprev prev ( ) , and the next generator, W f Znext next ( ) , or 

taking into account the formula (1.2),

  W f Znext prev
h  , ,1 1 (1)

It is often possible to represent the expression (1) as follows:

 W Wnext prev
h  , ,1 1 (2)

Thus, calculation m-generatrix Wm , representing function W f Z ( )  

with an allowable maximal absolute error  , is reduced to algorithm of 
decomposition and calculations under the formula (2). The number 
generatrixes m is defined, still, from a condition (1.4), where Zm  - m-

generatrix of argument, having an absolute error  . The necessary value 
of an error   is defined by value of an error   and a kind of function 
W f Z ( ) .

4.2. Algorithm of function evaluation
So, calculation of value of function with an allowable error can be 

made on algorithm, which basically coincides with algorithm of 
decomposition and describes h-cycle of calculation. Difference consists 
only that still the value prevW  in the beginning is known, and the item 5 
of algorithm has the following view:

5. Value previous generatrix Zprev  and Wprev  for the following 

cycle, where 

















prevnextnext

prevnextprev
prev HHZ

HHZ
Z

if

if
 and 
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 















W

W H H

W H Hprev
prev next prev

next next prev

if

if
, is defined. Thus it 

Wnext  is calculated (if it is necessary) under the formula (2).
Items 4, 5, 6 are carried out according to table 1 (with a column Wprev ). 

More evidently the sequence of elementary operations of algorithm of 
decomposition is represented on fig. 1 (with the allocated block).

The expediency of function computing on this algorithm is 
completely defined by complexity of calculations under formulas (1) and 
(2), i.e. a kind of function W f Z ( ) . In the event that calculations 
under formulas (1) and (2) are reduced to such operations which are 
simply realized on digital schemes, application of a method «digit-by-
digit» for function W f Z ( )  computing it is effect. This method can 
be realized both program, and hardware way. The set of operations of the 
processor should contain operation of comparison of the sizes of codes, 
after which signals of conditional transition on this or that direction in 
the program of calculations are developed, in the first case. The hardware 
way can be used, if calculations under formulas (1) and (2) are made only 
by means of so-called "short" or elementary machine operations: shift, 
addition, subtraction.

4.3. About hardware realization
At hardware realization of the specified algorithm, as a rule, it is 

expedient to carry out it in two stages:
1) decomposition of argument Z, i.e. calculation of sequence 

of numbers ah ,

2) composition, i.e. iterative function W f Z ( )  
calculation under the formula

 W W anext prev h
h  , ,  1 .

So, hardware calculation of some functions W f Z ( )  will consist of 
two steps with use of a collector (described above):

1. decomposition of number Z and filling of a collector,
2. composition of number W at the given filling a collector.
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Table 5.
Operation D С 

  hhZ     ~11 D4 C8

   hZ 1 D4 C2

   hZ ~1~ D4 C7

   hZe 1 D2 C2

   hZ 1ln)ln( D3 C3

   hZ 1ln2)ln( D4 C3

     hjZ 1lnImarg D3 C4

     hjZ 1lnIm2arg D4 C4

   hZ 1lnReln D3 C5

   h

Z
1 D1 C1

   hj ZeZZ  1 D2 C2A

    hjZ 1lnIm2)arg( , 

  hhZ     ~11

D4 C4 
and 
C8

In table 5 such operations are listed. Communication is specified in 
table 6 between functions, compositions and decomposition.

Table 6.
D1 D2 D3 D4

C1 Division
C2 Exponentiation Identically Square-rooting
C3 Identically Logarithm
C4 Argument
C5 Modulus 

Logarithm
C7 Conjugated 

Square-rooting
C8 Modulus
C9 Identically
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5. Taking the logarithm
5.1. Definition of the natural logarithm of complex number (a 
variant 1).
Taking the logarithm it is based on the following: if 

 y h ah   1  , then    h
hay 1ln)ln( . The algorithm of 

definition of the natural logarithm of complex number will consist in the 
following:

1. The number yZ k)2( , where y - mantissa, k – exponent, is 
given.

2. Decomposition under the formula  y h ah   1   - 

“DecompBinom”.
3. Composition under the formula  ln( ) lny w ah

h   1   

- “CompLogar”. 
4. Calculation of     ln ln( ) ln ln( )Z k y S      2 1 .

