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Summary 
 

This book describes various versions of processors, designed for 
affine transformations of many-dimensional figures – planar and spatial. 
This processors is oriented to affine transformation of unstructured 
geometrical figures with arbitrary points distribution. The type of data 
presentation used in this book is non-conventional, based on a not well-
known theory of vectors and geometrical figures coding. The problems 
of affine transformation are used widely in science and engineering. The 
examples of their application are computer tomography and data 
compression for telecommunication systems. 

The book covers the figures coding theory – the codes structure, 
algorithms of coding and decoding for planar and spatial figures, 
arithmetical operations with planar and spatial figures. The theory is 
supplemented by numerous examples. The arrangement of several 
versions of geometrical processor is considered – data representation, 
operating blocks, hardwares realization of coding, decoding and 
arithmetic operations algorithms. The processor’s internal performance is 
appraised. 

The book is designed for students, engineers and developers, who 
intend to use the computer arithmetic of geometrical figures in their own 
research and development in the field of specialized processors. With 
that in view the book includes 

• Theory of coding, 
• Operations algorithms, 
• Examples of coding, decoding and computations, 
• Description of several versions of processors, 
• A system of commands for them, 
• Schemes of operational units, 
• Comparative analysis. 

 
Algorithms and units described in this book are developed into 
models in VHDL and FPGA. We shall welcome any kind of  
cooperation proposals sent to the address: 

 
solik@netvision.net.il 

 
 

mailto:solik@netvision.net.il
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1. Introduction 

 
 

This book is concerned with a full theory, not well known, and with 
patented engineering solutions for computer arithmetic of geometrical 
figures – planar and spatial. This theory is directed to the affine 
transformation of unstructured geometrical figures with arbitrary way of 
pints distribution. The transformation is aimed at this structure’s 
identification. That’s why the observed object may be defined only as a 
space in which a point has certain characteristics. The problems 
concerned with affine transformation of space are widely used in science 
and engineering – in medicine, in data processing and visualization, in 
astronomy, in seismology etc. Most striking and well-known examples of 
affine transformation applications are сomputer пraphics [1, 2], computer 
tomography [3] and information compression for telecommunication 
systems [4]. 

This book describes affine transformations (displacements, turns, 
scaling, shifts) of n-dimensional figures, where n=2,3,4. Usually the 
above-mentioned transformations are performed by calculating the 
coordinates of the points of the transformed figure according to the 
known coordinates of the points of the initial figure. However this 
method takes up a great deal of computer time since the calculation of 
coordinates is performed sequentially for every point and requires several 
operations per point (for instance, in order to calculate the new 
coordinates during an affine transformation of a planar figure, 4 
operations each of addition and multiplication are required). 

The above problems include operations with complex numbers since 
a point on a plane can be represented by a complex number. In this case 
operations of the same name can be performed simultaneously with a set 
of complex numbers. Processors with SIMD (Single Instruction, Multiple 
Data) architecture are used to solve problems of this type. However these 
processors operate with real numbers, and each operation with complex 
numbers requires several operations with real numbers – the real and 
imaginary parts of these complex numbers. Similarly, geometrical 
transformations in a three-dimensional space operate with three-
dimensional vectors – sets of three real numbers. And each operation 
with vectors demands even more operations with real numbers. All this 
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increases the calculation time substantially. In addition, set of complex 
numbers and vectors describing a figure takes up a great deal of memory. 
Thus there is a need for a method and system for effective SIMD 
calculations with a set of complex numbers and vectors that describe a 
figure. These calculations must be efficient as to calculation time and 
memory requirements. 

The solution of the above problems can be greatly accelerated with 
special coding of sets of complex numbers. Due to that, reviewed further will 
be a method of representing a set of complex numbers and vectors by a so-called 
geometrical code, and then various operations with them will be described, 
as well as the hardware support of these operations. The geometric codes 
were first put forward in [5, 6] and were considered also in [7-14]. In the 
construction of a geometrical code a method of complex numbers and 
vectors representation by a single binary code [11-16] is being used. 

By this method the set of binary codes of complex numbers and of 
the vectors is represented by a single binary code. Its volume is 
considerably smaller that the total volume of the initial binary codes 
array. The comparative volume reduction depends on the amount of 
numbers being coded and increases as this amount grows. The coded set 
of complex numbers is NOT structured. We can say that the set is a 
random one. The coded complex numbers and vectors are a coordinate 
set (which is significant) that the calculations are to be performed with. 
Any additional information about the points (for instance, their color), if 
it does not take part in the calculations, is not subject to coding, and 
should be saved in a separate array –an attribute array. Geometrical code 
saves (in addition to the coordinates) also the information about every 
point’s connection with its attributes.  

All arithmetic operations may be performed with geometrical code 
(complex numbers and vectors algebraic addition, multiplication, affine 
transformation). These operations are equivalent to group operations 
with the coordinates of all points simultaneously. 

It is significant that the performance time of an operation with 
geometrical code is equal to the performance time of the same operation 
with a pair of numbers, if only the whole geometrical code may be placed 
in the operative register of arithmetic unit. 

It is assumed that the initial codes were codes with fixed point (for 
example, the coordinates of the point on the screen). 

A method of geometrical code fragmentation is also proposed, 
allowing to operate with separate fragments of the geometrical code, if 
the arithmetic units register’s dimension is not sufficient to hold the 
whole code. 
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It is important that geometrical code permits to operate with a 
geometrical figure as a whole, single object. So the data volume 
(coordinate codes) is reduced. However (and it should be emphasized to 
avoid mistakes), geometrical code does not compress geometrical figures 
themselves. It is assumed that the coded geometrical figure is described 
by a random set of points and does not have any special structure, which 
is typical for raster images. 

In general, application of GC reduces data volume n times, where n – 
digit capacity of linear codes. The group operations performance speed is 
many times higher than the same operations speed for group operation 
with complex codes array. General computations time is also reduced 
due to data access time reduction. 

Next we shall consider three types of arithmetic units - 

• Traditional, operating with the proposed vector codes and 
containing several calculators, working simultaneously. 

• Vectorial, operating with the proposed vector codes and also 
containing several calculators, working simultaneously, and 

• Geometrical, operating with geometrical codes of figures. 
We shall also consider a specialized random-access memory unit based 

on the geometrical figures coding method. 
A comparison between the performances of these units is given. It 

appears reasonable to describe the device’s performance by a ratio between 
the unit’s volume and the number of certain procedures performed by 
the unit in a time unit. Let us call this ratio relative volume of a unit. A 
standard procedure for arithmetic units is affine transformation. For 
random-access memory units such standard procedures are either search 
for a point with given coordinates in an unordered array, or plain access, 
or a mixture of these procedures. 

Fig. 1.1 gives a bar graph of the relative volume of the named 
arithmetic units in relation to the dimension p of the coded space. The 
unit of measurement in this figure is 14*М, where М – number of points 
in the coded space. For example, for p=3 the ratio of relative volumes  
values is (84:14:1). 

To compare the variants of random-access memory realization let us 
assume that in a given problem the reading/writing operations are Н 
time more frequent than operations of search by given coordinates. It is 
shown that the relative volume of specialized RAM is (~M/10H) times 
smaller than the relative volume of traditional RAM unit. 



1. Introduction 

    11 

 

p

Relative Volume
32

16

4

3

3

1

Scalar Processor

Geometrical Processor
Vectorial Processor

0.07 0.14 0.21 0.29
0 1 2 3 4  
Fig. 1.1. Bar graph of the relative volume of the named arithmetic. 
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The book consists of 7 chapters, including the present introduction. 
The second chapter is concerned with known devices for figure 

transformation – with one or several calculators.  
The third chapter presents  foundations of computer arithmetic for 

complex numbers and vectors –theory and hardware solutions. This 
chapter is essential, since in coding and decoding the geometrical figure 
code, we have to make use of the codes of complex numbers and 
vectors. 

In the fourth chapter a vector arithmetic unit is discussed, which is 
based on vector computer arithmetic, stated in the previous chapter. 

In the fifth chapter the theory of figures coding is described – the 
structure of codes, coding and decoding algorithms for planar and spatial 
figures, arithmetic operations with planar and spatial figures. The theory 
is supplemented by numerous examples.  

The sixth chapter deals with the arrangement of raster geometric 
processor – data representation, operational units, technical realization of 
coding, decoding and arithmetic operations algorithms; the operating 
speed of this processor is also appraised. 

The seventh chapter is dedicated to the characteristics comparison 
between arithmetic units and random-access memory units designed for 
operations with figures. The traditional units, described in the previous 
chapters, are being compared with the vector arithmetic units and 
geometrical figures arithmetic units. 
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2. Prototypes 

 
 

2.1. Data Representation 
 
The processors presented below are intended for solving the 

following problem. A set of points in a p-dimensional space is given. The 
points comprise a domain of definition, which is a p-dimensional cube, 
and they are distributed in this domain at the nodes of a uniform 
network. Each coordinate is represented by an n-digit code with fixed 
point. The network step is equal to the lowest digit of this code. Each 
point is characterized by its coordinates and attributes (certain values, 
associated with each point). We shall say that in such way a figure in p-
dimensional space, or, simply, a p-dimensional figure F, is defined. We 

must find another figure Fa, obtained from the figure F by means of an 
affine transformation. The affine transformation is described by a p-
dimensional transformation matrix and by an r-digit carry vector (for 
carry of this figure in some direction). Each element of the 
transformation matrix is represented by an n-dimensional code with a 
fixed point. The total digit capacity of the affine transformation 
parameters is equal to 

a=p n+ p2 r.      (2.1.1) 
For each point  a pair “coordinates-attribute” is stored in the processor’s 
memory. Evidently, the maximal number of coded points is 

M=2pn.       (2.1.2) 
Addresses of these pairs do not change during the problem solution in 
order to be able to find the point’s attribute by the coordinates modified 
in the process of the coordinates transformation. Moreover, during some 
transformations the points’ coordinates may coincide. Hence every point 
is determined by a triad “address-coordinates-attribute”. 

In future a processor for solving the described problem will be called a 
raster geometrical processor – RGP. Further we shall consider different 
variants of arithmetic units for such processor. 
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2.2. The Simplest Arithmetic Unit 
 
As a preliminary we shall view a simplest construction of a scalar 

arithmetic unit SAU (see Fig. 2.2.1); it will be used further for analogies 
and comparison with the more complex constructions. In this unit a 
simplest multiplier of sequential type is used, containing only a shifter 
and an adder. 

 

 Register of Parameter - r bytes

Multiplexer

Registers of all Parameters of
Transformation - a bytes

Input

Register of  Coordinate - (n+r) bytes

Adder - (n+r) bytes

Shifter - (n+r) bytes

Input Output

Coordinate Block

Control
Unit

 
Fig. 2.2.1. The simplest arithmetic unit. 

 
In this SAU we need only an (n+r)–digit adder, (n+r)–digit 

multiplier, (n+r)–digit coordinate register, (r)–digit register of the chosen 
parameter and a–digit register of all the transformation parameters – the 
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components of transformation matrix and carry vector – see (2.1.1). 
Besides, this SAU contains a multiplexer for parameter choice and a 
control unit. Affine transformation of any point contains p2 
multiplications and  

( ) ,...4,3,2,...12,6,21 ==−= pifppD   (2.2.1) 

additions. 
In this arithmetic unit the adder serves for adding the coordinate to 

one of the components of the carry vector, and for adding the partial 
product to the multiplicand when performing multiplication. The sum 
register  in this AU contain triggers with complementing input, and 
therefore it may be combined with the register of one of the addends – 
the register of the initial coordinate value.  

The multiplier in this AU realizes the following algorithm 
0. Given: r-digit factor А, representing one component of the 

transformation matrix, and an n-digit multiplicand B, 
representing one coordinate of the point. 

1. At the beginning the partial product is equal to 0, and the 
multiplicand B is located so, that its lowest 0-digit is combined 
with the highest (n-1)-digit 1−nα  of the multiplicand A.  The 
number of the current multiplicand’s digit is t=n-1, i. e. 

1−= nt αα . 
2. Adding the partial product to the multiplicand B, if 1=tα . 
3. Shifting the multiplicand B  to the right by1 digit and decreasing 

the current number 1: −= tt . 
4. Stopping the calculation if 0<t , or going to 2. As a result an 

(n+r)–digit product С is formed. 
Thus, the multiplier consists only of the shifter to the left by 1 digit, 

and of the adder. 
The digit capacity of the affine transformation results  may reach 

(n+r). This may lead to some points exceeding the bounds of the initial 
p-cube. At that we may: 

1. or exclude these points from the given set (by putting an 
appropriate sign in the point’s attribute), 

2. or round off all the coordinates codes (by discarding the lower 
digits) and change the network step (that is a parameter of the 
whole figure). 
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In either case it may occur that 
1. There are several points present in a certain node of the 

network. The attribute of the node is defined as a function of 
the attributes of all points present in this node. If for instance 
the attribute is intensity of monochrome color, then this 
function is a simple average of the intensities of joined 
vectors. 

2. A point is lacking in a certain node. The node’s attribute is 
defined as a function of the attributes of all adjacent nodes. 

Let us review now the list of processor’s commands realized in the SAU: 
• Receiving the transformation parameters 
• Receiving coordinate 
• Adding to the carry vector component (D modifications – see 

(2.2.1)) 
• Multiplying by a transformation matrix component (p2 

modifications) 
• Yielding a coordinate 
• Rounding off 
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2.3. Arithmetic Unit with Rectangular 
Codes 
 
If we are not keen on hardware economy, then we may construct a 

MSAU, containing a set (М) of simultaneously working elementary 
arithmetic units SAU. In such unit the codes of one coordinates for all 
the figure’s points comprise an array called a rectangular number code RCS. 
RCS contains М registers of digit capacity (n+r). MSAU contains total М 
adders of digit capacity (n+r), М multipliers of digit capacity (n+r), RCS 
and one a–digit register of parameters. This MSAU performs group 
operations - adding RCS to carry code and multiplying RCS by the code 
of centroaffine transformation matrix element. Affine transformation of 
a figure contains p2 group multiplications and D group additions. 

Such a version of MSAU must have a very large size and its realization 
is beyond the bounds of today technology. So let us consider another 
version, intermediate between arithmetic units with individual and group 

operations. For that let us divide RCS in several fragments RCSq, each 
containing Q registers of digit capacity (n+r). Arithmetic unit FSAU 
totally contains Q adders of digit capacity (n+r), Q multipliers of digit 

capacity (n+r), RCSq and one a–digit register of parameters. The 
diagram of FSAU is presented in the Fig. 2.2.2. This diagram is similar to 
the diagram of Fig. 2.2.1, apart from the fact that Q coordinate units are 
used in it, as is shown in the Fig. 2.2.1. 
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 Register of Parameter - r bytes

Multiplexer

Registers of all Parameters of
Transformation - a bytes

Input

Q Coordinate Blocks

Input Output

Control
Unit

Shifter - (n+r) bytes

 
Fig. 2.2.2. Arithmetic unit with fragmentary rectangular codes. 

 
FSAU performs group operations with the point’s coordinates of a 

figure’s fragment. There the affine transformation of a figure contains 
Qp2 group multiplications and QD group additions. 
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3. Foundations of Computer 

Arithmetic for Complex 
Numbers and Vectors 

 
 

3.1. Coding method for complex 
numbers 
 

Complex numbers can be used as the radix for coding linear codes. 
Such code corresponds to the complex number Z  being represented by 
decomposition of this type: 
 ( )∑=

m
m mfZ ,ρα , 

where m – is the number of the decomposition digit, 
 { }1,0=mα  – is the value of the decomposition digit, 
 ρ  – is the radix of decomposition, 
 ( )mf ,ρ  – is the basic function of the number and radix. 

The binary positional code of the complex number Z  that corresponds 
to this decomposition looks as follows: 
 ( ) ...... mZK α=  
In Table 3.1.1. all the possible basic functions are enumerated [14]. For 
illustration we shall now show the binary codes of numbers in all the 
enumerated coding systems, including coding system with a real (positive 
and negative) and complex radixes - see. Table 3.1.2. 
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Table 3.1.1. Systems of complex numbers coding 
№ Basic Function Radix 

1 

( )
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−⋅

−
=

−
oddif

evenif
,

2
1

2

mj

m
mf

m

m

ρ

ρ
ρ  

2−=ρ  

2 ( )f m mρ ρ, =  ρ  = j 2  

3 ( )f m mρ ρ, =  ρ  = − j 2  

4 ( )f m mρ ρ, =  ( )ρ = − +1 j  

5 ( )f m mρ ρ, =  ( )ρ = − −1 j  

6 ( )f m mρ ρ, =  ( )ρ = − +
1
2

1 7j

Table 3.1.2. Binary coding systems. 
 ρ  

 2 ρ ρ   - 2  - 1  

1 ( )

( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−

−−
−

oddif2

evenif2

2
1

2

mj

m
m

m 10100 10 1010 100 101 

2 2j  
10100 10 1010 100 101 

3 2j−  
10100 10 1010 100 101 

4 j+−1  1100 10 110 11100 11101 

5 j−−1  1100 10 110 11100 11101 

6 ( )1
2

1 7− + j
 

1010 10 101 110 111 

7 -2 110 10 10 11 

8 2 10 10  
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3.2. Special Algebra in Vector Space 
 
3.2.1. Algebra in 3-dimensional vector space  
Let us consider a certain algebra in a three-dimensional vector space. 

Let i, j, k be the base of a 3-dimensional vector space. Let us determine 
the ort mutiplication Table 3.2.1 for this base. According to this table, 
multiplication of vectors is described as follows: if U U U= 1 2* , where 

U x i y j z km m m m= + +  
for any m indexes, then 

x x x y z z y= − −1 2 1 2 1 2 , 

y x y y x z z= + −1 2 1 2 1 2 , 

z x z y y z x= + +1 2 1 2 1 2 . 
 

Table 3.2.1. 3-dimensional vectors multiplication 

* i j k 
i i j k 
j j k -i 
k k -i -j 

 
This multiplication does not have anything in common with vector or 

scalar multiplication and, unlike those, is designated further by the 
symbol ‘*’. It is not hard to ascertain that multiplication determined by 
Table 3.2.1 for orts i, j, k will be associative and commutative. 
Consequently, multiplication determined for any vectors or the vector 
space under consideration, will also be commutative and distributive with 
respect to addition. Aside from that, the following condition is fulfilled: 

( )* *( ) ( * )bU U U bU b U U1 2 1 2 1 2= = , 
where b is a real number. Consequently, Table 3.2.1 determines, within a 
3-dimensional vectorial space, an algebra without division over a real 
numbers field. 

Addition within the algebra under consideration corresponds to 
common addition of vectors, and multiplication – to turning the 
multiplicand vector while simultaneously changing its length. In a general 
case, the turn parameters, i.e. the position of the turn axis, the angle of 
the turn, and the scale multiplier, depend upon the coordinates of both 
comultipliers. Therefore, the geometrical interpretation of multiplication 
in this algebra is fairly complex, however a few operations of 
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multiplication and addition will be enough to decribe those vector 
transformations that have simple geometrical meaning. 