Here  ln ln( ) ln( ) ln( )     2 1 2 2j .

Thus,  ln ln( ) ( ) Re ImZ k w k S j Z Z      2  ,

where  Re ln( ) Re , Im ImZ k w Z j k S w     2  .

5. Definition of a principal value of the natural logarithm. In it the 
imaginary part is in limits    ImZ . Therefore the 
imaginary part of a principal value is defined under the formula:

 g Z Z
g g

g gmain 








 












int Im , Im

,

.2 2



 

if

if
.

6. Normalization of result.

5.2. Calculation of the logarithm of the module of complex 
number
The algorithm of calculation of the logarithm of the module of 

complex number is based that  ln Re ln( )Z Z , and differs from 
algorithm taking the logarithm by a variant 1 only that in item 3 instead 
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of a composition “CompLogar” the composition “CompLogarModul” is 
used:

3. Composition under the formula   W ah
h  Re ln 1   - 

“CompLogarModul”.

5.3. Definition of the natural logarithm of complex number (a 
variant 2)
Taking the logarithm in this case it is based on the following: if 

  hahy
 

2
1  , then    h

hay 1ln2)ln( . 
Accuracy taking the logarithm by this variant is less than accuracy taking 
the logarithm by the first variant, but as it will be clear from the further, 
this variant is well combined with other calculations. The algorithm will 
consist in the following:

1. The number yZ k)2( , where y - a mantissa, k – exponent, 
is given.

2. Decomposition under the formula   hahy
 

2
1   - 

(“DecompBinom2”). 

3. Composition under the formula  w ah
h  ln 1   - 

(“CompLogar”). 
4. Calculation of     ykZ ln)2ln(ln  .

Here  ln ln( ) ln( ) ln( )     2 1 2 2j . Thus, 

 ln ln( ) Re ImZ k Y kj Z Z     2  , where 

Re ln( ) Re , Im ImZ k Y Z kj Y    2  .

5. Definition of a principal value of the natural logarithm. In it the 
imaginary part is in limits    ImZ . Therefore the 
imaginary part of a principal value is defined under the 
formula:

 g Z Z
g g

g gmain 








 












int Im , Im

,

.2 2



 

if

if
.

6. Normalization of result.
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5.4. Definition of the natural logarithm of positive real number
The algorithm of definition of the natural logarithm of a positive real 

number will consist in the following:

1. The number yZ k)2( , where y>0 - a mantissa, k – 
exponent, is given.

2. Decomposition of number y>0 under the formula 

 y h ah   1   - “DecompBinomReal”.

3. Composition under the formula  w ah
h  ln 1   - 

(“CompLogar”).
4. Calculation of    wkZ  )2ln(ln . Here,

 if k – even, then  ln ln( )Z k w  2 ,

 if k – odd, then   wkZ  )2ln(ln  .
5. Normalization of result.

5.5. Definition of the natural logarithm of negative real number
The algorithm of definition of the natural logarithm of a negative 

real number will consist in the following:
1. The number yZ k)2( , where y<0 - mantissa, k – 

exponent, is given.
2. Decomposition of number (-y)>0 under the formula 

 y h ah   1   - (“DecompBinomReal”).

3. Composition under the formula  w ah
h  ln 1   - 

(“CompLogar”). 
4. Calculation of    )1ln()2ln(ln  wkZ . Here,

 if k – even, then   wkZ  )2ln(ln  ,

 if k – odd, then  ln ln( )Z k w  2 .
5. Normalization of result.

5.6. Definition of the natural logarithm of real number
Calculation in this case begins with the analysis of a sign taking the 

logarithm numbers and the reference to taking the logarithm positive or a 
negative number.
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6. Potentiation
6.1. Potentiation of complex number - Potentiating
Potentiation will consist in definition of number Z eX  in a 

complex degree  X mp  2 , where m - mantissa, p - exponent. The 
algorithm of potentiation is based on the following: if 

   h
haX 1ln  then  hahXe   1 . We shall notice, 

that

,)2(,)2( )2ln()2ln(   ee
 ln ln( ) ln( ) ln( )     2 1 2 2j .