 
3.2.2. Component-wise multiplication 
Let us consider certain operations in this algebra, having first defined 

an operation referred to as component-wise multiplication. This term will be 
used to name the operation of multiplication of vector U1  by an ordered 
threesome of vectors U U U2 3 4, , . Component-wise multiplication 
consists in calculating the vector according to the formula 

413121 *** UkzUjyUixU ++=  
or 

x x x y z z y= − −1 2 1 3 1 4 , 
y x y y x z z= − −1 2 1 3 1 4 , 
z x z y y z x= − −1 2 1 3 1 4 . 

In order to designate this operation, we shall also use the following 
notation: 

U U U U U= 1 2 3 4*[ , , ] . 

In particular, 212221 *],,[* UUUUUU = . 

 
3.2.3. Vector product 

U U U jz ky jx kz jy kx1 2 1 2 2 2 2 2 2× = − + − − −*[( ),( ),( )]. 
 

3.2.4. Scalar product  
i U U U ix ky jz( ) *[( ),( ),( )]1 2 1 2 2 2• = − −  
- here, for calculation convenience, the real number U U1 2•  is 
considered identical with the vector i U U( )1 2• . 
 

3.2.5. The turning of a vector 
The turning of a vector, while it moves along the surface of a certain 

cone, can also be described by component-wise multiplication according 
to the threesome of vectors obtained from the turn parameters. Here, it 
is worthwhile to note the analogy with the algebra of complex numbers, 
where multiplication is equivalent to turning a planar vector. 

Let us consider a straight line with an ort 
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γβα kCosjCosiCosro ++= , 
passing through the point of origin. Let a point rotate around this line in 
a circle of a certain radius.  Its radius vector turns from position 1U  to 
position U . If furthermore the point rotates counterclockwise (as 
observed from the edge of the vector or ) and the angle of rotation is 

πϕ ≤≤0 , then it may be shown that 
( ) ( )( )ϕϕϕ CosUrrSinUrCosUU ooo −•−×+= 1111  

or 
U U U U U= 1 2 3 4*[ , , ] . 

where 

( )
( )( )

( )( )⎪⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−⋅⋅+⋅−
+−⋅⋅+⋅

++⋅
=

ϕγαϕβ
ϕβαϕγ

ααϕ

CosCosCosSinCosk
CosCosCosSinCosj

CosSinCosi
U

1
1

22

2
 

( )
( )( )
( )( ) ⎪

⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−⋅⋅−⋅
+−⋅⋅+⋅

++⋅
=

ϕβαϕλ
ϕλβϕα

ββϕ

CosCosCosSinCosk
CosCosCosSinCosj

CosSinCosi
U

1
1

22
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( )
( )( )

( )( ) ⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−⋅⋅−⋅
+−⋅⋅−⋅−

++⋅
=

ϕλβϕα
ϕλαϕβ

γγϕ

CosCosCosCosCosk
CosCosCosSinCosj

CosSinCosi
U

1
1

22

4
 

 
3.2.6. Centroaffine transformation 
Centroaffine transformation is equivalent to component-wise 

multiplication by three vectors, built from the elements of centroaffine 
matrix elements. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−
−−

==⋅=
)(

),(
),(

*

3332311

232221

131211

1

333231

232221

131211

12

kajaia
kajaia
kajaia

U
aaa
aaa
aaa

UU T . (3.2.1) 
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3.2.7. Many-dimensional space 
Let us now generalize the results obtained so they can apply to n-

dimensional space. Let us select a base within it, E E En1 2, ,..., , the 
elements of which satisfy the following condition: 

E Ea b  = - Ec  with d>n+1, 
E Ea b  = Ec  with d<n+2, 

where d=(a+b-1), c= d nmod .    (3.2.2) 
It can be demonstrated that multiplication, as determined for the 

elements of this base, is associative, commutative and distributive with 
respect to addition, and it also satisfies the following condition: 

( )* *( ) ( * )bU U U bU b U U1 2 1 2 1 2= = , 
where b is a real number. Consequently, the set of n-dimesional vectors 
is an algebra. In particular, if n=2 and the base of this space is {1, j}, we 
obtain the algebra of complex numbers – see also Table 3.2.2 of complex 
numbers multiplication; if n=3 we come up with the algebra in Table 
3.2.1 described above; if n=4, the last formula correspond to the Table 
3.2.3 of multiplication of four orts, and so on. 
 
Table 3.2.2. Compex numbers multiplication. 

* 1 j 
1 1 j 
j j -1 

 
Table 3.2.3. 4-dimensional vectors multiplication 

* i j k m 
i i j k m
j j k m -i 
k k m -i -j 
m m -i -j -k
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3.3. Two Methods of 
Multidimensional Vector Codes 
Synthesis 

 
As indicated earlier, complex number may be used as radixes of linear 

codes coding - see. Table 3.1.1. For the systems 1 and 2 this method is 
based on constructing a certain composition of codes of real numbers 
with a negative radix. Such method of constructing codes of complex 
numbers can be generalized and used for coding multidimensional 
vectors. Let us consider n real numbers { }X i

, each of which has been 
determined by binary decomposition with a radix ρ = −2 , i.e. 

∑=
)(m

mi
miX ρα ,     (3.3.1) 

where (i=1, 2,..., n). Each such decomposition has its corresponding 
code 

......)( i
miXK α=      (3.3.2) 

 
3.3.1. Method 1.  
Let us now consider an n-dimensional vector: 

Z E X E X E Xn n= + + +1 1 2 2 ... ,   (3.3.3) 
where { }Ei

 is the base of n-dimensional vectorial space. In this case, the 
set of codes { }K Xi( )  can be interpreted as a unique code of the vector 

Z with a radix ‘-2’. Every m-digit of this code is represented by a set of 

binary digits, { }i
mα . Having assigned the figures σ m  to these sets, we 

obtain the vector code 
......)( mZK σ= ,     (3.3.4) 

which corresponds to the decomposition 

∑=
)(m

m
mrZ ρ , 

where the vector 
αααα n

mn
i
mimmm EEEEr +++++= ......2

2
1

1   (3.3.5) 
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is represented by the figure mσ . In particular, if n=2, codes of complex 
numbers with a radix ‘-2’ are formed, which were reviewed above. If 
n=3, codes of 3-dimensional vectors are formed, wherein the digits 
assume one of the following eight values: 

rm ∈ { 0, i, j, k, i+j, i+k, j+k, i+j+k },  (3.3.6) 
where i, j, k are orts of rectangular coordinate axes. 

Similarly to the coding of complex numbers, for coding 3-
dimensional vectors we can introduce a vector function of a real integer 
argument 

( )

( )

( )

( ) ⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+=−

+=−

=−

=

−

−

23if2

13if2

3if2

2

1
2

kmk

kmj

kmi

m
m

m

m

ϑ ,    

that will be designated hereinafter as m
2ϑ . Note that the code of the 3-

dimensional vector with a radix (-2), which we are reviewing, can be 
regarded as the code of a 3-dimensional vector with a radix 2ϑ  with 
binary digits. Vector decomposition in the form of ( )∑=

m

m
mZ 2ϑα  

corresponds to this code. 
Similarly, for coding n-dimensional vectors we can introduce a 

vector function of a real integer argument: 

( )

( )

( )

( ) ⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−+=−

+=−

=−

=

+−

−

1if2

...

1if2

if2

1

1

nnkmk

nkmj

nkmi

m

nm

m

m

nϑ
,  (3.3.7) 

further denoted as m
nϑ . 

 
3.3.2. Method 2.  
Let us now build, same as for complex numbers, a series of 

alternating binary digits α i
m : 

......... 1
11

1211
1

2
1 αααααααα −

−−
−

++
n
m

n
mmm

n
m

n
mmm   (3.3.8) 

In other designations, this series is the binary code 
......)( kZK α= ,      (3.3.9) 
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of a certain vector Z. In this case the coding radix is also a vector 
nE 22=ρ ,      (3.3.10) 

where 2E  is the second ort of the base { }Ei
 of n-dimensional vectorial 

space. The coded vector Z is determined in this situation according to 
the formula 

n
n

i
i XXXXZ 11

21 ...... −− +++++= ρρρ .  (3.3.11) 
Positional codes of vectors lend themselves to operations of algebraic 

addition, vectorial and scalar multiplication, and component-wise 
multiplication. Algorithms of these operations contain cycles of algebraic 
addition of number codes and vector shifts, i.e. they are easy to 
implement technically. This may be utilized when building processors 
that operate with vectors as a whole. Such a processor requires a simpler 
algorithm to solve problems with vectors, and when using the given 
algorithm it works according to a shorter program and has increased 
performance speed. In order to assess these values, it can be stated, for 
instance, that a program of vector multiplication for vectors determined 
by three numbers contains 6 operations of multiplication and 3 
operations of subtraction. 

The best coding systems for creating geometrical codes formation are 
coding systems of complex numbers 1, 2, 3. The last two systems are 
similar in many respects. Therefore in further narrative we shall consider 
algorithms and units for operations only in the systems 1 and 2. In these 
systems the complex code is presented as a composition of real number 
codes to the radix (-2). Such codes are formed from traditional codes to 
the radix (2). Therefore as a preliminary  we shall consider the algorithms 
and units for arithmetic operations, coding and decoding of real numbers 
to various radixes. Thus, let us consider now several types of binary 
codes: 

• Traditional code in the radix “2” – the so-called P-code, 
• Real numbers code in the radix “-2” – the so-called M-code, 
• Complex code in complex radix – the so-called С-code. 

The range of variation of a positive real integer number, represented by 
an n-digit P-code, are as follows: 

( ) ( )120 1 −÷ +n . 
The range of variation of a positive real integer number, represented by 
an n-digit M-code, are as follows: 

evenif
3

12
3

22odd;if
3

12
3

22 11
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
÷⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +−
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
÷⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +− ++
nn

nnnn . 



3.3. Two Methods of Multidimensional Vector Codes Synthesis 

28 

 



3. Foundations of Computer Arithmetic for Complex Numbers and Vectors  

29 

3.4. Algebraic addition of M-codes 
 
The best systems for building geometrical codes are coding systems 

1, 2. In these systems the complex code is presented as a composition of 
real number codes to the radix (-2). Therefore we shall first consider 
below the algorithms and units for arithmetic operations with M-codes. 
 

3.4.1. Multidigit Circuits for M-codes 
We shall consider next the devices for coding and decoding. The 

main units of these devices are linear multidigit circuits for algebraic 
addition. They consist of series-connected one-digit circuits – see Fig. 
3.4.1, where 

N – digit capacity of the codes, 
k={0,1,2,…,n-2,n-1} – numbers of digits and one-digit circuits, 
cop – operation code, common for all one-digit circuits, 
V1, V2 – the input carry digits, representing the number V, 
W1, W2 – the output carry digits, representing the number W, 
A, B – the operands, 
C – the result. 

 

v1(k+1)=w1(k)

N-1
W1=w1(n-1)

k
a(k)

c(k)

v2(k+1)=w2(k)
0

cop

C

v1(0)=V1

W2=w2(n-1) v2(0)=V2
b(k)

A
B  

Fig. 3.4.1. Multidigit algebraic addition circuit 
 

In special linear circuits cases the operation code and/or the second 
operand may be lacking. The input carry V, as a rule, is equal to zero. 
The input carry V, as a rule, is equal to zero. Non-zero output carry W is 
indicative of an overflow. 

Further when considering specific schemes of algebraic addition, we 
shall describe (as a rule) only one-digit schemes.  
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3.4.2. M-code Inverter 
Fig. 3.4.2 presents a one-digit inverting circuit Inv. Its functioning is 

described by a verity table Table 3.4.2. This table computes the value 
с-2*w=-a+v. 

 
Table 3.4.2. One-digit inverting circuit 

a v w c 

0 0 0 0 
1 0 1 1 
0 1 0 1 
1 1 0 0 

 

Inv

a

c

w v

 
Fig. 3.4.2. One-digit inverting circuit. 

 
3.4.3. M-codes Inverse Adder 
Fig. 3.4.3 presents an one-digit inverse adder’s circuit InvAdd. Its 

functioning is described by a verity table Table 3.4.3. This table 
computes the value с-2*w=(-a-b+v). 
 
Table 3.4.3. One-digit inverse adder circuit 

a b v w c 
0 0 0 0 0 
0 1 0 1 1 
1 0 0 1 1 
1 1 0 1 0 

0 0 1 0 1 
0 1 1 0 0 
1 0 1 0 0 
1 1 1 1 1 
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InvAdd

a

c

w v

b  
Fig. 3.4.3. One-digit inverse adder circuit. 

 
3.4.4. M-code Adder 
Figure 3.4.4 presents a one-digit adder scheme Add. Its functioning is 

described by truth table 3.4.4.  This table calculates the sum 
с-2* w = (a + b + v) 

 
Table 3.4.4. One-digit adder circuit 

a b v1 v2 w1 w2 c 

0 0 0 0 0 0 0
0 1 0 0 0 0 1 
1 0 0 0 0 0 1 
1 1 0 0 1 1 0 
0 0 1 1 0 1 1
0 1 1 1 0 0 0 
1 0 1 1 0 0 0 
1 1 1 1 0 0 1 
0 0 0 1 0 0 1
0 1 0 1 1 1 0 
1 0 0 1 1 1 0 
1 1 0 1 1 1 1 

 

Add

a

c

w2

w1 v1

v2

b  
Fig. 3.4.4. One-digit adder circuit 
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3.4.5. M-code Subtractor 
Figure 3.4.5 presents a one-digit subtractor scheme Sub. Its 

functioning is described by truth table 3.4.5.  This table calculates the 
sum с-2* w = (a - b + v). 
 
Table 3.4.5. One-digit subtractor circuit 

a b v1 v2 w1 w2 c 
0 0 0 0 0 0 0 
0 1 0 0 0 1 1 
1 0 0 0 0 0 1 
1 1 0 0 0 0 0 
0 0 1 1 0 1 1 
0 1 1 1 0 1 0 
1 0 1 1 0 0 0 
1 1 1 1 0 1 1 
0 0 0 1 0 0 1 
0 1 0 1 0 0 0 
1 0 0 1 1 1 0 
1 1 0 1 0 0 1 

 

Sub

a

c

w2

w1 v1

v2

b  
Fig. 3.4.5. One-digit subtractor circuit 

 
3.4.6. Sign Determinant M-code 
The sign determinant determines the sign of the number represented 

by M-code. It exploits one-digit sign determinants shown in the Fig. 
3.4.6.1 of two modifications: 

Seven – one-digit circuit of sign determinant for even-numbered 
digit, 

Sodd - one-digit circuit of sign determinant for odd-numbered 
digit, 
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Seven
or

Sodd

a

w2

w1v1

v2

 
Fig. 3.4.6.1. One-digit sign determinant circuit. 

 
The carries codes in these circuits are interpreted as follows: 

00 – the code has a zero value, 
01 – the code has a positive value, 
10 – the code has a negative value. 

The functioning of one-digit sign determinants Seven and Sodd is 
described in the tables 3.4.6.1 and 3.4.6.2 accordingly. 

 
Table 3.4.6.1. One-digit sign determinant circuit for even-numbered digits 

a v2 v1 w2 w1 
0 0 0 0 0 
0 0 1 0 1 
0 1 1 1 1 
1 0 0 0 1 
1 0 1 0 1 
1 1 1 0 1 

 
Table 3.4.6.1 realizes the rule  

 ‘w2, w1’ = ‘v2 v1’, if a = ‘0’, 
‘w2, w1’ = ‘01’, if a = ‘1’. 

Table 3.4.6.2 realizes the rule  
 ‘w2, w1’ = ‘v2 v1’, if a = ‘0’, 
‘w2, w1’ = ‘11’, if a = ‘1’. 
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Table 3.4.6.2. One-digit sign determinant circuit for odd-numbered digits 
a v2 v1 w2 w1 
0 0 0 0 0 
0 0 1 0 1 
0 1 1 1 1 
1 0 0 1 1 
1 0 1 1 1 
1 1 1 1 1 

 
Sign determinant as a whole - nSign is presented by Fig. 3.4.6.2, showing 
circuit diagram between the circuits Seven and Sodd and between them 
and the M-code circuit. The following notations are used 

N - digit capacity of sign determinant, 
A – input code, 

W1, W2 – output carries. 
The output carries code (W2, W1) is interpreted as follows: 

00 – the code has a zero value, 
01 – the code has a positive value, 
10 – the code has a negative value. 

Hence, if W2=1 then A<0, and if W2=0 then A>=0. 
 
 

Seven
2

Sodd
1

Seven
0

Seven or Sodd
(N-1)

w1

w2
 

Fig. 3.4.6.2. Sign determinant 
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3.5. Multiplication of Many-
dimensional Vectors 
 
3.5.1. Multiplication Method of Many-dimensional Vectors 
We have to find the product of vectors C=A*B, where the 

expansions of multiplier and multiplicand are accordingly: 
( )∑=

h
h hfA ,ρα ,  ( )∑=

k
k kfB ,ρβ . 

Code of the product is defined as ( )[ ]∑=
h

h hfBC ,ρα . 

Since { }1,0=hα , the multiplication consists only of multiplication by 
the base function ( )hf ,ρ  and summation. Let us review the 
multiplication by the base function for two cases important for our 
application. 
 

3.5.2. Multiplication by Base Function to the Radix (3.3.10). 
In this case multiplication of the multiplicand by the base function is 

equivalent to a shift by h digits. Consequently,  multiplication of codes in 
this system amounts to successive operations of shift and addition. 
 

3.5.3. Multiplication by Base Function to the Radix (3.3.7). 
Dimension of multiplier is mnN ⋅= , where n – dimension of the 

vector. Code of the multiplier may be divided into m groups, and in each 
t-group there is the first (lowest) digit, second digit,… i-digit, … n-digit. 
We shall number the groups in the same way as the code’s digits, from 
right to left from 0 to (m -1). The multiplication of multiplicand by the 
base function (if the corresponding digit  of the multiplier is equal to 1) 
consists of two operations (which are simultaneous): 

1. Shifting the multiplicand by tnh ⋅=  digits, if we are in 
the t-group of multiplier’s digits 

2. Multiplying the multiplicand В by the ort according to 
number i of the digit in the group. 

niBEB ii ,1, ==     (3.5.1) 

- see also (3.3.3). For example, if n=2, then: 
jBBBB == 21 , ;  

if n=3, then:  
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kBBjBBiBB === 321 ,, ;  

if n=4, then: 
mBBkBBjBBiBB ==== 4321 ,,,  

and so on. Notice, that the reformed multipliers iB  may be prepared 
before the multiplication. 

Calculations by the formula (3.5.1) are performed according to the 
multiplication table of vector, or by formula (3.2.2). Let us in accordance 
with (3.3.3) assume that   

nnbEbEbEB +++= ...2211 ,   (3.5.2) 
Specifically, for complex numbers Table 3.2.2 is used. We have: 

122121 )(, jbbjbbjBBB +−=+== . 
For three-dimensional vectors Table 3.2.1 is used. We have: 

.)(
,)(

,

13232132

2133212

1

kbjbbkbjbbkB
kbjbbkbjbbjB

BB

+−−=++=
++−=++=

=
 

For four-dimensional vectors Table 3.2.3 is used. We have: 

.)(
,)(
,)(

,

143243214

214343213

321443212

1

mbkbjbbmbkbjbbmB
mbkbjbbmbkbjbbkB
mbkbjbbmbkbjbbjB

BB

+−−−=+++=
++−−=+++=
+++−=+++=

=

 

Hence it follows that multiplication of a code by a vector consists of 
inverting some of the components and permuting the vector code’s 
components. 
 

3.5.4. Multiplication of the Whole Codes of Vectors to the Radix 
(3.3.10). 
Let us consider a system of coding n-dimensional vectors to the radix 

(3.3.10). For our application the digits of multiplier should be analyzed 
beginning from the highest, and the multiplicand should be shifted to the 
right. According to this, the multiplication algorithm is as follows: 

1. At first the partial product is equal to 0, and the multiplicand B is 
located so, that its lowest 0-digit coincide with the highest (N-1)-
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digit 1−Nα  of the multiplier A. The number of the multiplier’s 
current digit is t=N-1, i.e. 1−= Nt αα . 

2. Add the partial product to multiplicand B, if 1=tα . 
3. Shift multiplicand B by 1 digit to the right and decrease the current 

number 1: −= tt . 
4. Stop calculation if 0<t or go to p. 2. 

 
3.5.5. Multiplication of the Whole Codes of Vectors to the Radix 
(3.3.7). 
Let us consider a coding system for n-dimensional vectors to the radix 

(3.3.7). The digit capacity of the multiplier’s code is mnN ⋅= . In this 
case multiplication algorithm is as follows: 

1.  Prepare n variants of multiplicand B by formula (3.5.1). 
2. Take groups of n digits of multiplier. Begin with the partial product 

equal to 0, and multiplicands iB  located in such way, that their 
lowest 0-digits coincide with the digit of multiplier А of the 
number ( )1−⋅=− mnnN . The number of the current digit 
group of the multiplier is t=m. 

3. Take the t-group of digits of the multiplier А. In it: 
3.1. Take the first (lowest) digit )1( −tnα . Perform addition of 

partial product to multiplicand 1B  if 1)1( =−tnα . 

3.2. Take the second digit 1)1( +−tnα . Perform addition of partial 

product to multiplicand 2B , if 11)1( =−−tnα . 
… 
3.i. Take the i-digit itn +− )1(α . Perform addition of partial product 

to multiplicand iB , if 1)1( =+− itnα . 
... 
3.n. Take the n-digit ntα . Perform addition of partial product to 

multiplicand nB , if 1=ntα . 
4. Shift the multiplicand by n digits to the right (recall that here n – is 

dimension of the vector) and decrease the current number 
1: −= tt . 

5. Stop calculation if 0<t , or go to p. 3. 
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3.5.6. Componentwise Multiplication of Many-dimensional 
Vectors. 
Unlike simple multiplication, in componentwise multiplication for 

each cycle the value of multiplicand which is being added, depends on 
the number m of multiplier’s digit (that is, to which component of 
multiplier vector this digit belongs). Let us assume that 

m – number of digit of multiplier А, 
k – integer number. 
If componentwise multiplication of a complex number is being 

performed,  
C = A * ( X, Y ), 

then multiplicand B is defined as follows: 
B = X, if m = 3k, 
B = Y, if m = 3k+1. 

If componentwise multiplication of a three-dimensional vector  is being 
performed,  

C = A * ( X, Y, V ), 
then multiplicand B is defined as follows: 

B = X, if m = 3k, 
B = Y, if m = 3k+1, 
B = V, if m = 3k+2. 

If componentwise multiplication of a four-dimensional vector  is being 
performed,  

C = A * ( X, Y, V, W ), 
then multiplicand B is defined as follows: 

B = X, if  m = 3k, 
B = Y, if m = 3k+1, 
B = V, if  m = 3k+2, 
B = W, if m = 3k+3. 

As indicated earlier, componentwise multiplication by threesomes of 
vectors prepared beforehand, is equivalent to scalar and vector 
multiplication, multiplication by a number, centroaffine transformation, 
etc. 
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3.6. Scalar and Vector Multiplication 
 
When performing the operations of scalar and vector multiplication not 

subject to any rules requisite for a ring, the multiplication becomes more 
complicated. It has been shown above that these operations may be 
substituted by componentwise multiplication. But to do this, the co-
multipliers should be prepared beforehand. Hence we shall further 
consider some other methods of scalar and vector multiplication in a 
coding system of three-dimensional vectors to the radix (3.3.7), suggested 
in [16]. 

In this system the vector code takes the form (3.3.4), and its digits 
assume the values (3.3.6). We shall use the following 8 “numbers” for 
their designation: 

hgfedcbam ,,,,,,,=σ . 
The digits of vectors-co-multipliers V and W are further presented as 

vectors mv  and mw  with three components – real numbers taking  value 
0 or 1: 

{ }γβα ′′′= ,,mv , { }γβα ′′′′′′= ,,mw . 

 
3.6.1. Scalar Product 
By the formula of scalar product 

 γγββαα ′′′+′′′+′′′=• wv     (3.6.1) 
Table 3.6.1 is built, where for products – number the codes to the radix 
ρ  = -2 are indicated. 
 
Table 3.6.1. One-digit scalar multiplication. 

•  a b c d e f g h 
a 0  
b 0 1  
c 0 0 1  
d 0 1 1 110 
e 0 0 0 0 1
f 0 1 0 1 1 110
g 0 0 1 1 1 1 110
h 0 1 1 110 1 110 110 111
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Scalar product  Z = V •  W may be calculated by the formula: 

Z V w
k k

k
= ∑ •( )ρ . 

Consequently, scalar multiplication of multidigit vectors codes consists 
of cycles ‘shift – scalar multiplication by k-digit of multiplier – addition’ . 
This process results in forming the code of the number Z to the radix  
ρ  = -2. 
 

3.6.2. Vector Product 
Formula of vector product is as follows: WVZ ×= , where 

{ }γβα ,,=mz , and 

 
.
,
,

αββαγ
γααγβ
βγγβα

′′′−′′′=

′′′−′′′=

′′′−′′′=
     (3.6.2) 

Coordinates of vector Z computed according to the formula  (3.6.2) may 
assume values –1, 0, 1. Therefore, vector Z may be always presented as a 
difference of two vectors, each of them with a code to the radix (3.3.7). 
Using further the rules of algebraic addition of these vectors, we shall be 
able to build Table 3.6.2, describing vector multiplication.  In contrast to 
the previous table, this table must be fully filled, as it is asymmetrical 
about the diagonal (vector product is non-commutative). 
 
Table 3.6.2. One-digit vector multiplication 

×  a b c d e f g h 
a 0 0 0 0 0 0 0 0
b 0 0 e e cc cc cg cg
c 0 ee 0 ee b ef b ef
d 0 ee e 0 cd gh ch cd
e 0 cc bb bd 0 c bb bd
f 0 cc bf bh cc 0 dh bf
g 0 eg bb fh b eh 0 eg
h 0 eg bf bd cd ef cg 0

 
Vector product Z=V × W may be computed from the formula 

Z V w
k k

k
= ∑ ×( )ρ . Consequently, the vector multiplication of 

multidigit vectors codes consists of cycles ‘shift – vector multiplication 
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by k-digit of the multiplier - addition’. The result is the forming the code 
of vector Z to the radix (3.3.7). 
 

3.6.3. Carries in Scalar Multiplication. 
When performing operations of shift and algebraic addition the 

vector’s code may be conveniently considered consisting of three 
independent parts – codes of the numbers – projections of the vector, 
and the named operations are to be performed independently for each 
part. However during vector and scalar multiplication of one vector code 
by a digit of another vector code, there appears an added complication - 
a cross influence of the digits of dissimilar parts one onto another. Let us 
look into this question first for scalar multiplication. 

Scalar multiplication is described by the formula (3.6.1), but in the 
case of multidigit code we must also take into account the carry p from 
the lower digit. Then the result for each digit should be calculated by the 
formula  
 pS +′′′+′′′+′′′= γγββαα .    (3.6.3) 
The value S must be presented in the form 
 S= σ  + P ρ ,      (3.6.4) 
where σ =(0, 1) - the value of the considered digit of the result, 
 P  - the value of carry into the higher digit. 
It is easy to show that the carry P from the considered digit (and, 
therefore, also the carry p into this digit) may assume one of the values: 
P=(-1, 0, 1, 2). So S=(-1, 0, 1, 2, 3, 4, 5),  and the scalar multiplication is 
described by the Table 3.6.3. 
 
Table 3.6.3. Carries in scalar multiplication 

S -1 0 1 2 3 4 5 
σ  1 0 1 0 1 0 1
P 1 0 0 -1 -1 2 2

 
The carries propagation may be organized another way, namely, so 

that the carry into a given digit would arrive from two previous digits (p 
and q) pass from the given digit to the two consequent digits (P and Q). 
In this case the digit-to digit result should be computed by the formula  
 qpS ++′′′+′′′+′′′= γγββαα .   (3.6.5) 
and be presented in the form 
 2ρρσ QPS ++=      (3.6.6) 
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In this case the carries will be able to take on only two values (0,1) and 
S=(0, 1, 2, 3, 4, 5). The scalar multiplication is described in Table 3.6.4. 
 
Table 3.6.4 Carries in scalar multiplication. 

S 0 1 2 3 4 5 
σ  0 1 0 1 0 1 
P 0 0 1 1 0 0 
Q 0 0 1 1 1 1 

 
Fig. 3.6.1. gives the scheme of adder in the unit of scalar multiplication. 
In this scheme the following notations are used: 

a, b, c – digits of multiplicand’s code, 
d, e, f – digits of multiplier’s code, 
p – input carry, 
P – output carry, 
Sum – one-digit adder. 

 
Fig. 3.6.1. Adder in the scalar multiplication unit. 

 

Sum
P={-1,0,1,2} p={-1,0,1,2}

S={0,1}

a&f c&db&e

d
e
f

a b c
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3.6.4. Carries in Vector Multiplication 
Vector multiplication is described by the formula (3.6.2). If we take 

into consideration the carries, the formula becomes as follows: 

 

.

,
,

αββαγρ

γααγβρ
βγγβαρ

γγ

ββ

αα

′′′−′′′+=+

′′′−′′′+=+

′′′−′′′+=+

pP

pP
pP

   (3.6.7) 

where p, P – the values of carries into the given and the highest digits. In 
the formula (3.6.7) the carries can assume only two values (0,1). Consider 
now the first of these formulas. For it the operation is described by the 
Table 3.6.5. 
 
Table 3.6.5. Carries in vector multiplication. 

γβ ′′′ βγ ′′′  αp  α αP
0 0 0 0 0 
0 1 0 1 1 
1 0 0 1 0 
1 1 0 0 0 
0 0 1 1 0 
0 1 1 0 0 
1 0 1 0 -1 
1 1 1 1 0 
0 0 -1 1 1 
0 1 -1 0 1 
1 0 -1 0 0 
1 1 -1 1 1 

 
Fig. 3.6.2. gives the scheme of adder in the vector multiplication unit. 
The notations in this scheme are as following: 

a, b, c – digits of multiplicand’s code, 
d, e, f – digits of multiplier’s code, 
pG, pH, pM – input carries, 
PG, PH, PM –output carries, 
SumG, SumH, SumM – one-digit adders. 
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SumGPG pG

Sg

b&f

c&e

d
e
f

a b c

SumHPH pH

Sh

c&d

a&f

SumMPM pM

Sm

a&e

b&d

 
 

Fig. 3.6.2. Adder in vector multiplication unit. 
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3.7. Algorithms and Devices for 
Coding and Decoding of Complex 
Numbers and Vectors 

 
The best coding systems for geometrical codes construction are the 

systems 1, 2, 3. The last two systems are similar in most ways. Therefore 
the further discussion will be confined to algorithms and coding devices 
only in system 1 and system 2. In these systems the complex code is 
represented by a composition of real number’s codes in the radix “-2”. 
Such codes are formed from the traditional codes in the radix “2”.  
Hence we shall first discuss coding/decoding algorithms and devices for 
real numbers in different codes. 

No consideration will be given to algorithms and devices for coding 
and decoding of vectors, as they are completely similar to the algorithms 
and devices for coding and decoding of complex numbers.  

The complex number to be coded is presented as βα jXXZ += , 

where βα XX ,  - the real and imaginary part of   the complex number, 
and are real (positive or negative) numbers 

 
3.7.1. Coding of Complex Number in System 1 

 
1. The coding of real (positive or negative) numbers βα XX ,  from P-

code to M-code. It is advisable at first to perform the coding of only 
real positive numbers and to keep the signs ( ) ( )βα XsignXsign ,  

and M-codes of the numbers βα XX , . For real positive numbers 
coding a coder of positive P-code to M-code is applied. Then with the aid of 
the M-code inverter  we must compute the numbers 

 ( ) ( )ββαα XsignXXsignX ⋅⋅ , . 
2. The generation of C-code  

( ) ...,...... 22110011 −−−−= αβαβαβαβαβ mmZK  of the complex 
number βα jXXZ += , which in future will be represented by 
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( ) ...... mZK γ= , where 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=

−=

+ oddif

evenif

12

2

m

m

mm

mm

βγ

αγ
. To do this a 

dispenser should be used. 
 

3.7.2. Decoding of Complex Number in System 1. 
 
1. The extraction from complex number’s C-code βα jXXZ +=  

of even and odd-numbered digits according to the rule 

( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=

−=

− oddif

evenif

2/1

2/

m

m

mm

mm

γβ

γα
 and forming from them the digits 

α m  and β m  of the M-codes of real numbers βα XX ,  
accordingly.  To do this a precoder should be used.  

2. The decoding of real numbers (positive or negative) βα XX ,  
from M-code to P-code. To do this a full decoder of M-code into P-
code  should be used. 

 
3.7.3. Coding of Complex Number in System 2. 

 
1. Computation of ββ μ XX ⋅=  with 

2
1=μ . This computation is 

performed in traditional binary coding system. 
2. Coding of real (positive or negative) numbers βα XX ,  from P-code 

into M-code similarly to p.1 of the algorithm 3.6.1. 
3. The C-code generation for a complex number βα XjXZ +=  

similarly to p.2 of the algorithm 3.6.1. 
 
3.7.4. Decoding of Complex Number in System 2. 

 
1. The extraction from complex number’s C-code βα jXXZ +=  of 

even and odd-numbered digits according to the rule: 

( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=

−=

− oddif

evenif

2/1

2/

m

m

mm

mm

γβ

γα
 and forming from them the digits α m  

and β m  of the M-codes of real numbers βα XX ,  accordingly, 
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where. ββ μ XX ⋅=  with 
2

1=μ . To do this a precoder should be 

used.  
2. Decoding real (positive or negative) numbers βα XX ,  from  M-code 

into P-code similarly to p. 2 of the algorithm 3.6.2. 
3. Computation of 2ββ XX = . This computation is performed in 

traditional binary coding system. 
 

3.7.5. Coder of positive P-code into М-code - CoderPM. 
This code converts the Р-code of a positive number into М-code of 

this number. Its circuit is shown in the Fig. 3.7.5.1, where 
N – digit capacity of the coder, 
Meven – one-digit coding circuit for an even-numbered digit, 
Modd - one-digit coding circuit for an odd-numbered digit, 
A – input P-code, 
C – output M-code. 

 

Fig. 3.7.5.1. Coder of positive P-code into М-code 
 
Essentially the transformation consist in the following: the code 
including only odd-numbered Р-code digits is subtracted from the code 
including only even-numbered Р-code digits, and the subtraction is 
performed by the rules of M-codes subtraction. One-digit circuits Meven 
and Modd are shown in the  Fig. 3.7.5.2. Their functioning is described 
by the verity tables 3.7.5.1 and 3.7.5.2 accordingly. 
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Meven
or

Modd

a

c

w2

w1 v1

v2

b  
Fig. 3.7.5.2. One-digit coder circuit. 

 
Table 3.7.5.1. One-digit coder circuit for even-numbered digit 

a v1 v2 w1 w2 c 

0 0 0 0 0 0 
1 0 0 0 0 1 
0 0 1 0 0 1 
1 0 1 1 1 0 
0 1 1 0 1 1 
1 1 1 0 0 0 

 
Table 3.7.5.2. One-digit coder circuit for odd-numbered digit  

a v1 v2 w1 w2 c 

0 0 0 0 0 0 
1 0 0 0 1 1 
0 0 1 0 0 1 
1 0 1 0 0 0 
0 1 1 0 1 1 
1 1 1 0 1 0 

 
3.7.6. Decoder of M-code into P-code – DecoderMР. 
This decoder transforms the М-code of a number into Р-code of this 

number. Its circuit is shown in Fig. 3.7.6.1, where 
N - digit capacity of the decoder, 
Deven – one-digit decoding circuit for an even-numbered digit, 
Dodd – one-digit decoding circuit for an odd-numbered digit, 
A – input M-code, 
C – output P-code, 
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cop – operation code, 
W – output carry. 

 

Fig. 3.7.6.1. Decoder of M-code into P-code 
 
Essentially the transformation consist in the following:  

• if the M-code is a positive number, then the code including only 
odd-numbered digits of M-code is subtracted from a code including 
only even-numbered digits of M-code (in this case сор=0), 

• if the M-code is a negative number, then the code including only 
even-numbered digits of M-code is subtracted from a code including 
only odd-numbered digits of M-code (in this case сор=1), and the 
subtraction is performed according to the rule of P-codes 
subtraction. 

 
One-digit circuits Deven and Dodd are shown in the Fig. 3.7.6.2. Their 
functioning is described by the verity tables 3.7.6.1 and 3.7.6.2 
accordingly. 
 

(a – v), if cop = 0 
Table 3.7.6.1 computes (-2w+c) = { (-a – v), if cop = 1 

 
(-a – v), if cop = 0 

Table 3.7.6.2 computes (-2w+c) = { (a – v), if cop = 1 
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Deven
or

Dodd

a

c

w
v

cop

 
Fig. 3.7.6.2. One-digit decoder circuit. 

 
Table 3.7.6.1. One-digit decoder circuit for even-numbered digit 

 cop a v w c
0 0 0 0 0
0 1 0 0 1
0 0 1 1 1

 
Even - Odd 

0 1 1 0 0
1 0 0 0 0
1 1 0 1 1
1 0 1 1 1

 
Odd - Even 

1 1 1 1 0
 

Table 3.7.6.1. One-digit decoder circuit for odd-numbered digit 
  cop a v w c 

0 0 0 0 0 
0 1 0 1 1 
0 0 1 1 1 

Even - Odd

0 1 1 1 0 
1 0 0 0 0 
1 1 0 0 1 
1 0 1 1 1 

Odd - Even

1 1 1 0 0 
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3.7.7. Full Decoder of M-code into P-code – mDecoderMР 
 

The decoder DecoderMР is controlled by operation code cop. As a 
result full Decoder mDecoder must (beside DecoderMР) contain also 
the sign determinant of М-code – nSign. The unit’s circuit will take the form 
presented in the Fig. 3.7.7. 

 

nSign

P-code register

DecoderMP Sign

Sign Mantissa

M-code register

Cop

 
 

Fig. 3.7.7. Full decoder. 
 