Let's transform the given number Х:

 .2)2(
2

)2ln(

)
2

2()2ln(2

)
2

2()2ln(2

Im)2ln(2ImRe

xjxj

xjjx

xjx

XjxXjXX

















Thus,

.2)2(
2

Im,2)2ln(Re 





  xjXjxX 

In these parities

  - the whole part from quotient ,
)2ln(

Re XX 

  - the whole part from quotient .
2

Im


XX 

x2  - the fractional part from quotient ,
)2ln(

Re XX 

x 2  - the fractional part from quotient .
2

Im


XX 

From here follows, that
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 

 

,)2(

)2()2(

2)2(
2

2)2ln(exp)exp(

2
0

22)2(
22












y

jyjxjx

e

eeee

xjxX

















 



where  y x jx    ,     2 , 0
2 
j

e , 


















oddif1

evenif1
0




 .

Here 







































2if1

1if

0if1

1if 0










j

j

, where  1,0,1,2   - the rest 

about divisions of an integer   on 4.

The algorithm of potentiation will consist in the following:
1. The number  X mp  2 , where m - mantissa, p - exponent, is 

given.
2. If X  0 , then Z  1.

3. Calculation of    X X X XRe
ln( )

, Im .
2 2

4. Allocation from numbers  X X,  the whole  ,  and 

fractional  x x,  parts accordingly.
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5. Calculation of fractional parts 
4

,
2

)2ln( xyxy   

and formation of a code of number  yjyy  , which 
does not contain exponent.

6. Decomposition of number  yjyy   under the 

formula  y ah
h  ln 1   - “DecompLogar”.

7. Composition under the formula  W h ah   1   - 

“CompBinom”. 
8. Calculation of value   under the above-stated formula depending 

on younger categories of codes of numbers ., 
9. Definition of 2)2()exp( WX  

10. Normalization of result.

6.2. Potentiation of real number - PotentiatingReal

Potentiation will consist in definition of number Z eX  in a real 

degree  X mp  2 , where m - mantissa, p - exponent. By analogy 
with previous we shall notice, that

,)2(,)2( )2ln()2ln(   ee
 ln ln( ) ln( ) ln( )     2 1 2 2j .

Let's transform the given number Х:
.)2ln()2ln(  jxxX 

In these parities

  - the whole part from quotient ,
)2ln(

XX 

y - the fractional part from quotient .
)2ln(

XX 

From here follows, that
  

,)2()2(2

2)2ln(exp)exp(
2

0
22 


 xjxjx eeeee

jxX
 


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where 0 je , 


















oddif1

evenif1
0




 . Obviously, 1 . 

Hence, yeX )2()exp(  .

The algorithm of potentiation of real number will consist in the 
following:

1. The number  X mp  2 , where m - mantissa, p - exponent, 
is given.

2. If X  0 , then Z  1.

3. Calculation .
)2ln(

XX 

4. Allocation from number X   the whole   and fractional y 
parts.

5. Decomposition of number y  under the formula 

 y ah
h  ln 1   - “DecompLogarReal”.

6. Composition under the formula  W h ah   1   - 

“CompBinom”. 
7. Definition WX  )2()exp(
8. Normalization of result.

7. Operations with logarithmic forms
7.1. Logarithmic form representation
The logarithmic form is submitted on fig. 7 and used for 

representation of complex number as  jemZ  2 , where   - an 
integer, m – fractional positive number,   - a real number, a principal 

value of argument which to be in limits       . At the same 
time,

   is written to the exponent,
  log2 m is written to the real part of the 

mantissa,
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 number 
16
 jj   is written to the imaginary part 

of the mantissa, while 
1616



 .

63 62 ….… 54 53 52 ….… 2 1 0
Exponent  Logarithm of mantissa  M2log

Fig. 7.

7.2. Formations of the logarithmic form - FormLogar
1. The number Z Mk  ( )2  is given.
2. It will be transformed to a kind 

Z z z M
d

k d k

k d k
 

  

    












2

1

1 2





, ,

,

,
where

if even

if odd
3. Taking the logarithm mantissas z  - calculation the natural 

logarithm    ln lnz z j   ; in the process,  the principal 
value of argument of the mantissa logarithm, which has to fall 
within the range       , is written to the imaginary 
part

4. Calculation    m z z  log ln
ln( )2

1
2

5. Writing the number   to the exponent.
6. Writing the number  m z log2  to the real part.

7. Writing the number 
16
 jj   to the imaginary part.

Addressing the general algorithm of taking the logarithm, let us review 
the algorithm of taking the logarithm of the value z , which involves the 
following:

1. Transformation of the number M into a form that would enable the 
decomposition required for taking the logarithm. As a result of the 
transformation, the number S and the complex number y = Q *z are 
determined
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2. Decomposition formula  y h ah   1   - “DecompBinom”.