3.7.8. Precoder of Р-code into М-code – PreCoder. 
Precoder of P-code into M-code arranges the digits of P-code A in 

two groups – group evenA - of even-numbered digits (0, 2, 4, …) and 
group oddA  - of odd-numbered digits (1, 3, 5, …). In that way the coder 
кодер created from a code А two codes - evenA  and oddA . Notice that 
these codes later on will arrive on two inputs of M-codes algebraic adder. 
This adder computes or ( )oddeven AA − , or ( )evenodd AA −  depending 
on the value of control signal { }1,0=s  accordingly. The precoder is 
presented in Table 3.7.8, where for the code A the numbers of digits are 
indicated, and for codes evenA  and oddA  the digits whose values are the 
same as of the corresponding digit of code A are indicated by “=”. «0» is 
indicating a certain value of this code’s digit’s value. 
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Table 3.7.8. Precoder  of P-code into M-code 
A … 7 6 5 4 3 2 1 0 

Aeven  … 0 = 0 = 0 = 0 = 

Aodd  … = 0 = 0 = 0 = 0 
 

3.7.9. Partitioning Unit for Code’s Parts – Partitioning. 
 
The partitioning unit for code’s parts transforms the real and imaginary 
parts of the code A into two M-codes of real numbers ReА and ImА. 
The imaginary part is transmitted with 1-digit shift to the left. The code 
partitioning unit is presented in Table 3.7.9, where for the code A the 
number of digits are indicated, and for the codes ReА and ImА the 
indicated numbers are the А code digit’s numbers, which were moved to 
this digit in the course of partitioning 
 
Table 3.7.9. Partitioning Unit for Code’s Parts 
А … 7 6 5 4 3 2 1 0 
Re А … 14 12 10 8 6 4 2 0 
Im А … 15 13 11 9 7 5 3 1 
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4. Vector Processor 

 
 

4.1. Data Representation and Vector 
Arithmetic Unit 
 
Contrary to the ordinary data representation described in section 2.1 

the coordinates of a point are presented as a code of point-vector. A 
simple vector arithmetic unit VAU operates with p–dimensional vectors. 
Such unit has to contain p(n+r)–digit multiplier, p(n+r)–digit adder, 
p(n+r)–digit coordinate register and a–digit parameters register. In this 
unit an affine transformation includes only one operation. VAU is 
shown in the Fig. 4.1.1. It is similar to the SAU unit, but, unlike the latter, 
contains a vector adder. All the transformation parameters are delivered 
simultaneously into the coordinate unit, in the transformation vector’s 
code – see the description of operations with vector codes. In addition, 
coding and decoding units are provided in it.  

Let us view the list of processor’s commands realized in VAU: 
• Receiving and coding the transformation parameters  
• Receiving and coding all point’s coordinates 
• Adding to the carry vector 
• Multiplying by the transformation matrix. 
• Decoding and generating all coordinates 
• Rounding off 
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Registers of all Parameters of
Transformation - a bytes

Input

Register of  Coordinates - p(n+r) bytes

Adder of Vectors- p(n+r) bytes

Shifter - p(n+r) bytes

Input Output

Coordinate Block

Control
Unit

Coder of
Coordinates -
p(n+r) bytes

Decoder of
Coordinates -
p(n+r) bytes

Coder of  Parametrs - a bytes

 Register of Parameter - pr bytes

Multiplexer

 
 

Fig. 4.1.1. Vector arithmetic unit 
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There is a way of constructing (by analogy with MSAU) an arithmetic 
unit MVAU, by using a set (M) of elementary units VAU operating 
simultaneously. In this unit the codes of all points-vectors of the figure 
comprise an array that will be called rectangular code of the vector - 
RCV. RCV contains M registers of digit capacity p(n+r). MVAU as a 
whole contains М adders of digit capacity p(n+r), М multipliers of digit 
capacity p(n+r), RCV and one a–digit parameters register. This MVAU 
performs group operations - adding RCV to the carry vector and 
multiplying RCV by the transformation matrix. 

Further, by analogy with FSAU, we may construct another version of 
AU that is intermediate between the AU with individual and group 
operations. For this purpose we must split RCV into several segments 

RCSq, each containing (Q) registers of digit capacity p(n+r). The 
arithmetic unit FVAU contains a total of Q adders of digit capacity 

p(n+r), Q multipliers of digit capacity p(n+r), RCSq and a–digit 
parameters register. The diagram of FVAU is shown in the Fig. 4.1.2. 
This diagram is identical with the diagram in the Fig. 4.1.1, except that its 
operational unit has Q coordinate units, detailed in the Fig. 4.1.1. 

FVAU performs group operations with the point’s coordinates of a 
figure fragment. In it the affine transformation of a figure has Q group 
multiplications and Q group additions. 
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Registers of all Parameters of
Transformation - a bytes

Input

Register of  Coordinates - p(n+r) bytes

Adder of Vectors- p(n+r) bytes

Shifter - p(n+r) bytes
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Coder of
Coordinates -
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Fig. 4.1.2 Vector arithmetic unit with rectangular codes. 
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4.2. Comparisons 
 
Table 4.2.1.a  and 4.2.1.b review the comparative features of the 

units described above. In these tables: 
• R – digit capacity of all registers; 
• U – number of multipliers; 
• A – adder’s volume, measured in register’s digits;  it is assumed that 

the adder’s volume is three times larger than that of the register. 
• M – shifter’s volume in multiplier, measured in register’s digits; it is 

assumed that the shifter’s volume is twice as large as the 
register’s volume; 

• W=(R+A+M) – the volume of arithmetic unit, measured in 
register’s digits; 

• S – number of elementary operations of the given AU for an affine 
transformations of a whole figure. 

 
Table 4.2.1a. Comparative features of AU. 

# AU U R A M 
1 SAU 1 2(n+r)+a 2(n+r) 3(n+r) 
2 VAU 1 2p(n+r)+a 2p(n+r) 3p(n+r) 
3 MSAU M 2M(n+r)+a 2M(n+r) 3(n+r)M 
4 MVAU Mp2 2Mp(n+r)+a 2Mp(n+r) 3p(n+r)M 
5 FSAU Q 2Q(n+r)+a 2Q(n+r) 3(n+r)Q 
6 FVAU Qp2 2Qp(n+r)+a 2Qp(n+r) 3p(n+r)Q 

 
Table 4.2.1b. Comparative features of AU. 

# AU U W S 
1 SAU 1 7(n+r)+a M(D+p2) 
2 VAU 1 7p(n+r)+a M 
3 MSAU M 7M(n+r)+a D+p2 
4 MVAU Mp2 7Mp(n+r)+a 1 
5 FSAU Q 7Q(n+r)+a (D+p2)M/Q 
6 FVAU Qp2 7Qp(n+r)+a M/Q 

 
Tables 4.2.2, 4.2.3, 4.2.4 show the numerical comparative 

characteristics of the above named units with various values of  n, r, p, 
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M, Q. This table is built on the base of  Table 4.2.1. Besides,  this table 
shows the quality of AU, measured as H=W*S/M, and also the value 

1+
=

k
kk H

Hh , 

which determines a comparative quality of AU operating with numbers 
as compared with AU operating with vectors. 

 
Table 4.2.2. Numerical characteristics of AU with p=2, r=6, M= 106, n=12, 
Q=256, a=72. 

АУ R U W S H h 
1 126 1 198 6*106 1188 
2 180 1 324 106 324 

3.7 

3 54*106 106 126*106 6 756 
4 108*106 106 254*106 1 254 

3 

5 14000 256 32000 24000 768 
6 28000 256 64000 4000 256 

3 

 
Table 4.2.3. Numerical characteristics of AU with р=3, r=6, М=106, n= 12, 
Q=256, а=90. 

АУ R U W S H h 
1 144 1 216 15*106 3240 
2 252 1 468 106 468 

6.9 

3 54*106 106 126*106 15 1890 
4 162*106 106 378*106 1 378 

5 

5 14000 256 32000 60000 1920 
6 42000 256 96000 4000 384 

5 

 
Table 4.2.4. Numerical characteristics of AU with р=4, r=6, М=106, n= 12, 
Q=256, а=240. 
АУ R U W S H h 
1 292 1 366 28*106 10248 
2 384 1 744 106 744 

13.8 

3 54*106 106 126*106 28 3528 
4 216*106 106 504*106 1 504 

7 

5 14000 256 32000 112000 3584 
6 56000 256 128000 4000 512 

7 

 
From the above tables it follows that the quality of AU operating with 

vectors exceeds the quality of AU operating with numbers. The 
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comparative quality increases h =3, 5, 7 times for p=2, 3, 4 and with 

1>>Q . Comparative quality h increases with 1→Q . It means that 
for a given volume of AU the performance of VAU, MVAU, FVAU 
increases h times as compared with SAU, MSAU, FSAU. It means also 
that for a given capacity of AU the volume of  VAU, MVAU, FVAU 
decreases h times as compared with SAU, MSAU, FSAU. Therefore  it is 
profitable to use vector arithmetic for the construction of geometrical 
processors. 

To choose the optimal value of Q, one can minimize the criterion 
SkW +=λ , where k is a certain weight coefficient. The optimal 

value of FVAU is equal to 
)(7 rnap

MQ
+

=  

Specifically, if a=0.05, М=106, r=6, n= 12, p =(2, 3, 4) then 
the optimal value is Q = (282, 230, 199). 

In the further discussion we shall concentrate mainly on geometrical 
processors based on the arithmetic of geometrical codes.  The described 
above unit FVAU, based on vector arithmetic, will be used for 
comparison. 
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5. Figure Coding Theory 

 
 

5.1. Primary Geometrical Codes 
 

5.1.1. Data Representation 
Let us consider the binary tree shown in Fig. 5.1.1, and accord each of 

its vertexes a binary number (i, k), where k will be the tier number and i – 
the number of the vertex. Let us further assume that the tier numbering 
proceeds from left to right, and the numbering of vertexes – from top to 
bottom. 

β1,mβ1 1,m+β1 2,m+

α2 2,m+

α4 2,m+

β3 2,m+ α2 1,m+

α
2 r n,

α 2 ,n

β 1 ,n k,1β

α
2 11r n− −,

β
2 1r n− ,

ki,β

β3 2,m+

 
Fig. 5.1.1. Binary Tree. 
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Let m and n be the numbers of the extreme right and left tiers, 
respectively. Then k=(n, n-1,..., m+1, m); i=(1, 2,..., 2k m− ); the 
number of tiers r=(n-m+1); the number of tree nodes u=( 2r -1); the 
number of vertexes in the n-tier 12 −= rN . Let us designate as α i k,  the 
vertex with even number i and as β i k,  - the vertex with odd number i. 

Let us call the path within the tree that connects vertexes β 1,m  and 

 the p-path. Obviously, each p-path can be described by a series 

of symbols α i k,  and βι,κ. For instance, the path emphasized in Fig. 
5.1.1 is the p-path with the following corresponding series 

β p n, ... β i k, ... β 3 2,m+ α 2 1,m+ β 1,m . 

Let us refer to each symbol α or β of a series depicting a certain p-
path in the tree as k-digit of the p-path or (i, k)-digit of the tree. If we 
set, for each of the digits in the p-path, a corresponding 1 for an α-digit 
or a 0 for a β-digit, then the p-path can be represented by a binary code 
K[p]. In particular, for Fig. 5.1.1 K[p] = 0...0...010. The number of the 
p-path equals the number of the digit in the n-tier with which this path 
ends. Let us now agree that α and β are binary values, i.e. α = (0,1) and β 
= (0,1). Let us call the p-path open if the value of all its digits is 1, and 
closed if the value of at least one of its digits is 0. For illustration, Fig 
5.1.2 shows a binary digit tree in which the paths are open (indicated in 
parentheses is the binary code that corresponds to the given path) 

α 43 α 22 β 11 β 10   (K[4]=1100), 
β 53 β 32 α 21 β 10   (K[5]=0010), 
α 63 β 32 α 21 β 10   (K[6]=1010), 
β 73 α 42 α 21 β 10   (K[7]=0110), 

or, in other words, this tree represents 4 binary codes. It should be noted 
that the open path depicted in the tree by 1-digits only has a 
corresponding binary code that includes, in the general case, 0-digits as 
well. 
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0
13β

1

0

0

0

1

1

1

0

1

1

1

1

1

1

23α

33β

53β

73β

43α

63α

83α

22α

42α

21α

10β11β12β

32β

 
Fig. 5.1.2. Examples: a tree of binary digits 

 
Let us refer to the binary digits tree thus constructed, which depicts a 

set of binary codes , as primary geometrical code PGC (in this section 
the adjective “primary” is going to be omitted and we shall talk about 
geometrical code GC), and the binary codes comprising it – as linear 
codes. Let us refer to the number of the digit in the senior tier of the 
geometrical code as the address of the corresponding linear code. The 
reduction of the number of binary digits when depicting a binary codes 
as geometrical code amounts to g=ra/(2 1r+ -2). 

In particular, if all the tree’s paths are open, then it depicts all r-digit 
binary codes. It follows from the above formula that the efficiency of the 
geometrical code increases in proportion to the value of a. However the 
main advantages of the geometrical code are that it is fairly simple to use 
for performing a variety of operations. Therefore, it is advisable to use 
geometrical code in those cases when there is a sufficiently large group of 
binary codes with which it is necessary to perform identical, group 
operations, for instance multiply all codes by one and the same number. 
In addition it is possible (as will be demonstrated further on) to use the 
geometrical code to depict random figures and interpret different 
transformations of these figures as operations with geometrical code. 
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5.1.2. Arithmetic operations with geometrical 
codes in a real radix 
 
5.1.2.1. Introduction 
Operations with geometrical codes reviewed below are, as a rule, 

equivalent to a certain logic or arithmetic operation involving the known, 
basic, binary code and each of the linear codes included in the set 
represented by the geometrical code. Besides, the operations are 
connected with the propagation of carries from the right-hand – lower 
tiers into the left-hand – upper tiers of the tree. Let us designate: 
• β i k, - (i, k)-digit of geometrical code with i - odd; 
• α i k, - (i, k)- digit of geometrical code with i - even; 

• π i k,  - general carry to β 2 1 1i k− +,  and α 2 1i k, +  digits (i-odd); 

• μ i k,  - carry  p from the β i k, digit; 
• η i k,  - carry p from the α i k,  digit; 

• δ k  - k-digit of the basic code; 
• τ i k,  - transposition signal of the code with the (i, k)-digit as its 

angle digit. 

μ i k,

η i k,π i k,

β2 1 1i k− +,

α i k,

β i k,π i k,

β2 1 1i k− +,

α2 1i k, +

α2 1i k, +

 
Fig. 5.1.2a. Carry propagation pattern in GC 

 
The carry η i k,  from the digit α i k,  or the carry μ i k,  from the 

digit β i k,  arrives at the digits β 2 1 1i k− +,  and α 2 1i k, +  as the carry 
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π i k,  according to the following pattern represented in Fig. 5.1.2 а. The 
transposition signal τ i k,  precedes the signals μ i k,  and η i k,  that are 

the logical functions of the digit values β 2 1 1i k− +,  and α 2 1i k, +  obtained 
after the transposition. 

The basic code and linear codes represented by the geometrical code 
can be viewed as binary codes with a ρ radix of a certain number or 
vector. In this case all digits of the geometrical code included in the k-tier 
must be accorded the weight of the k-digit of the linear code. 

The number of linear codes comprising the geometrical code does not 
change during arithmetic operations. 

 
5.1.2.2. Writing of Base Code 
When the path is formed in GC with a linear code, equal to base code 

δ, the carry propagation process is determined by the following formulas: 

., δπηδπμ ∧=∧=  

For μ=1 the digit β assumes the value “1” regardless of its previous 
value. Similarly, for η=1 the digit α assumes the value “1”.  

 
5.1.2.3. Transposition 
 

0

1

0

0

0

1

1

1

0

1

1

1

1

1

1

 
Fig. 5.1.3. Example: a transposed code. 
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Transposition of geometrical code will be the name of a 
transformation whereby the lower and upper halves of the geometrical 
code switch places. To be more precise, the digits of the initial code are 
connected with the digits of the transposed code (marked with a dash 
above the symbol) in the following manner: 

α α β βi k j k i k j k
k i k ij rest, , , ,, , ( )mod .= = = + − − +1 2 2 1  

For instance, the code in Fig. 5.1.2 after transposition becomes the code 
in Fig. 5.1.3. 

 
5.1.2.4. Addition of Geometrical and Basic Codes when ρ=2  

is described in Table 1.1.1, wherefrom it follows that 
τ δ π η α δ π μ δ π β= ⊕ = ∧ ∧ = ∨ ∧, , ( ) ,  
Having distributed the indexes, we come up with the following formulae: 
τ δ πi k k i k, ,= ⊕+1 ,     (5.1.1) 

η α δ πi k i k k i k, , ,= ∧ ∧ − −1 1  with i  - even,  (5.1.2) 

μ δ π βi k k i k i k, , ,( )= ∨ ∧−1  with i  - odd.  (5.1.3) 
 
Table 5.1.1a. Addition of geometrical and basic codes with ρ=2 

α β δ π τ η μ 
0 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
0 0 0 1 1 0 0
0 1 0 1 1 0 1
1 0 0 1 1 0 0
1 1 0 1 1 0 1
0 0 1 0 1 0 0
0 1 1 0 1 0 1
1 0 1 0 1 0 0
1 1 1 0 1 0 1
0 0 1 1 0 0 0
0 1 1 1 0 0 1
1 0 1 1 0 1 0
1 1 1 1 0 1 1
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Example 5.1.1 of addition when ρ=2. Let the basic code be 
K=<2> or K=10, and the geometrical code G depict a set of linear 
codes {1100, 0010, 1010, 0110} or, which is exactly the same thing, a 
set of numbers {12, 2, 10, 6}. Let us find the geometrical code 
R=G+K – see Fig. 5.1.4. The process of carry proliferation stops. The 
resulting code R= G4  depicts a set of codes {1110, 0010, 1100, 
1000}, i.e. a set of numbers {14, 4, 12, 8}, which is what we needed to 
obtain. Thus, addition of geometrical and basic codes when ρ=2 is 
reduced to repeated transpositions. 
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 m = 3  2  1  0  numbers of digits  
 K = 0  0  1  0  basic code    
1) G1 = 0  0  1  1  π 10 = 0   
  0       
  0  1   τ δ10 1= = 1  
  1       
  1  1  1       
  1       
  1  1       
  0        
2) G 2  = 1  1  1  1  π δ π β11 1 10 11= ∨ ∧( ) =1 
  1       
  1  1   π α δ π21 21 1 10= ∧ ∧ =0 
  0       
  0  0  1   τ δ π11 2 11= ⊕ = 1  
  0       
  0  1   τ δ π21 2 21= ⊕ = 0  
  1        
3) G3  = 1  1  1  1  π 12 = 1    
  0       
  1  1   π π π22 32 42= = = 0  
  1       
  0  0  1   τ 12 = 1    
  0       
  0  1   τ τ τ22 32 42= = = 0  
  1        
4) G 4 = 0  1  1  1  π i,3 = 0    
  1       
  1  1   τ i,3 = 0    
  1       
  0  0  1       
  0       
  0  1       
  1        

Fig. 5.1.4. For example 5.1.1 
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5.1.2.5. Algebraic Addition of Geometrical and Basic Codes 
when  ρ=2 
This operation is possible only if the initial numbers are represented 

in the form of additional codes. In this case algebraic addition is 
described by the same equations. It is impossible to use inverse codes 
because there is no way to organize a chain of cyclical carries within the 
geometrical code. 
 

5.1.2.6. Algebraic Addition of Geometrical and Basic Codes 
when ρ=-2 
This operation consists of a repeated sequence of inversion 

(multyplication by ‘-1’) operations and inverse addition (calculation 
according to the c=-a-b formula). The inverse addition operation is 
described in Table 5.1.1, wherefrom it follows that 

τ δ π= ⊕ ,   η α δ π= ∧ ∨( ) ,   μ β δ π= ∧ ∧ . 

Table 5.1.1b. Inverse addition of geometrical and basic codes with ρ=-2 

α β δ π τ η μ 
0 0 0 0 0 0 0
0 1 0 0 0 0 1
1 0 0 0 0 0 0
1 1 0 0 0 0 1
0 0 0 1 1 0 0
0 1 0 1 1 0 0
1 0 0 1 1 0 0
1 1 0 1 1 0 0
0 0 1 0 1 0 0
0 1 1 0 1 0 1
1 0 1 0 1 1 0
1 1 1 0 1 1 1
0 0 1 1 0 0 0
0 1 1 1 0 0 1
1 0 1 1 0 0 0
1 1 1 1 0 0 1

 
Where δ = 0, those same formulae describe the inversion of 

geometrical code. Here we can also use the formulae in (5.1.1) and 
η β δ πi k i k k i k, , ,= ∧ ∧ − −1 1  with i - even, (5.1.4) 
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μ δ π αi k k i k i k, , ,( )= ∨ ∧−1  with i - odd.  (5.1.5) 
 

Example 5.1.2 of inverse addition with ρ = -2. Let the basic code 
be K = < 2 >  or K = 110, and the geometrical code G depict a set of 
linear codes {0000, 0100, 0010, 0110} or, which is the same thing, a 
set of numbers { 0, 4, -2, 2 }. Let us find the geometrical code R = - 
G - K – see Fig. 5.1.5. The process of carry propagation stops. The 
resulting code R = G 4  depicts a set of codes { 0000, 1100, 0010, 1110 
}, i.e. a set of numbers { 0, -4, -2, -6 }, which is what we needed to 
obtain. Thus the addition of geometrical and basic codes with ρ = -2 
is reduced to repeated transpositions. 
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 m = 3  2  1  0  numbers of digits  
 K = 0  0  1  0  basic code    
1) G1 = 1  1  1  1  π 10 = 0   
  0       
  1  1   τ δ10 1= = 1  
  0       
  1  1  1       
  0       
  1  1       
  0        
2) G 2  = 1  1  1  1  π β δ π11 11 1 10= ∧ ∧ =1  
  0       
  1  1   π α δ π21 21 1 10= ∧ ∨( ) =1 
  0       
  1  1  1   τ δ π11 2 11= ⊕ = 0  
  0       
  1  1   τ δ π21 2 21= ⊕ = 0  
  0        
3) G3  = 1  1  1  1  π π12 32= = 0   
  0       
  1  1   π π22 42= = 1   
  0       
  1  1  1   τ τ12 32= = 0   
  0       
  1  1   τ τ22 42= = 1   
  0        
4) G 4 = 1  1  1  1  π i,3 = 0    
  0       
  0  1   τ i,3 = 0    
  1       
  1  1  1       
  0       
  0  1       
  1        

Fig. 5.1.5. For example 5.1.2. 
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5.1.2.7. Multiplication of Geometrical and Basic Codes 
When describing this operation, let us limit ourselves to a case where 

the basic code is whole because the other case is easily reduced to this 
one by shifting the product. Thus let us suppose that the basic code is the 
multiplicand, and the geometrical code – the multiplier. The essence of 
multiplication is in replacing all digits α i k, = 1 of the multiplier with the 
basic code. In order to effect such substitution, it is necessary 
• to identify within the geometrical code G the geometrical code 

Gi k, , in the lowest digit of which the α i k, = 1 digit and the 

remainder code G0 are found; 

• to add the Gi k,  code to the basic code, assuming that the vertex of 

the Gi k,  code lies in the zero tier – as a result of this operation, a 

certain code ′ −Gi k2 1, is formed; 

• superimpose the ′ −Gi k2 1, code obtained in the previous step over 

the remainder code G0 . 
Multiplication as a whole is a successive substitution of the multiplier’s 

1, =kiα  digits, which begins with the upper tier digits and proceeds 
from left to right. The carries during this addition propagate in the 
opposite direction and do not distort those multiplier digits that have not 
yet undergone the substitution process. Let us note that the kiG ,  code 

consists of (r,s)-digits of the code, where 

)12(2, 1 +≥≥> −−− krkr iriks . For instance, if α αi k, = 21 , then 

 0...
325321, ββ== GG ki   

    
63α    

    
4273 αβ   

    
83α    

In order to eliminate overflow of the digit net, which is something 
that can occur during multiplication, it is necessary to make use of the 
rounding-off operation described below. 
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This method of multiplication is not applicable with ρ=2 if there are 
negative numbers among those numbers represented by the linear codes. 
 

Example 5.1.3 of multiplication with ρ = -2. Let us find the 
product of the basic code K=<-2> or K=10 and the geometrical code 
– see Fig. 5.1.6. 
 

1

0

1 1 1

1 1 1

0

0

1 1

0

1 1 22G=

42G=

=G

m =      3     2     1     0       number of digits

K(0)

K(1)

K(-1)

K(-2)

 
Fig. 5.1.6. For example 5.1.3. 

 
In the third tier of code G there are no digits α = 1. Thus we proceed 
to analyze the second tier, where 14222 ==αα . We identify codes 

22G , 
42G , 

0G ′ . Let us perform the addition of codes 22G , 42G  

and 10, as a result of which we obtain the codes 
11G ′  and 21G ′ . 

Once we superimpose these codes onto the code 
0G ′ , we obtain the 

code – see Fig. 5.1.7. 
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′G 0 = ′G 21 = ′G11 = ′G = 

1 1 1 1 0 1 1 0 1 1 1 1 1 1
0 1 1 1 
0 0 0 0 0 0 0 0 
0 0 0 0 
1 1 1   1 1 1 
0   1 
0 0   0 0 
0   0 

Fig. 5.1.7. For example 5.1.3. 
We then review the first tier of the resulting code G ′  and identify 

from it the codes – see Fig. 5.1.8. 
′′G 21 = ′′G 0 = 

1 1 1 1 1 1 1 
1 1 
0 0 0 0 
0 0 
 0 0 0 
 0 
 0 0 
 0 

Fig. 5.1.8. For example 5.1.3. 
Let us add the code 21G ′′  with the code 10, and as a result we shall 
obtain the code 11G ′′ . We then superimpose that code 11G ′′  onto the 
code 0G ′′  and we obtain the final code G ′′  – see Fig. 5.1.9. 

′′G11 =  ′′G =  K(…)

0 0 1 1  1 1 1 1  K(0) 
0  1  K(4) 
1 1  1 1  K(-2) 
1  1  K(2) 
0 0 0  0 0 0  
0  0  
0 0  0 0  
0  0  

Fig. 5.1.9. For example 5.1.3. 
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Thus GG 2−=′′ . It is easy to verify the correctness of this 

multiplication. Indeed, the code G describes the set of numbers {-2, -
1, 0, 1}, and the code G ′′  - the set of numbers {-2, 0, 2, 4}, which is 

obtainable from the first by multiplying by ‘-2’. 
 

Let us review a special case when the basic code contains «1» in the 
lowest digit. In this case the multiplication algorithm is simplified and 
consists of the following: 
• identify within the geometrical code G the geometrical code Gi k, , 

in the lowest digit of which the digit 1, =kiα  is located; 

• add the code Gi k,  to the basic code in which the lowest digit has been 

zeroized, assuming that the vertex of the code Gi k,  lies in the zero 

tier – as a result of this operation, a certain code ′Gi k, is formed; 

• superimpose the code ′Gi k, obtained in the preceding step onto the 

code G. 
Such an algorithm is equivalent to all codes { }var,, −iG ki  of the k-tier 
being added to the basic code in which the lowest digit has been zeroized. The 
carries in this case originate from the ki,α  digits, and this digit itself 
does not change its value since it is added to the zero digit of the basic 
code. 

 
Example 5.1.3a of multiplication with ρ = -2. Let us find the 
product of the basic code K=<-1> or K=11 and the geometrical code 
– see Fig. 5.1.9а. In the third tier of the code G there are no digits 

1=α . Thus we shall proceed with the analysis of the second tier 
where 14222 == αα . After the code G is added to the altered 
basic code 10, we obtain the code G ′ – see Fig. 5.1.9b. 
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1

0

1 1 1

1 1 1

0

0

1 1

=G

m =      3     2     1     0       number of digits

K(0)

K(1)

K(-1)

K(-2)

0

1 1

 
Fig. 5.1.9a. For example 5.1.3a. 

 
′G =  K(…)  ′′G =  K(…) 

1 1 1 1  K(0)  1 1 1 1  K(0) 
0   0  
0 1   0 1  
1  K(2)  1  K(2) 
1 1 1  K(1)  1 1 1  K(1) 
0   0  
0 1   1 1  K(-1) 
1  K(3)  0  

Fig. 5.1.9b. For example 5.1.3a. 
 
In the first tier of this code α 12 1= . After the code ′G  is added 

to the altered basic code 10, we obtain the code G ′′  – see Fig. 

5.1.9b. Thus GG −=′′ . This multiplication is easily verified. 

Indeed, the code G describes the set of numbers {-2, -1, 0, 1}, while 
the code ′′G - the set of numbers {-1, 0, 1, 2}, which is obtainable 

from the first by multiplying by ‘-1’. 
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5.1.2.8. Division of the geometrical code by the basic code of a 
certain number is replaced  by multiplication of the geometrical code by 
the basic code of an inverse number. 
 

5.1.2.9. Rounding-off of the geometrical code 
This operation containing r tiers consists in discarding the lowest tier. 

As a result, two codes are formed containing (r-1) tiers each. The 
operation ends by superimposing the resulting codes. Thus, as a result of 
superimposition, the lesser (or to be more precise, not the greater) 
number of linear codes of a shorter word length remains. This is due to 
the fact that when lower digits are discarded, equal linear codes may 
form, which are fixed in the resulting geometrical code as a single code. 
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5.1.3. Geometrical Codes in a Complex Radix. 
 
Complex numbers can be used as the radix for coding linear codes. 

Similarly, attribute geometrical codes can be constructed in a complex 
radix. Unlike the preceding, the path value in such codes is the linear 
binary code with a complex radix. Such codes are described to part 3.1- 
see Table 3.1.1, where the existing systems of complex numbers are 
outlined. Further we are going to review arithmetic operations with 
geometrical codes in coding systems 1, 2 and 3. Therefore, in the 
subsequent detailing of codes the results of the previous section can be 
used. Some operations do not depend on the coding radix at all, and they 
will not be reviewed here. 
 

5.1.3.1. Algebraic Addition of Geometrical and Basic Codes. 
In the indicated systems, the binary code of a complex number can be 

viewed (when algebraic addition is being performed) as two codes of the 
parts Im and Re with a radix ρ = −2 , their digits alternating. Due to 
that, operations of inverse addition are described by the same equations 
as with ρ = −2 , but the carries μ i k,  and η i k,  from the k-tier 

arrive not into two digits of the (k+1)-tier, but into four digits of the 
(k+2)-tier. Addition formulae in this case take on the following 
appearance: 
τ δ πi k k i k, ( )/ ,= ⊕+ + −1 1 2 1  with i - even,  (5.1.6) 

τ δ πi k k i k, / ,= ⊕+ −1 2 1   with i - odd,  (5.1.7) 

η β δ πi k i k k j k, , ,= ∧ ∧ −2  with i - even,  (5.1.8) 

μ δ π αi k k j k i k, , ,( )= ∨ ∧−2  with i - odd,  (5.1.9) 
where j=1+z[(i-1)/4], and the function z[x] –  is a whole part of the 
argument x. 

 
Example 5.1.4 of inverse addition where 2j=ρ  Let the basic 

code be K = < j 2  > = 10, and the codes of the numbers 0 and 

j 2  be represented by the geometrical code G. Let us find the 
geometrical code R=-G-K – see Fig. 5.1.10. 
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 m = 3  2  1  0  numbers of digits  
 K = 0  0  1  0  basic code    
1) G= G1 = 1  1  1  1  π 10 = 0   
  0      
  0  0  τ δ10 1= = 1  

  0      
  1  1  1      
  0      
  0  0      
  0       
2) G 2  = 1  1  1  1  π β δ11 11 1= ∧ = 1  

  0      
  0  0  π α δ21 21 1= ∧ = 1  

  0      
  1  1  1  τ δ11 2= = 0   

  0      
  0  0  τ δ21 2= = 0   

  0       
3) G3  = 1  1  1  1  π π π π12 22 32 42= = = = 0 
  0      
  0  0      
  0      
  1  1  1  τ τ τ τ12 22 32 42= = = = 1 
  0      
  0  0      
  0       
4) G 4 = 0  1  1  1  π i,3 = 0    
  1      
  0  0  τ i,3 = 0    
  0      
  0  1  1      
  1      
  0  0      
  0       

Fig. 5.1.10. For example 5.1.4. 
 
The process of carry proliferation stops. The resulting code R= G4  

describes the codes 1010 and 1000 of the numbers ( 2j− ) and 
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( 22 j− ), respectively. Thus with 2j=ρ the process of addition 
is reduced to repeated transpositions as well. 
 
Thus, multiplication of GC by the basic code consists in adding the 

fragments of the GC to the basic code. Where the radix is (-2), such 
addition consists of inverse addition and inversion of the resulting 
fragment. 
 

5.1.3.2. Multiplication of geometrical and basic codes is 
performed as described above for a random radix. However, in this case, 
certain modifications of this operation are also possible in addition to 
that: 

• multiplication of the real part of geometrical code (even-
numbered tiers) by basic code, which involves the substitution of 
only those digits 1, =kiα  that belong to the real parts of linear 
codes; 

• multiplication of the imaginary part of geometrical code (odd-
numbered tiers) by basic code, which is performed similarly to the 
preceding; 

• multiplication of the real and imaginary parts of geometrical code 
simultaneously by different basic codes. 

Another difference has to do only with coding system 1, and it is as 
follows. In even-numbered tiers, the 1, =kiα  digits are substituted by 

linear codes of the complex number Z as described above for the general 

case. In odd-numbered tiers, the α i k, = 1 digits are substituted by 

linear codes of the complex number jZ as described above for the 
general case. 

 
Example 5.1.5 of multiplication of the imaginary part of 

geometrical code with 2j=ρ  The basic code, 

>+=< 21 jK  or K=11, and the geometrical code G are known 
– see Fig. 5.1.11. 
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m   = 3  2  1  0 -1 m   = 3  2  1  0 -1 

G   = 1  1  1  1  1 ′G 0 = 1  1  1  1  1 
 0  0  
 0  0  0  0  
 0  0  
 1  1  1  1  1  1  
 0  0  
 0  1  0  1  
 1  0  
 0  0  1  1  0  0  1  1 
 0  0  
 1  1  1  1  
 0  0  
 1  1  1  1  1  1  
 0  0  
 0  1  0  1  
 1   0  

Fig. 5.1.11. For example 5.1.5. 
 
Let us find the geometrical code R=K(ImG). First we analyze the 
upper odd (third) tier of the code G, and we find that 

116383 == αα . We identify the codes 116383 == GG  and 

0G ′ , then we perform the addition of codes 83G  and K, and as a 
result we obtain these codes: 

 ′G 73  = ′G153  0  0  1   
   0   
   0  1   
   1   

Let us superimpose 0G ′ , 73G ′ , and 153G ′ , and obtain the code 

G ′  – see Fig. 5.1.12. By passing the second tier (since we are only 

multiplying the imaginary part), we analyze the first tier of the code 
G ′ , and we notice that 14121 == αα . We identify the codes 

21G ′ , 41G ′ , and 0G ′′ . Then we add the codes 21G ′  and 41G ′  to 

the code K, and as a result we obtain the codes 10G ′′  and 20G ′′ . We 
then superimpose those codes onto the code 0G ′′ , and we obtain 

finally the code R – see Fig. 5.1.13. A geometrical interpretation of 
this example will be provided further on. 
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0

0 0
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1 1

0

1

0

1 1 1

0 0 1

0

0 0

0 1

0

1

1

α 41

α 21

′G53

′G41

′G13

′G21

G′

 
Fig. 5.1.12. For example 5.1.5. 
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′′G 0 = ′′G10 = ′′G 20 = R = 

1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 
0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 
0 0 0 0 1 1 0 1 1 0 1 1 
0 1 1 1 
0 0 1 1 1 1 1 1 
0 0 0 0 
0 0 1 1   0 0 1 1 
0   0 
1 1   1 1 
0   0 
0 0 0   0 1 1 
0   1 
0 0   1 1 
0   0 

Fig. 5.1.13. For example 5.1.5. 
 

5.1.4. Coding and Transformation of Planar 
Figures 

 
5.1.4.1. Method of coding 
 

When coding planar figures, we are going to assume that 
• identified on a plane are N points distributed evenly with step of 

Δx along the x axis and Δy along the y axis; 
• each point can only be ascribed one of two values - 0 or 1; 
• the shape is determined by a subset of points a, which are 

ascribed the value of one. 
A trivial method of coding the figure might have been to determine pairs 
of coordinates x and y for all points, or the codes of complex numbers 
x+jy corresponding to these points. Then the different transformations 
of the figure would have involved computations with complex numbers 
according to a certain routine. However the set a of binary codes of 
complex numbers can be represented by geometrical code. Such coding, 
first of all, requires less memory and, second, geometrical 
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transformations of figures are easily interpreted as operations with 
geometrical codes. 

xΔ AB

C

DE

O

K

M

x

y

yΔ

L
 

Fig 5.1.14. Coding planar figure. 
 

The section of the plane being coded by geometrical code has the 
appearance of a rectangle EKLM, the sides of which pass through points 
A, B, C, and D perpendicular to the axes – see Fig. 5.1.14. rN 2=  
points are set out in the area EKLM, each of them corresponding to one 
of the complex numbers’ linear codes, joined into a geometrical code. 
Distances between these points are determined by the values Δx and Δy, 
which depend on m and ρ : if (m+1) is an even number or 0, then 

1|| +=Δ mx ρ  and || ρxy Δ=Δ , otherwise 1|| +=Δ my ρ  and 
|| ρyx Δ=Δ  The size and position of the area being coded depends on 

Δx, Δy, n. 
 
Example 5.1.6 of coding a plane with 2j=ρ  Let m=-1, n=3, 
r=n-m+1=5. The geometrical code for this case is shown in Table 
5.1.2, which lists the linear codes corresponding to the paths in the 
geometrical code tree (it is assumed that all paths are open), and the 
values of complex numbers represented by these codes. In this table 
(and also in the next table 5.1.2) we shall use the following notations: 

N – number of a point, 
Z - value (a complex number) of this point, 
L – code of this complex point – linear code 
G – geometrical code. 
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Fig. 5.1.15 shows the points on the complex plane that correspond to 
these complex numbers. The section of the plane that is being coded 
by this geometrical code was thereby constructed. 

22 j−

7 15 5 13

3 11 1 9

8 16 6 14

4 12 2 10

2j−

2j
0

-2 -1  0  1

Y

X

 
Fig 5.1.15. Coding plane at y=3, m=-1, r=4  for example 5.1.6. 