3. Composition formula  ln( ) lny w ah
h   1   - “CompLogar”. 

4. Calculation   ZZZ ImReln  , where 

wjSZwZ ImIm,ReRe   .

5. Determination of the principal value of the natural logarithm. Its 
imaginary part falls within the range    ImZ . Therefore, 
the imaginary part of the principal value is determined by the 
formula:

 g Z Z
g g

g gmain 








 












int Im , Im

,

.2 2



 

if

if
.

7.3. Return from the logarithmic form – RetLogar
1. The given number is  jwV  )log( .
2. Allocation of number   from exponent.
3. Allocation of number  m w log2  from real part.

4. Allocation of number 
16
 jj   from imaginary part.

5. Calculation   MqZ 2 , где 
 jmM 16)2ln(exp  , 


















oddif,1

evenif,1




q

Addressing to the general algorithm exponentiation, we shall consider 
algorithm exponentiation number Х, which will consist in the following:

1. If X  0 , then 1M .

3. Calculation .32
2

Im,
)2ln(

Re






XXmXX
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4. Allocation from among  X X,  the whole  ,0  and 

fractional xmx  ,  parts accordingly. Allocation of the 

whole and fractional parts is carried out in such a manner, that 
fractional parts of number  y x jx     are in the 
following limits:

   
       

2 2
3

2
3 3 6

ln ln
, .x x 

5. Decomposition of the number  y x jx     under the formula 

 y ah
h  ln 1   - “DecompLogar”.

6. Composition by the formula  W h ah   1   - “CompBinom”.

7. Definition WX )exp( . Here 







































2if1

1if

0if1

1if










j

j
, where 

  is the remainder from dividing an integer   by 4.

7.4. Algebraic addition of logarithmic forms
Multiplication and division of the numbers, submitted in the 

logarithmic form, is equivalent to algebraic addition of these forms. 

Really, if     Z m e j2   and     Z m e j2  , then 

        Z Z m m e j2   ( ) . In this group the following 
operations are stipulated:

 Addition - AddLog
 Subtraction - SubLog
 Inversion - InvLog

Algebraic addition of logarithmic forms is carried out under the following 
scheme:

 Algebraic addition of exponents
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 Algebraic addition of mantissas

7.5. Multiplication of the logarithmic form by an integer - 
PowerLogar
At a positive integer this operation is equivalent to erection in the 

whole degree. At a negative integer this operation is equivalent to 
division «1» on a root of the whole degree. Operation is carried out under 
the following scheme:

 Multiplication of exponent of the logarithmic form 
on an integer

 Multiplication of mantissa of the logarithmic form 
to an integer

In this group the following operations are stipulated separately:
 Squaring - QuadrLogar
 Division «1» on a square root - MinusQuadrLogar

7.6. Overflow
At algebraic addition of logarithmic forms and multiplication of the 

logarithmic form to an integer can arise overflow.
 At overflow of the logarithm  m z log2  on the real 

integer s  we have:     log log2 2z s z    and 

     s , that is at occurrence of carry s  from the 
real part of a mantissa this carry develops with exponent.

 At occurrence of carry s  from an imaginary part of a 

mantissa from it the number is subtracted 8
s .

8. Extraction of a square root
8.1. Extraction of a square root from complex number
Extraction of a square root it is based on the following: if 

 X h ah   
 1

2
 , then  hahX   1 . More, this 

operation is considered a [5]. The algorithm will consist in the following:

1. The number Z Mk  ( )2 , where mantissa, k – exponent, 
is given.
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2. Reduction of the given number a kind Z a Mm   ( )2 2 . 
Here, 

if k - even, then 2m=k, a=1;
if k - odd, then 2m=k-1, a=-2.