 

Table 5.1.2. Geometrical code of a plane with 2j=ρ . 
N Z L G 
1 0+0 0000 11111 
2 0-2j 2 1000 1
3 -2+0 0100 11
4 -2-2j 2 1100 1
5 0+j 2 0010 111 
6 0-j 2  1010 1
7 -2+j 2 0110 11
8 -2-j 2 1110 1
9 1+0 0001 1111 
10 1-2j 2 1001 1
11 -1+0 0101 11
12 -1-2j 2 1101 1
13 1+j 2 0011 111 
14 1-j 2  1011 1
15 -1+j 2 0111 11
16 -1-j 2 1111 1

Let us separate in this section of the plane the “black” (visible) and 
“white” (invisible) points – see Fig. 5.1.15a. The geometrical code will 
be on a form, presented in the Fig. 5.1.15b. The same code is 
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described in the Table 5.1.2a, where (unlike the Table 5.1.2 ) the 
invisible points are shown without their coordinates 

Table 5.1.2a. Geometrical code of a separated plane points with 2j=ρ  
N Z L G 
1 0+0 0000 11111
2  0 
3 -2+0 0100 11
4  0 
5  001
6  0 
7  01
8 -2-j 2 1110 1 
9  0111
10 1-2j 2 1001 1 
11  01
12 -1-2j 2 1101 1 
13 1+j 2 0011 111
14  0 
15 -1+j 2 0111 11
16  0 

 

22 j−

7 15 5 13

3 11 1 9

8 16 6 14

4 12 2 10

2j−

2j
0

-2 -1  0  1

Y

X

 
 

Fig 5.1.15a. Example: planar figure. 
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Fig 5.1.15b. Example: GC tree of planar figure. 
 

Let t=x+jy be a random point on the plane, represented by a linear 
code within the geometrical code with a complex radix, and 
b=|b| e jϕ =(c+jd) – a complex number represented by the basic code 
with the same radix. Let us review those geometrical transformations that 
are equivalent to arithmetic operations between the numbers t  and b. 

 
5.1.4.2. Carry 

The carry of figures along the ray e jϕ  by |b| units is equivalent to 
the t+b operation, i.e. addition of the geometrical and basic codes. 

 
5.1.4.3. Centroaffine transformation 
Centroaffine transformation corresponds to multiplication of the real 

and imaginary parts of the geometrical code simultaneously by different 
basic codes (c+jd) and (g+jh) (component-by-component multiplication). This 
operation is described by the formula z+jv=x(c+jd)+jy(g+jh) – here the 
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point (x, y) changes into the point (z, v). In particular cases, centroaffine 
transformation becomes a turn, a widening, a shift (but not the carry 
reviewed earlier) or some combination of those transformations. 

 
5.1.4.4. Affine transformation 
Affine transformation is the product of centroafine transformation 

and the carry, and is performed in two stages:  
1. component-by-component multiplication of the geometrical code 

by a pair of basic codes of the centroaffine transformation, 
2. additon of the geometrical code resulting from the previous 

operation to the basic code of the carry. 
Example 5.1.7 of deformation with the 2j=ρ  – see Fig. 5.1.16 
and Table 5.1.3. Here we denote: 
   i – number of a point, 

   a i  - a point of the initial figure, 

   bi  -a point of  transformed figure, 

   )( iaL  - linear code of the point a i , 

   )( ibL  - linear code of the point bi . 
Let us review a figure determined by 6 points ia . Let us deform this 
figure in such a way, that the points )( iii jyxa +=  would change 
into the points ib , noting that ))21(( jjyxb iii ++= . This 
deformation is equivalent to shifting the figure horizontally by an 
angle of )2(55 0 =Ψ=Ψ tg . All number codes ia are depicted 
by a single geometrical code G of the initial figure. 
The above deformation of this figure is equivalent to multiplying the 
imaginary part of the geometrical code G by the basic code K=0011 
of the number )21( j+ . Such multiplication was performed in 
example 5.1.5. As a result, geometrical code R is formed. Decoding 
the code R, we find that it combines the linear codes of ib  points of 
the deformed figure. 
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22 j−
2j−

2j
0

-2 -1  0  1  2

Y

X

22 j

a1 a2 b1 b2

b5 b4 a5 a4

a6=b6 a3=b3

 
Fig. 5.1.16. Deformation of a figure for example 5.1.7 

 

Table 5.1.3. Figure deformation with 2j=ρ  
N a i  )( iaL  bi  )( ibL  

1 2-j 2  1110 0-j 2  1010 
2 -1-j 2  1111 1-j 2  1011 
3 0+j0 0000 0+j0 0000 
4 1+j 2  0011 -1+j 2  0111 
5 0+j 2  0010 -2+j 2  0110 
6 -1+0 0101 -1+0 0101 
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5.1.5. Coding and Transformation of Spatial 
Figure 

 
In this section we shall assume that  linear codes to the radix 

3 2j=ρ are used in the creation of geometrical code. Arithmetic 
operations with geometrical codes to this radix are in many respects 

similar to operations with geometrical codes to the radix 2j=ρ . The 
distinction is in the following:  

• vector codes addition is equivalent to the addition of three 
components, 

• componentwise multiplication of geometrical and base codes 
includes multiplication of each of the three linear code 
components by different base codes. 

When coding three-dimensional figures we shall assume that 
• we have singled out N points in three-dimensional space, 

distributed uniformly with step Δx, Δy, Δz on the Cartesian 
coordinate system’s axes, 

• each point may assume one of the values - 0 or 1; 
• a figure is defined by a subset a of points assuming the value 1; 

If m is the number of lowest tier, n – the number of highest tier, and 
r=(n-m+1) – the number of all geometrical code’s tiers, then 

• the number of points singled out in the coded part of the space, is 
N r= 2 ; 

• for (m+1)=3t (t-an integer number) the steps by coordinate axes 
are Δ x m= +| |ρ 1 , Δ Δy x= | |ρ , Δ Δz y= | |ρ ; 

• the coded part of the space is a parallelepiped, with faces parallel 
to coordinate planes. 

Let U1  be a vector of an arbitrary point within a three-dimensional 
figure. Then by analogy with the above said, we have that: 

• the addition of geometrical code to the base code U5  is 
equivalent to addition of codes U and U5  , that is, to a carry of 
the figure by vector U5 ; 

• componentwise multiplication of a geometrical code by ordered 
three vectors U U U2 3 4, ,  is equivalent to a similar operation 
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with each vector U1  and consists in computing vector U by the 
formula U x i U y j U z k U= + +1 2 1 3 1 4* * * , which means 
that it is equivalent to a centroaffine transformation. 

An affine transformation is a product of a centroaffine transformation and a 
carry, and is performed in two stages: 

1) componentwise multiplication of the geometrical code by three 
base codes of centroaffine transformation; 

2) addition of the geometrical code that is the result of preceding 
operation, to the base carry code. 

In particular cases this transformation is equivalent to a carry, a turn, a 
compression, a shift of a figure, or a vector multiplication of all the 
figure’s vectors by the base vector, or to other transformations of a 
figure. 

In the same way as the codes of three-dimensional figures, 
geometrical codes of many-dimensional figures may be created, because, 
as indicated above, in the ring of many-dimensional vectors there also 
exists a positional system of binary codes. It means that  a many-
dimensional figure may be also coded by geometrical code, and affine 
transformations of this figure may be performed with this code. This fact 
is convenient to use, for instance, for creating pattern recognition 
devices,  because the recognizable objects’ features are often invariant to 
certain types of geometrical transformations. 
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5.2. Attribute Geometrical Codes 
 
5.2.1. Data Representation 
It follows from the preceding that operations with PGC require 

multiple  transpositions. The schemes that perform the transpositions 
must have a large volume since during transposition each PGC digit can 
switch places with any digit in its tier. 

Let us review a PGC modification that is free of this shortcoming, 
and refer to it as attribute GC – AGC (in this section, the adjective 
“attribute” will be omitted if it is clear from the context that reference is 
not being made to primary GC). For each pair of digits ki ,12 −β  and 

ki,2α , there is an additional digit, ki,γ  included in AGC, which is a 

modulus 2 counter of transposition signals ki,τ . When the ki,γ  digits 
have a zero value (there was no transposition or it was performed an 
even number of times), the PGC and AGC codes are identical: each path 
in the geometrical code tree has a corresponding linear code wherein a 
“1” stands in place of an α-digit, and a “0” – in place of the β-digit. 
However, when the values of the digits ki,γ =(0,1), the linear code 
corresponding to this path in the AGC tree is determined as follows: in 
place of the ki,2α -digit stands the value ki,γ , and in place of 

the ki ,12 −β -digit – the value ki,γ . Let us remind you that the values of 

the digits α and β determine only that the path in the geometrical code 
tree is open (or closed), and that the corresponding linear code is 
included (or not included) in the set of linear codes being coded. 

The principal difference between PGC and AGC is in the following. 
Let a certain vector X have a corresponding p-path. During an operation 
with geometrical code, the value of this vector changes to Y. In PGC, 
after this operation is performed, q-path is going to correspond to this 
vector. Thus the vector’s position in PGC depends upon its value. Not so in 
AGC: a given vector always has one and the same path that corresponds 
to it. One could say that a vector (and its corresponding point in space) 
retains its individuality regardless of the changing value of this vector (the 
position of the point). In this case the point can be accorded an attribute, 
which can be a name, a color, a weight, etc. This attribute must be 
connected with the terminal vertex of the same path where the linear 
code of the given vector (point) is written. 
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Let us consider the above statement more formally. A certain open 
path in the AGC tree has corresponding series of digits α=1, β=1, 
γ=(0,1): 

α np, ... β qj ,12 − ... α ki,2 ... β m,1  

This path depicts the linear code, 

γ np ,2/ ... γ qj, ... γ ki, , 

that we are going to refer to as the value code, or simply the value of the 
given path. In this path, the pair of digits α ki,2  and ki,γ  is represented 

by the value digit γ ki, , and the pair of digits ki ,12 −β  and ki,γ  is 

represented by the value digit ki,γ . 

Where γ≡0 for all digits of the given path, the linear code assumes 
the value 
   1 ... 0 ... 1 ... 0, 
which we are going to refer to as the number code, or simply the number 
of the given path. In this code, “1” stands in place of the α-digit, and “0” – 
in place of the β-digit. Thus in AGC each path has a number, a value, 
and an attribute. 

AGC is presented in Fig. 5.2.1. The number of digits in AGC is 
determined according to the following formula: 

V k

k

n m n m= + ∑ = ⋅ −
=

− −1 3 2 3 2 2
0

. 
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β1,mβ1 1,m+β1 2,m+

τ 1,m
τ1 1,m+

α2 2,m+

α4 2,m+

β3 2,m+

τ2 1,m+

α2 1,m+

α
2r n,

α 2 ,n

β 1 ,n

τ1 1,n−

β1 1,n−

τ
2 11r n− −,

α
2 11r n− −,

β
2 1r n− ,

 
Fig. 5.2.1. Attribute Geometrical Code. 

 
 
 



5.2. Attribute Geometrical Codes 

94 

5.2.2. AGC in a Real Radix 
 
Let us review the operations between the basic code and SGC with a 

real radix. While doing that, we shall use the designations from section 
5.1.2.1. 
 

5.2.2.1. Writing of a given Number 
In this case a path is created in AGC with a number equal to the base 

code δ. If all the digits 0=γ , the code of the value is coincident with 
the code of the number. The process is determined by the following 
formulas: 

μ π δ η π δ= ∧ = ∧, . 
Where μ=1, the β digit takes on the value of “1” regardless of its former 
value. Similarly, where η=1, the α digit takes on the value of “1”. 
 

5.2.2.2. Writing of a given Value. 
Табл. 5.2.1 describes the process of carry propagation when a value is 

written in AGC with the basic code δ. The carries are determined by the 
following formulae: 

( ) ( )μ π δ γ η π δ γ= ∧ ⊕ = ∧ ⊕, .  
 
Table 5.2.1. Writing a value with a given code. 

π δ γ μ η 
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 0

 
Where μ=1, the β digit takes on the value of “1” regardless of its former 
value. Similarly, where η=1, the α digit takes on the value of “1”. In such 
way, or a new path is formed, and the given value is written in it, or a 
path is discovered, in which the given value is already written. In this 
case a search for the address of the given value is performed. 
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5.2.2.3. Reading the value of the path with a given number. 
Let an open path (β≡1 and α≡1) have a number with the linear code 

δ. The process of carry propagation while reading the value of this path 
is described in Table 5.2.2. In it, ω - is the corresponding digit of the 
linear code of this path’s value. The signal ω is created in the digit α or β, 
through which the carry signal has passed. Thus, 

μ π δ η π δ ω μ γ η γ= ∧ = ∧ = ∧ ∨ ∧, ,. ( ) ( ).  
Table 5.2.2. Reading the value of the path with a given number 

π δ γ μ η ω 
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 0 1 1
1 1 1 0 1 0

 
5.2.2.4. Addition of AGC and the basic code when ρ=2 
This operation is described in Table 5.2.3. Carry signals μ, η and the 

transposition signal τ are created as functions of π, δ, γ. After that, the signal 
τ=1 changes the value of γ into its opposite, and the signals μ and η propagate 
further (if β=1 and α=1 respectively). 

 
Table 5.2.3. Addition of AGC and the basic code when ρ=2 

π γ δ μ η τ 
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 0 0
0 1 1 1 0 1
1 0 0 0 1 1
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 0

 
Example 5.2.1 of addition when ρ=2. Same as in example 5.1.1, let 
the basic code be K=<2> or K=10, and the attribute geometrical 
code G depict a set of linear codes {1100, 0010, 1010, 0110} or, 
which is the same thing, a set of numbers {12, 2, 10, 6}. 
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Fig. 5.2.2. For example 5.2.1. 

 
The resulting attribute geometrical code is R=G+K. Fig. 5.2.2 shows 
code R. The thick arrows show those connections along which the 
carry π=1 propagated during addition. Square windows show the γ 
digits. They refer to that pair of digits α and β, which have been 
placed in round windows conjugated with the given square window. 
If all the γ digits were to be zeroized, the same figure would depict the 
primary code G – compare with the geometrical code G1  in example 
5.1.1. Thus the result differs from the primary code only by the values 
of the γ digits. Note that if the transposition is performed in 
accordance with the γ digit values, geometrical code G 4  of the result 
is formed as shown in example 5.1.1. 
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5.2.2.5. Inverse addition of AGC to the basic code when ρ=-2 
This operation is described in Table 5.2.3a. The signals of carries μ, η 

and the signal or transposition τ are produced as functions of π, δ, γ. 
After that the signal τ=1 changes the value of γ into its opposite, and the 
signals μ and η propagate further (if β=1 and α=1, respectively). 
 
Table 5.2.3a. Inverse addition of AGC and basic code when ρ=-2 

π γ δ μ η τ 
0 0 0 0 1 0
0 0 1 1 1 1
0 1 0 1 0 0
0 1 1 1 1 1
1 0 0 0 0 1
1 0 1 0 1 0
1 1 0 0 0 1
1 1 1 1 0 0

 
Example 5.2.2 of inverse addition when ρ=-2. As in example 5.1.2, 
let the basic code be K=<2> or K=110, and the attribute geometrical 
code G  depict  a  set of linear codes {0000, 0100, 0010, 0110} or, 
which is the same thing, a set of numbers {0, 4, -2, 2}. The resulting 
attribute geometrical code is R=-G-K. Fig. 5.2.3 shows code R. The 
thick arrows show those connections along which the carry π=1 
proliferated during addition. Square windows show the γ digits. They 
refer to that pair of digits α and β, which have been placed in round 
windows conjugated with the given square window. If all the γ digits 
were to be zeroized, the same figure would depict the primary code G 
– compare with the geometrical code G1  in example 5.1.2. Thus the 
result differs from the primary code only by the values of the γ digits. 
Note that if the transposition is performed in accordance with the γ 
digit values, geometrical code G 4  of the result is formed as shown in 
example 5.1.2. 
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Fig. 5.2.3. For example 5.2.2. 

 
Let us consider the circuit of forming the carries signals μ, η and the  

transposition signal τ in the involved adder – see Fig. 5.2.3a. On this 
scheme 

π - the input carry signal, 
μ, η - the output carry signals, 
β - trigger of the digit β , 
α - trigger of the signal α , 
γ - trigger of the signal γ , 
δ - trigger of the signal δ of the basic code, 
τ - trigger od the transposition signal τ , 
Sum – single-digit inverse addition circuit, 
And – transposition signal key τ, 
R – transposition enabling signal. 
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τ

AND

μ

Sum
η

β

α

γ

π
R

δ

 
Fig. 5.2.3а. One-digit inverse addition circuit 

 
This circuit covers the first threesome of geometrical code digits and 

produces carry signals to the two next threesomes of geometrical code 
digits. The transposition enabling code is common for all digits and 
comes from the control circuit afer the end of carries propagation 
though all the digits. 

 
5.2.2.6. Inversion of AGC when ρ=-2. 
Table 5.2.4 describes the process of carry propagation during the 

inversion of geometrical code with a radix “-2”. In it 
γ - is the value of the γ digit in the primary code; 
τ - is the signal of transposition of the primary code to 

the resulting code (this code is generated in the 
primary code register). 

 
Table 5.2.4. AGC inversion when ρ=-2. 

π γ μ η τ 
0 0 0 0 0
0 1 0 0 0 
1 0 0 0 1 
1 1 0 0 1 

5.2.2.7. Algebraic addition of AGC splits into the operations of 
addend inversion and inverse addition. 
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5.2.2.8. Search for the Next Open Path, its Number and it's 
Value 
Here it is assumed that a known path is determined by its number. 

The search consists of three consequently performed operations: 1) 
search for a path with a given number and fixation of its terminal vertex; 
2) search for the next terminal vertex; 3) reading the number and path 
value with the given terminal vertex. 
 

5.2.2.9. Multiplication of AGC by the basic code. 
This multiplication is performed similarly to multiplication of the 

primary GC by the basic code – see section 5.1.2.7. The difference is that 
the analyzed digits are α=1, if τ=0, or β=1, if τ=1 (and not the digits 
α=1, as in the primary geometrical code). This multiplication is 
performed according to the following algorithm: 

1. the primary geometrical code is shifted to the left one digit to 
the left; 

2. the lower digit Bj of the basic code is analyzed, where j=1; 
3. if Bj=1, then an inverse addition of the shifted code with the 

primary code is performed; a negative geometrical code of the 
partial product is generated; 

4. the geometrical code of the partial product is shifted to the 
left 1 digit to the left; 

5. the next digit Bj of the basic code is analysed; 
6. if Bj=1, and the partial product was positive, then the inverse 

addition of the shifted code with the primary code is 
performed; a negative geometrical code of the partial product 
is generated; 

7. if Bj= 1, and the partial product was negative, then the inverse 
addition of the shifted code with the negative primary code; a 
positive geometrical code of the partial product is generated; 

8. if all the digits are exhausted,  the multiplication is completed; 
9. then go to point 3. 

Evidently, this algorithm is in many ways similar to an algorithm of 
ordinary addition. The operations constituting the algorithm have already 
been described above. It is important to note that in a geometrical code 
of a product the attribute’s number is increased 2n times relative to 
the number of initial geometrical code’s attribute (n is digit capacity of 
the base code, number of shifts).  



5. Figure Coding Theory 

   101 

5.2.3. Attribute Geometrical Codes in a 
Complex Radix 

 
As indicated above (see section 3.1), complex numbers can be used as 

a basis for coding linear codes. In a similar fashion, attribute geometrical 
codes can be constructed using a complex radix - AGCC. Unlike the 
preceding, the value of the path in such codes is the linear binary code 
with a complex radix. But the most important difference lies in the 
algorithms of the arithmetic operations. Let us review algorithms of 
arithmetic operations with geometrical codes in systems of 1, 2 and 3 
coding. In these systems, the digits representing the real and imaginary 
parts of a complex number alternate. Algebraic addition of each part is 
performed independently according to the rules of algebraic addition of 
codes of real numbers with a radix «-2». Therefore, in the further 
presentation of codes we can make use of the results from the preceding 
section. Some operations do not depend on the coding radix at all, and 
they will not be reviewed here. 

 
5.2.3.1. Inverse addition of AGCC with the basic code 
This operation is described in Table 5.2.3. Carry signals μ, η and the 

transposition signal τ are generated as functions of π, δ, γ. Thereafter the 
signal τ=1 changes the value of γ into its opposite, and the signals μ and 
η propagate further (if β=1 and α=1, respectively). These signals are 
transmitted to every other tier. A pattern of their propagation is shown 
in Fig. 5.2.4. 

π
β α( )

β

β β

α

α

α

μ η( )

 
Рис. 5.2.4. Схема распространения переносов в комплексном GC 
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5.2.3.2. Inversion of AGCC. 
This operation is performed similarly to the way the operation for 

codes with a radix «-2» is described in the preceding section. 
 

5.2.3.3. Deformation of AGCC. 
This operation is equivalent to the deformation of a figure, and is 

performed according to the following formula: 
ZGZGS ′′⋅+′⋅= ImRe , 

where 
G – is the primary geometrical code, 
S – is the resulting geometrical code, 

′ ′′Z Z,  - two linear codes (complex numbers). 
This multiplication is performed similarly to the multiplication of 

prime GC by the basic code – see Section 5.1.2.7. The difference is that 
the analyzed digits are α=1, if τ=0, or β=1, if τ=1 (and not the digits 
α=1, as in prime GC). The difference is that during inverse addition and 
inversion, the carries are transmitted to every other tier. 

Deformation is possible only if the complex codes ZZ ′′′,  have a 
junior digit of 1. In order to have this case, these codes must be 
transformed according to the formula 1+⋅−⇒ ZZ ρ . After that the 
resulting code must be shifted one digit to the left. 

Let us indicate some particular cases: 
• if ZZZ ′′=′=  we have ordinary multiplication: ZGS ⋅= , 
• if jZZZ =′′=′=  we have a 90 degree turn: jGS ⋅= , 
• if jZZZ −=′′=′=  we have a (-90) degree turn: jGS ⋅−= . 

The last two operations are greatly simplified in the coding system 1, 
when the code of the number j is of the form “10”. 
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Example 5.2.3 of deformation with 2j=ρ . We shall consider 
the example of AGC deformation by analogy with the example 5.1.7 
of GC deformation. Let us regard a figure determined by 6 points a i , 
see Fig. 5.1.16, and Table 5.1.3. We shall deform this figure in such a 
way that the points a x jyi i i= +( )  will turn into points bi , where 
b x jy ji i i= + +( ( ))1 2 . This deformation is equivalent to a shift 
of the figure horisontally by an angle Ψ Ψ= =55 20 ( )tg . All 
the codes of numbers a i  are presented by a single code AGC of the 
whole figure. This code is shown of the Fig. 5.2.5 and it combines all 
the points of the initial figure. Al digits in this code are τ=0. 
Decoding this code we may make certain that the linear codes of all 
open paths have value a i indicated in the Table 5.1.3. Code of the 
point a i  for every open path is indicated in the Fig. 5.2.5 opposite 
the corresponding terminal vertex. 
 
This deformation of the figure is equivalent to the AGC imaginery 
part‘s multiplication by basic code of  K=0011 of the number 
( )1 2+ j . The result is the formation of AGC code of the 
deformed figure. This code is shown in the Fig. 5.2.6, and it combines 
the points of the deformed figure. The code changes for each open 
path’s point, but the path’s position does not change – compare 
Fig.5.2.5 and Fig. 5.2.6. In the deformed figure’s AGC not all the 
digits are τ=0. Decoding this code we may see that linear codes of all 
open paths have value bi , that is, it combines all codes of the 
deformed figure’s points bi . The point’s codes bi  for every open 
path are indicated in the Fig. 5.2.6 opposite the corresponding 
terminal vertex. 
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Fig. 5.2.5. For example 5.2.3: AGC of the initial figure. 
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Fig. 5.2.6. For example 5.2.3: AGC of the deformed figure 
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5.2.4. Attribute Geometrical Codes of Spatial 
Figures 
 
Attribute geometrical codes with a complex radix reviewed above 

represent planar figures. These codes may be used for affine 
transformations of planar figures. In the general case, it is also necessary 
to perform projection transformations of planar figures, as well as affine 
and projection transformations of 3-dimensional figures. It is a known 
fact that uniform coordinates are used for projection transformations. In 
this case a point on a plane is represented by three coordinates, while a 
point in 3-dimensional space – by four coordinates. If such 
representation is being used, a projective transformation of a planar 
figure includes an affine transformation  of a three-dimensional figure,  
and projective transformation of a three-dimensional figure includes a n 
affine transformation of a four-dimensional figure. 

Thus, attribute geometrical codes of planar, 3-dimensional and 4-
dimensional figures that lend themselves to affine transformations may 
be used to solve all of the geometrical transformation problems. The 
method applied for such codes’ synthesis is that of positional coding – 
see part 3. This method, similarly to the complex nymbers coding 
method, lets us represent a spatial vector by a single binary code. 
Moreover, this method allows to perform algebraic addition and 
multiplication of such codes. 

Linear binary codes of vectors may be unified in GC. In this case, GC 
of a 3- or 4-dimensional figure is formed. Arithmetic operations with 
such GC are fully analogous to operations with the GC of a planar 
figure. Addition circuits differ only in that the carries propagate through 
every 2nd or 3rd tier (for a 3- or 4-dimensional figure, respectively). 

 
Deformation of geometrical code in the general case is performed 

according to the formula 
( ) ( ) ( ) ( )S G Z G Z G Z G Z= ⋅ + ⋅ + ⋅ + ⋅part part part part1 2 3 41 2 3 4 , 

where 
G – is the initial geometrical code, 
S – is the resulting geometrical code, 
partp – a part of code G, 
Zp  – linear codes (vectors), 

p = {1, 2, 3, 4}, 
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i, j, k, m – orts of vectorial space, 
h >= 0- integer, 
r = tier number. 

As usual, deformation involves substituting the digits αr = 1 by linear 

codes Zp . When the vector coding method 2 is used, the Z substitution 

code is selected as follows: 
for 3-dimensional vectors 

Z Z= 1,   if   r = 3 h+1,  

Z Z= 2 ,   if   r = 3 h+2,  

Z Z= 3 ,   if   r = 3 h+3;  
for 4-dimensional vectors 

Z Z= 1,   if   r = 4 h+1,  

Z Z= 2 ,   if   r = 4 h+2,  

Z Z= 3 ,   if   r = 4 h+3,  

Z Z= 4 ,   if   r = 4 h+4.  

When the vector coding method 1 is used, the Z substitution code is 
selected as follows: 
for 3-dimensional vectors 

Z Z= 1,        if   r = 3 h+1,  

Z j Z= ⋅ 2 ,   if   r = 3 h+2,  

Z k Z= ⋅ 3 ,   if   r = 3 h+3;  
for 4-dimensional vectors 

Z Z= 1,         if   r = 4 h+1,  

Z j Z= ⋅ 2 ,    if   r = 4 h+2,  

Z k Z= ⋅ 3 ,   if   r = 4 h+3,  

Z m Z= ⋅ 3 ,   if   r = 4 h+4.  
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5.2.5. Contracted Attribute Geometrical Codes 
 

β1,mβ1 1,m+β1 2,m+

τ 1,mτ1 1,m+

α2 2,m+

α4 2,m+

β3 2,m+

τ2 1,m+

α2 1,m+

α
2 r n,

α 2 ,n

β 1,n

τ1 1,n−

β1 1,n−

τ
2 11r n− −,

α
2 11r n− −,β

2 1r n− ,

 
Fig. 5.2.7. Contracted Attribute Geometrical Code 

 
In the previous section we have discussed AGC whose paths could be 

both open  and close. The values of digits α=1 (or 0) and β=1 (or 0)  
determine only the fact that the path in the geometrical code’s tree is 
open (or close) and the corresponding linear code is included (or not 
included) into the coded set of linear codes.  We shall now deal with the 
case when all linear codes of a given dimension are included into the 
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coded set. In this case all α=1 and all β=1. So there is no need to actually 
include these digits to the geometrical code. In all manipulations with 
AGC we may assume that all α=1 and all β=1. AGC without digits will 
be called contracted AGC- СAGC. 

Fig. 5.2.7 present a contracted AGC. The actually absent digits are 
denoted by dotted line. The number of digits in a contracted AGC is 
defined by the following formula: 

122
0

−== ∑
−

=

rmn

k

kV . 

Each terminal vertex 1, −nkτ  of the contracted AGC’s tree has two 
corresponding attributes – the upper one, corresponding to the imaginary 
vertex nk ,β , and the lower one, corresponding to the imaginary vertex  

nk ,1+α . 
Evidently, the operation circuits for a contracted AGC are much 

shorter, and the code’s volume is three times reduced. More accurately, if 

in an ordinary AGC the number of digits is 223 −⋅= rV , in a 

contracted GC it is equal to 12 −= rV . 
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6. Geometrical Processor 

 
 

6.0. Data Presentation 
 
We shall assume, as before, that a set (M) of points in a p-

dimensional space is given. The points constitute the domain of 
definition, which is a p-dimensional cube, and they are distributed in this 
domain, located in the nodes of a uniform network. The node’s 
coordinates are represented by a pn-digit code of a vector with fixed 
point. All the domain is defined by the set of these codes, with the 
overall number of M=2pn. Each node is defined by a triad: address-
coordinate vector- attribute. 

Let us consider now the data representation in the random-access 
memory and in the arithmetic unit. 

There are two possible methods of the random-access memory 
organization. The first, simple one involves building two interrelated 
arrays. The first of them contains the coordinate vectors, and the second 
– the attributes. For this method the random-access memory (RAM) may 
be realized as a dynamic one (DRAM), or as a static one (SRAM). The 
memory for realizing this method will be called traditional random-access 
memory TRAM.  

The second method, using GC, assumes that all the codes of 
coordinate vectors are integrated in AGC. Each path in AGC 
corresponds to a value interpreted as “coordinate vector”, and to a number, 
interpreted as “address”. The attributes in this method are, as before, 
integrated into an array connected with AGC by means of the addresses. 
For this method the random-access memory should be realized as static 
one (SRAM), because certain logic of access to the AGC memory should 
be ensured. Further we shall call the random-access memory for realizing 
this method – specific random-access memory SSRAM. 

In future we shall consider only SSRAM, since this memory (unlike 
traditional memory) makes possible to obtain the given code’s address by 
one access. This access method is necessary for vector’s attribute 
retrieval, and also increases essentially the processor speed. Besides, 
SSPAM is much more efficient than traditional random-access memory. 
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More precisely, the coordinate array in TRAM contains 2pnpn digits, and 
the reduced AGC has only 2pn digits. For example, if p=3 and n=12, 
then the memory volume is 36 times smaller.  
Two schemes of memory organization for AGC may be applied: 

• full, when the whole code AGC  with carry propagation schemes 
is kept in PSSRAM 

• fragmentary, when all the code is split into fragments, and there is 
FSSRAM with carry propagation schemes for one fragment. 

Such AGC structure will be called vertical fragmentation. 
Let us consider now data presentation in the arithmetic unit. The first 
method consists in creating a complete AGC  of 2pn digit capacity in the 
arithmetic unit. This is, however, insufficient, as when operating with 
AGC, carries may occur in any path from high-order digit (by analogy 
with vector processor). The resulting code may have a digit capacity of  
pr, whereas the initial code had digit capacity pn. The higher digits of the 
resulting code may be combined into a rectangular code of vectors RCV 
(similar to the way it was done in a vector processor for full-sized code). 
Thus, there must be register AGC and register RCV in the arithmetic 
unit. Let us call this pair of codes – a mixed code of a figure MCF. The 
register of mixed code has a digit capacity of pr+2pn. 

Arithmetic unit with MCF register will serve simultaneously as 
random-access memory. Let us call it a maximal arithmetic unit for  
geometrical figures  - MGAU. Evidently, this unit has a very large volume, 
and the possibility of its realization is at the limit  of modern technology 
potential. Therefore we shall view another variant. Let us divide MCF 
into several fragments MCFq, each of which consists of fragment AGCq 
and fragment RCVq. MCFq combines Q paths in the code MCF, i.e. Q 
resulting codes of digit capacity (n+r). If Q=2, then the lower tiers of the 
AGCq code fragment will concentrate in one path, and MCFq  will have a 
structure as shown in the Fig. 6.0.1. 
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Fragment
PCVq

Line Part LPq
Fragment

AGCq

(pn-f)(f)(pr)

( )f2

 
Fig. 6.0.1. MCF structure 

 
Such MCF structure will be called horizontal fragmentation. In this case 

• the linear part LPq of the code MCFq contains (pn-f) digits, 
• the rectangular part RCVq of the code MCFq contains (Qpr) 

digits,  
• the code MCFq contains (pn-f)+Qpr +Q) digits, 
• the geometrical part AGCq of the code MCFq  contains Q digits, 
• the code MCF consists of 2pn-f fragments MCFq and contains 

 ((pn-f)+Qpr +Q)*2pn-f digits. 
Accordingly, the affine transformation for such data structure consists of 
2 pn-f operations. An arithmetic unit with register of such structure will be 
called fragmentary GAU – FGAU. 

Notice that horizontal fragmentation is convenient for arithmetic unit, 
and vertical fragmentation – for random-access memory. 
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6.1. Full Specific Random-access 
Memory 

 

RCV

(pn)(pr)

( )pn2 AGC

 
Fig. 6.1.1. Full specific random-access memory 

 
Full specific random-access memory PSSRAM of the code MCF is 

shown in the Fig. 6.1.1 and it consists of two parts – memory for 
rectangular code RCV and memory for AGC. It is complemented by a 
certain scheme of carry propagation, and this makes it possible to 
perform the following operations 

S1. Writing the vector code – see section 5.2.2.1. 

S2.  Determining the address where this vector code is located – see 
section 5.2.2.2. This operation is necessary for searching the 
vector’s attribute. 

S3. Reading the vector code according to the address where it is 
located – see section 5.2.2.3. 

S4. Writing a code fragment MCFq according to its number q. 

S5.  Reading a code fragment MCFq according to its number q. 

S6.  Determining the number of the first non-zero digit in the code 
MCF, which is necessary for rounding off. 
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6.2. Fragmentary Specific Random-
access Memory 
 
In this case for representation in the memory, the geometrical code G 

is split into fragments joined into F tiers. The fragment of each tier 
contains r tiers of geometrical code. This statement is illustrated on Fig. 
6.2.1, where fragments of the geometrical code are shown as triangles. 
Their numeration has the following meaning: “number of tier”.”number of 
fragment in the tier”.  

 

1.12.m

2.1

F.m 3.m4.m

3.1

F.1

F F-1 4 3 2 1

2 2. r

322. r

F F r. ( )2 1−

 
 

Fig. 6.2.1. Tiers of geometrical code and segments of linear code. 
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In the memory, the fragments are placed in a series, tier after tier: 
1 1

2 1 2 2 2 2

3 1 3 2 3 2

1 2 2

1 2 2

2

1

1

. ,

. , . , ... , . ,

. , . , ... , . ,
...

. , . , ... , . , ... , . ,
...

. , . , ... , .

( )

( )

r

r

k r

F r

k k k m k

F F F

−

−

 

 
Note that the number  j of the fragment in this series is connected with 
the number k  of the tier and the number m of the fragment in the tier by 
the following dependence: 

j m ma r

a

k k r

r= + ∑ = +
−

−
−

=

− −

2 1 2
1 2

1

1

1 1
( )

( )
.  (6.2.1) 

Given: 
• number k of the tiers of fragment, where the processed 

fragment is placed, 
• number m of the processed fragment in the tier k, 
• number v of a vertex in the last tier of the processed 

fragment  the carry arrives at, 
the number f of the fragment is the next (k+1)-tier, where this carry 
arrives, may be determined according to the formula: 

1−+= vmf .     (6.2.2) 
Number of the fragment the carry arrived at, is  

r

kr
fj

21
21

−
−

+= .     (6.2.3) 

Fragments numbered in accordance with (6.2.1), are saved in the 
ordinary random-access memory of fragments, retrieved into the unit 
FSSRAM for processing, and after processing returned to the fragments 
memory. A fragment is written or read from the fragment memory 
according to the fragment’s number in this memory. Unit FSSRAM 
realizes the above named commands S1-S6; in order to do so it 
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accesses some of the fragments. The following operations in the unit 
FSSRAM are performed directly with fragments: 

F1. Reading a fragment with a given number of the fragments 
memory. 

F2.  Writing a given vector code SEGMENT according to its 
number of the same code – see section 5.2.2.1. This operation 
is applicable only if all the digits 0=γ , i. e. with initial 
formation of AGC. 

F3. Determining the address where this vector code SEGMENT is 
located – see section 5.2.2.2. 

F4. Reading a vector code SEGMENT at the address where it is 
located – see section 5.2.2.3. 

F5. Writing a fragment with a given number into the fragments 
memory. 

F6. Determining the number of the highest nonzero digit in a 
fragment (used only in highest tier fragments).  

F7. Determining by the formula (6.2.3) the number j of the next 
fragment the carry arrives at. 