3. Decomposition under the formula  X h ah   
 1

2
  - 

“DecompBinom2”. 

4. Composition under the formula  W h ah   1   - 

“CompBinom”.

5. Formation of result  Z Ym  2 .
6. Normalization of result.

8.2. Extraction of a square root from conjugation number
The algorithm of extraction of a square root from the conjugation 

complex number differs from algorithm of extraction of a square root 
from complex number only that in item 5 instead of a composition 
“CompBinom” the composition “CompBinomConjug” is used:

5. Composition under the formula  W h ah   1 ~  - 

“CompBinomConjug”.

8.3. Extraction of a root from a positive real number
The algorithm of extraction of a square root will consist of a positive 

real number in the following:
1. The number Z Mk  ( )2 , where mantissa, k – exponent, is given.

2. Decomposition under the formula  X h ah   
 1

2
  - 

“DecompBinom2real”. 

3. Composition under the formula  W h ah   1   - “CompBinom”.

4. Formation of result  Z Ym  2 .
5. Normalization of result.

9. Polar coordinates
Below algorithms of calculation of polar coordinates, and also some 

auxiliary algorithms are described.
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9.1. Calculation of the module of complex number
The algorithm of calculation of the module of complex number 

differs from algorithm of extraction of a square root from complex 
number only that in item 5 instead of a composition “CompBinom” the 
composition “CompBinomModul”: is used:

5. Composition under the formula    hahhW     ~11  - 
“CompBinomModul”.

It follows from the formula ZZZ ~

9.2. Calculation of argument of complex number (a variant 1)
The algorithm of calculation of argument of complex number differs 

from algorithm taking the logarithm by a variant 1 only that in item 4 
instead of a composition “CompLogar” the composition “CompLogarAngle” 
is used:

3. Composition under the formula   W j ah
h    Im ln 1   

- “CompLogarAngle”.
It follows from the formula   arg( )Z j   Im ln Z .

9.3. Calculation of argument of complex number (a variant 2) - 
AngleSqr
Calculation of argument of complex number is based on the formula 

  Zln2Im)arg(  jZ . The algorithm will consist in the 
following:

1. The number Z Mk  ( )2 , where mantissa, k – exponent, is 
given.

2. Reduction of the given number a kind Z a Mm   ( )2 2 . 
Here, 

if k - even, then 2m=k, a=1;
if k - odd, then 2m=k+1, a=-1/2.

3. Transformation  MafX  1 , where X is in the first semi-
quadrant - see operation «Segmentation before extraction of a root».

4. Decomposition under the formula  X h ah   
 1

2
  - 

(“DecompBinom2”). 
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5. Composition under the formula 

  W j ah
h    2 1Im ln   - “CompLogarAngle”.

6. Transformation  aWfY 3  - see operation «Segmentation for taking 
the logarithm». Here   MY lnIm .

7. Calculation of        MmZZ ln)2ln(2ImlnImarg  . 
Here  ln ln( ) ln( ) ln( )     2 1 2 2j . So 

  mjYZ 2arg  . Composed, multiple 2 , it is possible 
to reject. Therefore   YZ arg .

8. Normalization of argument   YZ arg .

9.4. Calculation of polar coordinates - CartesianToPolar
Transformation of rectangular coordinates in polar is equivalent to 

calculation of argument and the module of complex number. The 
corresponding algorithm will consist in the following:

1. The number Z Mk  ( )2 , where mantissa, k – exponent, is 
given.

2. Reduction of the given number a kind Z a Mm   ( )2 2 . 
Here, 

if k - even, then 2m=k+2, a=1/4;
if k - odd, then 2m=k+3, a=-1/8.

3. Transformation  MafX  1 , where X is in the first semi-
quadrant - see operation «Segmentation before extraction of a root».

4. Decomposition under the formula  X h ah   
 1

2
  - 

“DecompBinom2”. 
5. Composition under the formula 

  W j aa h
h    2 1Im ln   - “CompLogarAngle”.

6. Composition under the formula    Wm
h h ah    1 1 ~  - 

“CompBinomModul”.
7. Transformation  mWfV 2  – see operation «Segmentation after 

extraction of a root».
8. Formation of result as VZ m 32   - see item 4.
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9. Transformation  aWfY 3  – see operation «Segmentation for 
taking the logarithm». Here   MY lnIm .

10. Calculation of        arg Im ln Im ln( ) lnZ Z k M    2 . 

So  ln ln( ) ln( ) ln( )     2 1 2 2j . Therefore, 

 arg Z Y kj   .
11. Definition of a principal value of argument. In it the imaginary 

part is in limits    ImZ . Therefore the principal 
value of argument is defined under the formula:

 g Z Z
g g

g gmain 








 












int arg , arg

,

.2 2



 

if

if
.

9.5. Return from polar coordinates - PolarToCartesian
Transformation of polar coordinates in rectangular will consist in 

calculation under the formula jeXX  , where ,X  - polar 
coordinates, real numbers.
The algorithm will consist in the following:

1. The number jeXX  , submitted by a mantissa m and 

exponent p is given. Thus   16)Im(),Re(2 jmmX p  .

2. If 0X , then Z  1.

3. Formation of number   )Im(2 4 mj  .

4. Calculating of je  (operation Ort).
5. Multiplication jeXZ  .

9.6. Calculation of a sine and cosine a real number – Ort
This problem will consist in definition of number jXeZ  , where 

a real number  X mp  2 , m - mantissa, p - exponent. Number 
XjXZ SinCos   received in result. This calculation in many 

respects is similar to potentiation.

Let's transform the given number: .2
2 






  xjjX 

In these parities
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  - the whole part from quotient .
2

XX 

x 2  - the fractional part from quotient .
2

XX 

From here follows, that

  ,2
2

exp)exp( 222 
 yjxj eeexjjX 











  

where  xjy  , 


 2
j

e .

Here 







































2if1

1if

0if1

1if










j

j
, where  1,0,1,2   - the rest about 

divisions of an integer   on 4.
The algorithm will consist in the following:

1. The number  X mp  2 , where m - mantissa, p - exponent, is 
given.

2. If X  0 , then Z  1.
3. Calculation of .

2
XX 

4. Allocation from number X   the whole   and fractional x   
parts accordingly.

5. Calculation of fractional parts 
4
xy   and formation of a 

code of number y , which does not contain exponent.
6. Decomposition of number y  under the formula 

 y ah
h  ln 1   - “DecompLogar”.
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7. Composition under the formula  W h ah   1   - 

“CompBinom”. 
8. Calculation of value   under the above-stated formula depending 

on younger categories of codes of number .
9. Definition of 2)exp( WX 
10. Normalization of result.

9.7. Definition semi-quadrant - Semiquadrant
In this operation number of semi-quadrant, in which there is a 

complex number - see fig. 8 is defined. Definition carries out «Block of 
definition of semi-quadrant».

Fig. 8.

9.8. Segmentation before extraction of a root - 
SemiquadrantTransOne
In this operation such transformation complex numbers 

jeXX  , at which it moves in semi-quadrant 11 (see table 7), is 

carried out. Further it is transformations we shall designate as  f X1 . 

At this transformation the number X  will be transformed to number 
jeXX   with argument 045 � .
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Table 7.
Site of number 

X
Quad
-rant

Semi-
quad-
rant

ReX ImX
Parity between 
|Re| and |Im|

 f X1
11 |Re| > |Im| Without changes1
12

ReX>0 ImX>0
|Re| < |Im| Mirror display 

concerning a bisector of 
the first quadrant

21 |Re| > |Im| Mirror display 
concerning an axis of 
ordinates

2

22

ReX<0 ImX>0

|Re| < |Im| Turn on ( -90)
31 |Re| > |Im| Turn on ( -180)3
32

ReX<0 ImX<0
|Re| < |Im| Mirror display 

concerning a bisector of 
the fourth quadrant

41 |Re| > |Im| Mirror display 
concerning an axis of 
ordinates

4

42

ReX>0 ImX>0

|Re| < |Im| Turn on ( +90)

9.9. Segmentation after extraction of a root - 
SemiquadrantTransTwo
In this operation transformation complex numbers 

2
j

eXX   is carried out, where  XfX 1 . At this 

transformation the number X   moves to that semi-quadrant, where 

its argument equal 
2


, i.e. the number accepts value 2
j

eXX   

- see table 8. Further it is transformations we shall designate as  Xf2 .
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Table 8. Functions of transformation 21 ff  .
Site of number 

X
Quad-
rant

Semi-
quad-
rant

ReX ImX
Parity between 
|Re| and |Im|  f X2

11 |Re| > |Im| Without changes1
12

ReX>0 ImX>0
|Re| < |Im| Turn on ( +45) and 

mirror display concerning 
a bisector of the first 
quadrant

21 |Re| > |Im| Mirror display concerning 
a bisector of the first 
quadrant

2

22

ReX<0 ImX>0

|Re| < |Im| Turn on ( +45)
31 |Re| > |Im| Turn on ( -90)3
32

ReX<0 ImX<0
|Re| < |Im| Turn on ( +135) and 

mirror display concerning 
a bisector of the second 
quadrant

41 |Re| > |Im| Mirror display concerning 
an axis abstsiss

4

42

ReX>0 ImX>0

|Re| < |Im| Turn on ( -45)

9.10. Segmentation for taking the logarithm - 
SemiquadrantTransThree
In this operation transformation complex numbers 

  2lnlnln 2  jXeXX
j









 , is carried out, where 

 XfX 1 . Thus the number is formed

  


jXeXX
j









 lnln2ln 2 .

Transformation is described by table 9. Further it is transformations we 
shall designate as  Xf3 .
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Table 9. Functions of transformation f f1 3 .
Site of number 

X
Quad-
rant

Semi-
quad-
rant

ReX ImX
Parity 

between 
|Re| 
and 

|Im|

 f X3

11 |Re| > 
|Im|  Re Ref X X3 2

 Im Imf X X3 2

1

12

ReX>0 ImX>0

|Re| < 
|Im|  Re Ref X X3 2

 Im Imf X X3 2
2 



21 |Re| > 
|Im|  Re Ref X X3 2

 Im Imf X X3 2 

2

22

ReX<0 ImX>0

|Re| < 
|Im|  Re Ref X X3 2

 Im Imf X X3 2
2 



31 |Re| > 
|Im|  Re Ref X X3 2

 Im Imf X X3 2  

3

32

ReX<0 ImX<0

|Re| < 
|Im|  Re Ref X X3 2

 Im Imf X X3 2
2  



41 |Re| > 
|Im|  Re Ref X X3 2

 Im Imf X X3 2 

4

42

ReX>0 ImX>0

|Re| < 
|Im|  Re Ref X X3 2

 Im Imf X X3 2
2  



10. Operations with polar forms
10.1. The polar form of representation of complex number
On fig. 9 the polar form of a complex тгьиук )exp(2  jD   is 

submitted. This form is used for representation of complex number in 

polar coordinates, where D2  - module, real number,   - real 
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number, a principal value of argument, which to be in limits 
      . 

63 62 ….… 54 53 52 ….… 2 1 0
Exponent  Logarithm of mantissa М

Fig. 9.

Thus
 in an exponent enters  ,
 in a real part of a mantissa the number DM Re  

enters,
 in an imaginary part of a mantissa the number 

j j 
 

8
 enters; here 


 

  
8 8

.

10.2. Multiplication of polar forms
In this operation operands are submitted in the indicative form of a 

kind )exp(2  jD  , i.e. in polar coordinates. Multiplication of two 
numbers submitted in such form will consist in the following:

o multiplication of real parts of mantissas - modules;
o addition an exponents;
o addition of imaginary parts of mantissas - arguments; at 

occurrence of carry s  from an imaginary part of a resulting 
mantissa from it the number 4

s  is subtracted.

10.3. Turn of the polar form
In this operation first operand are submitted in the indicative form of 

a kind )exp(2  jD  , i.e. in polar coordinates. The second operand 

is submitted as an imaginary part of a mantissa, which has value   and 

represents a corner of turn   as 
8
 jj  , where 

88



 . 

Thus, the second operand also is submitted in the indicative form of 
number )exp( j . Turn of complex number А on a corner   will 
consist in the following:
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 transfer of the real part of a mantissa of an operand А to 
the real part of a mantissa of result;

 transfer exponent of an operand А in an exponent of 
result;

 addition of imaginary parts of mantissas of the first and 
second operands; at occurrence of carry s  from an 
imaginary part of a resulting mantissa from it the number 
is subtracted . 

4
s
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