Let us now compare the volume and performance speed for different 
methods of random-access memory organization. When evaluating the 
performance speed we shall assume that all the paths in the GC tree are 
open, i. e. it integrates all the codes of the same digit capacity. Let us 
denote: 

r – number of tiers in a fragment, 
F – number of fragments’ tiers in GC. 
Then we have: 
n r F= ⋅  - digit capacity of linear codes and number of GC 

tiers,  
2 r  - number of terminal vertexes in a fragment, 

( )2 12 r −  - total number of vertexes in a fragment, 

2 1( )F r−  - number of terminal fragments in GC. 
As was shown above, number of digits in reduced AGC is 

12 −= nV . 
This code joins all n – digit codes. Total number of bits for storing these 
codes is 

′ = ⋅V n n2 . 
Hence using AGC reduces the data volume n times. 
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Let us consider now the number of elementary operations in writing 
the fragmentary AGC. In the lowest fragments tier 1 operation with 
fragment is being performed, in the second tier - 2 r  operations, the 
third one - 2 2 r operations, …, in the highest tier - 2 1( )F r−  
operations. So the total number of elementary operations with a 
fragment is 

a r r F r
F r

r1
2 11 2 2 2 1 2

1 2
= + + + + =

−
−

−... ( )  

or 
rnrFa −− =≈ 22 )1(

1     (6.2.4) 
The ratio of  memory capacity for all fragment in SSRAM to one 

SSRAM fragment’s capacity is equal to 
rnR −≈2       (6.2.5) 

The volume of FSSRAM unit is approximately  3 times larger than 
one fragment’s volume,  because the unit contains carries schemes in 
every digit. Hence the random-access memory complexity is 
characterized by the value 

( ) rFrn 223232 ⋅+=⋅+≈θ     (6.2.6) 
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6.3. Maximal Arithmetic Unit of 
Geometrical Figures 
Maximal arithmetic unit of geometrical figures MGAU, similarly to 

full specific random-access memory PSSRAM, operates with code MCF, 
presented in Fig. 6.1.1. This unit contains a well-developed scheme of 
carries propagation, and due to this it can perform the following 
operations: 

M1. Writing the given vector code – see section 5.2.2.1. 
M2. Reserve. 
M3. Reading the vector code according to its address – see 

section 5.2.2.3. 
M4. Reserve. 
M5. Reserve. 
M6. Determining the highest nonzero digit in the code MCF, 

which is necessary for rounding off. 
M7. Adding MCF to given vector code – see section 5.2.2.7. 
M8. Multiplying MCF by transformation matrix – see 

section 5.2.2.9. 
M9. Determining the length of vector code by its address. 
M10. Reading from MGAU a vector code according to the 

first\next address – see section 5.2.2.8. 
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6.4. Fragmentary Arithmetic Unit of 
Geometrical Figures 
The arithmetic unit FGAU for operations with code MCFq is shown 

in the Fig. 6.4.1 

Registers of all Parameters of
Transformation - a bytes

Input

Input Output

Control
Unit

Coder of  Parametrs - a bytes

Shifter - p(n+r) bytes

 Register of Parameter - pr bytes

Multiplexer

Operational Block

 
Fig. 6.4.1. Fragmentary arithmetic unit 
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It is in many ways similar to the unit FVAU. The difference is in the 
fact that FVAU includes operational unit of digit capacity: 

R6 = Qp(n+r),      (6.4.1) 
and FGAU includes operational unit of digit capacity 

R7 = (pn-f)+Qpr +2pn-f.    (6.4.2) 
Operational unit consists of  register MCFq  and carry propagation 

schemes. The carry schemes in the linear and the rectangular parts are 
organized according to the rules of vector arithmetic, and in geometrical 
part – according to the rules of geometrical codes arithmetic. 

The ratio between digit capacity of the units FVAU and FGAU is: 
R6 / R7 ≈ (n+r)/r     (6.4.3) 
Let us consider the list of co-processor commands realized in FGAU: 
A1. Receiving the transformation parameters. 
A2. Adding MCFq to carry vector. 
A3. Multiplying MCFq by carry matrix. 
A4. Yielding the code MCFq. 
A5. Receiving the code MCFq. 
A6. Yielding the vector by address – without rounding off and 

with rounding off. 
A7. Determining the vector code length according to the address. 
A8. Determining a vector adjacent to the given vector, according 

to a given coordinate and given direction on the coordinate 
axis. 
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6.5. Processor with a Maximal 
Arithmetical unit 
 

SSRAM

Coder/Decoder

Control
Unit

Co-processor

ARAM-2

Processor

Central
RAM
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AU

MGAUARAM-1

Registers of all Parameters of
Transformation - a bytes

Coder of  Parametrs - a bytes

Shifter - p(n+r) bytes

 Register of Parameter - pr bytes

Multiplexer

a

 
Fig. 6.5.1. Processor with a maximal arithmetical unit 
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Processor with a maximal arithmetic unit PMGAU contains an 

arithmetic unit MGAU for operation with codes MCF that combines the 
functions of arithmetic unit and of random-access memory. The co-
processor РMGAU and its place in the central processor are shown in 
the Fig.6.5.1. 

Thus, PMGAU contains the arithmetic unit MGAU and a unit of 
additional specific random-access memory SSRAM, coder/decoder of 
vectors and control unit, as well as other units, similarly to the unit 
FVAU. Coder/decoder is connected with the main memory of the 
central processor. MGAU and SSRAM are connected with attribute 
memory units ARAM-1 and ARAM-2, which are parts of the central 
processor. 

It should be noted that the co-processor entirely releases the central 
processor from solving respective problems, so  that the latter may solve 
other problems simultaneously with co-processor. Let us consider now 
the list of co-processor’s commands and the units used in performing 
these commands: 

 
R1. Receiving (by the bus a) and coding the carry parameters. 
R2. Adding MCF to carry vector (see operation M7). 
R3. Multiplying  MCF by transformation matrix (see operation 

M8). 
R4. Reserve. 
R5. Reserve 
R6. Determining the number of the highest non-zero digit in 

MGAU for rounding off (see operation M6). 
R7. Transmitting the rounded k-vector from MGAU into SSRAM. 
R8. Determining a vector code length according to the address (see 

operation M9). 
R9.  Reading a vector by its address in SSRAM (see operation S3). 
R10. Determining a vector adjacent to a given vector, by a known 

coordinate and known direction. 
R11. Determining an address of a known vector in SSRAM (see 

operation S2). 
R12. Transforming coordinates into vector, writing it to MGAU 

and determining its address (see operation M1). The coding of 
a point’s coordinates into vector code is performed by the 
coder. 
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R13. Reading from MGAU vector’s code by a given address (see 
operation M3) and transforming this vector into a point’s 
coordinates – performed by the decoder. 

R14. Reading from MGAU a vector code by the first/next address 
(see operation M10). 
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6.6. Processor with Fragmentary 
Arithmetic Unit 
 
Co-processor PFGAU with fragmentary FGAU and its place in the 

central processor is shown in the Fig. 6.6.1. Co-processor contains an 
arithmetic unit FGAU, specific random-access memory unit SSRAM-1 
and an additional specific random-access memory unit SSRAM-2, 
coder/decoder of vectors and a control unit. 

 

SSRAM-1

FGAU

Coder/Decoder

Control
Unit

Co-processor

ARAM-1

Processor

Central
RAM

Central
AU

a

b

c d

SSRAM-2ARAM-2

 
Fig. 6.6.1. Processor with fragmentary  FGAU 
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Coder/decoder is connected with the main memory of the central 
processor. SSRAM-1 and SSRAM-2 are connected with attribute 
random-access memory units ARAM-1 and ARAM-2, which are parts of 
the central processor. 

It should be noted that the co-processor entirely releases the central 
processor from solving respective problems, so that the main processor 
may solve other problems simultaneously with co-processor. 

From further discussion it follows that in the SSRAM-2 memory only 
two operations: S1 and S3 should be provided. 

Let us consider list of commands of co-processor and of units used in 
their performance. (operations of arithmetic unit FGAU are denoted by 
symbols А): 

P1. Receiving and coding transformation parameters. These 
parameters are transmitted by buses a and b. Operation A1 
is being used at that. 

P2. Adding MCFq to the carry vector GAU. Operation A2 is 
being used at that. 

P3. Multiplying MCFq by transformation matrix in GAU. 
Operation A3 is being used at that. 

P4. Yielding code MCFq from GAU to SSRAM-1 by bus d. 
Operations A4 and S4 are being used at that. 

P5. Receiving code MCFq from SSRAM-1 to GAU by bus с. 
Operations A5 and S5 are being used at that. 

P6. Determining number of highest non-zero digit SSRAM-1 for 
rounding off.  Operation S6 is being used at that.  

P7. Transmitting a rounded k-vector from GAU to SSRAM-2. 
Operations A6 and S1 are being used at that. 

P8. Determining the vector code length by its address. It is 
assumed that the corresponding fragment is in GAU and 
operation А7 is being performed. 

P9. Reading a vector by its address. Operation S3  is being used  in 
SSRAM-2. 

P10. Determining a vector adjacent to a given vector, by a 
known coordinate and known direction. Operation А8 is 
being used at that. 

P11. Determining an address by a known vector. Operation S2 
is being used in SSRAM-2. 

P12. Transforming coordinates into vector, writing it into 
SSRAM-1 and determining its address. The coding of the 
point’s coordinates into the vector code is performed by 
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the coder, and operation S1 is used for writing  the vector 
and for determining its address. 

P13. Reading a vector code from SSRAM-1 by the vector’s 
address and transforming this vector into point’s 
coordinates. Operation S3 is used for reading the vector 
code, and its decoding to point’s coordinates is performed 
by the decoder.  

P14. Reading a vector’s code from SSRAM-1 by the first/next 
address.  Operation S3 is used for reading the vector code. 

 
Notice that for SSRAM-2 only the operations S1, S2, S3 may be used. 
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6.7. The Main Procedures 
Here we shall use the following (described above) notations of the 

units and operations performed by the units. 
Section Unit Type The used units Operations 
6.1 PSSRAM RAM - S1-S6 
6.2 FSSRAM RAM - S1-S6; F1-F7 
6.3 MGAU AU - M1-M10 
6.4 FGAU AU - A1-A8 
6.5 PMGAU processor MGAU; 

PSSRAM 
R1-R14 

6.6 PFGAU processor FGAU; 
PSSRAM  
or FSSRAM 

P1-P14 

 
6.7.1. Affine Transformation 
In the processor PFGAU: 

1. Receiving and coding the transformation parameters - operation Р1. 
2. Enumerating all q-fragments   (in the central processor). 

2.1. Receiving code MCFq from SSRAM-1 - operation Р5. 
2.2. Multiplying MCFq by the transformation matrix – centroaffine 

transformation - operation Р3. 
2.3. Adding MCFq to the carry vector - operation Р2. 
2.4. Yielding code MCFq from GAU to SSRAM-1 - operation Р4. 

 
In the processor PMGAU: 

1. Receiving and coding the transformation parameters - operation R1. 
2. Multiplying MCF by the transformation matrix - operation R7. 
3. Adding MCF to the carry vector - operation R2. 
 

6.7.2. Rounding 
We shall call so an operation of building an array of pairs “point’s 

coordinates” – “point’s attribute” with simultaneous compression of the 
figure in the direction of one or several coordinate axes. To do this the 
complex codes are read from GC without some of the lower-order digits. 
For example, for plane figures 

• the absence of the lowest digit is equivalent to twofold 
compression along the abscissa axis, 

• the absence of two lowest digits is equivalent to twofold 
compression along both axes, 
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• the absence of three lowest digits is equivalent to 4-fold 
compression along abscissa axis and two-fold compression along 
both axes. 

During such compression one coordinate may correspond to one or 
several attributes. The attributes’ joining (as was noted above) is 
determined entirely by their application meaning. 
During the operation of rounding all vector codes are rounded off (their 
lower digits are discarded) and are written from SSRAM-1 to SSRAM-2. 
The algorithm is as follows 
 

In the processor PFGAU: 
1. Determining the highest non-zero digit in SSRAM-1 - operation Р6. 
2. Zeroing ARAM-2 (in the central processor)). 
3. Enumerating all q-fragments (in the central processor). 

3.1. Receiving all MCFq from SSRAM-1 into GAU - operation Р5. 
3.2. Enumerating all local k-addresses in the code MCFq (operation 

Р14. 
3.2.1. Transmitting the rounded k-vector from GAU to SSRAM-

2 - operation Р7. 
3.2.2. Transmitting ((q-1)k)-attribute  from ARAM-1 to ARAM-

2 (in the central processor). It is significant that there is a 
possibility of attribute being added to already existing 
attributes of this point.  

 
In the processor PMGAU: 

1. Determining the number of the highest non-zero digit in SSRAM-1 - 
operation R7. 

2. Zeroing ARAM-2 (in the central processor). 
3. Transmitting the rounded k-vector from GAU to SSRAM-2 - 

operation R7. 
4. Transmitting ((q-1)k)-attribute from ARAM-1 to ARAM-2 (in the 

central processor). It is significant that there is a possibility of 
attribute being added to already existing attributes of this point.  

 
6.7.3. Rough rounding 
During all arithmetic operations there may occur an overflow – i.e. 

there may appear tiers with a number exceeding the maximal. Such 
overflow is equivalent to the point going out of the limits of coding 
domain (for example, out of the screen bounds). At rough rounding all 
the out-of-the limits points are excluded from the figure’s code. To do 
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this would require only discarding the higher digits of the vector code 
and zeroing its attribute. The algorithm is as follows. 
 

In the processor PFGAU: 
1. Zeroing ARAM-2 (in the central processor). 
2. Enumerating all q-fragments (in the central processor). 

2.1. Receiving code MCFq from SSRAM-1 to GAU - operation Р5. 
2.2. Enumerating all local k-addresses in the code MCFq – operation 

Р14. 
2.2.1. Analyzing the length of k-vector code in GAU - operation 

Р8. 
2.2.2. If there is no overflow in this code, then ((q-1)k)-attribute 

is transmitted from ARAM-1 to ARAM-2 (in the central 
processor). Otherwise it will be left equal to zero.  

 
In the processor PMGAU: 

1. Zeroing ARAM-2 (in the central processor). 
2. Enumerating all k-addresses in code MCF - operation R14. 

2.1. Analyzing the length of k-vector code in GAU - operation R8. 
2.2. If there is no overflow in this code, then ((q-1)k)-attribute is 

transmitted from ARAM-1 to ARAM-2 (in the central 
processor). Otherwise it will be left equal to zero. 

 
6.7.4. Attributes Correction 
After the figure’s code rounding it may occur that in a certain node of 

the network several points are present. It means that by a certain address 
in the attributes memory there is a list of attributes present. Attribute of 
a node is defined as a function of all attributes of all points found in this 
node. This procedure is known and is performed in the central 
processor.  
 

6.7.5. Attributes Calculation 
After rough rounding of the figure’s code it may occur that in a 

certain node of the network a certain point is absent – its attribute is 
equal to zero. Attribute of a node is defined as a function of all attributes 
of all points found in this node. This procedure is also known and is 
performed in the central processor. But in this case it is necessary to 
access the co-processor. The algorithm is as follows. 
1. The memory ARAM-2 is scanned (in the central processor) 
2. If at a certain address the attribute is equal to zero, then  
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2.1. Vector V0 of the point С0 is determined at the given address A0 
- see operation P9 (or R9). 

2.2. Coordinates and directions by the coordinates are enumerated 
(in the central processor). For every variant k 
2.2.1. Vector Vk of the adjacent point Сk is determined - see 

operation P10 (or R10). 
2.2.2. The address Ak of the point Сk is determined according 

to the known vector Vk - see operation P11 (or R11). 
2.2.3. The attribute Tk of the point in ARAM-2 is found by the 

known address Ak (in the central processor). 
2.3. The attribute T0 of the point С0 is determined and written into 

ARAM-2 as a known function of attributes Tk of points Сk (in 
the central processor). 
 

6.7.6. Coding a Figure. 
By this term we mean a transformation of the connected arrays 

“attributes”-“coordinates” into   mixed code of the figure. The algorithm 
is as follows: 
The connected arrays are enumerated. For every address of the pair 
“attributes”-“coordinates” the following actions are performed 

1. The coordinates of the point are transformed into vector code 
and this vector is written to SSRAM-1. A new address is yielded 
from SSRAM-1 . Operation Р12 (or R12) is used for this 
purpose. 

2. The point’s attribute is written to ARAM-1 (in the central 
processor). 

 
6.7.7. Decoding a Figure. 
By this term we mean a transformation of mixed code of the figure into 
connected arrays “attributes”-“coordinates”. The algorithm is as follows. 
The addresses of ARAM-1 are enumerated. For each address the 
following actions are performed: 

1. By given address the point’s attribute is written to ARAM-1 into 
“attribute array” (in the central processor). 

2. The vector code is read by the address from SSRAM-1, and then 
is transformed into point’s coordinates. Operation P13 (or R13) 
is used for this purpose. 

3. These coordinates are written into “coordinate” array (in the 
central processor). 
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6.8. Operational Units 
Following is the description of operational units included in the 

arithmetic unit and specialized random-access memory. These units 
constitute the patterns of carries propagation in AGC. Algorithms of the 
corresponding operations were presented above. When outlining the 
patterns we shall use the following notations: 

π - input carry signal, 
β - β digit trigger, 
α - α digit trigger, 
μ, η - output carry signals arriving at the β and α digits, 

respectively, 
γ - γ digit trigger, 
δ - basic code δ digit trigger, 
τ - transposition signal τ trigger. 

A general pattern of carry propagation is shown in Fig. 5.1.2а and Fig. 
5.2.4. Algorithms of the corresponding operations were described above. 
 

6.8.1. Writing unit for the number with the given code 
Fig. 6.8.1 shows a fragment of the circuit for writing a number with 

the given basic code into the AGC – see section 5.2.2.1. Shown in this 
Figure are units that calculate the μ, η signals according to specific 
formulae. One of these signals always equals “1” and is transmitted 
further in the form of signal π. The signal μ=1 or η=1 establishes the 
appropriate trigger in “1”. The signal μ=0 or η=0 does not change the 
condition of the corresponding trigger. 

α

β

π δ∧
μ

η

π

π δ∧

δ

 
Fig. 6.8.1. Writing unit of number with given code. 
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6.8.2. Writing unit for the value with the given code 
Fig. 6.8.2 shows a fragment of the circuit for writing a number with 

the given basic code into the AGC – see section 5.2.2.2. Shown in this 
Figure are units that calculate the μ, η signals according to specific 
formulae. One of these signals always equals “1” and is transmitted 
further in the form of signal π. The signal μ=1 or η=1 establishes the 
appropriate trigger in “1”. The signal μ=0 or η=0 does not change the 
condition of the corresponding trigger. 

 

α

β
γ

( )π δ γ∧ ⊕
μ

η

π

( )π δ γ∧ ⊕

δ

 
 

Fig. 6.8.2. Writing unit of value with given code. 
 

6.8.3. Reading unit for path value of the given number 
Fig. 6.8.3 shows a fragment of the circuit for reading the value of the 

path of a known number with the given basic code – see section 5.2.2.3. 
The path value is formed as the second basic code with ω digits.  Shown 
in this Figure are units that calculate the μ, η signals according to specific 
formulae. One of these signals always equals “1” and is transmitted 
further in the form of signal π. The unit that calculates the ω signal 
writes it into the same-name trigger of the value code register. The ω 
signal is generated in the α or β digit that the carry signal has passed 
through. 
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Fig. 6.8.3. Reading unit of value with given code. 
 

6.8.4. Inverse adder 
Fig. 6.8.4 shows a fragment of the adder for inverse addition of AGC 

to the basic code with a radix (–2) – see section 5.2.2.5. This Figure 
shows units that calculate the μ, η, τ signals according to specific 
formulae in accordance with Table 5.2.3a. One of these signals μ, η 
always equals “1”, and is transmitted further in the form of signal π. The 
signal τ is written into the trigger that has the same name. The 
transposition enabling signal R is common for all digits and is received 
from the control circuit once the carry propagation through all the digits 
is finished. After that, the value τ is set  in the digits γ.  

The same circuit is used for multiplication. The difference is that the 
addition start signal is sent to the root vertex; during multiplication – to 
all vertexes of a specific tier in which α=0. 

In a particular case where δ≡0, the same adder performs the function 
of an inverter. 
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Fig. 6.8.4. Inverse adder. 

 
6.8.5. Search unit for the first open path, its numbers and its 
values 
Fig. 6.8.5 shows a fragment of the circuit for searching out the first 

open path and reading its number and its value. The number code is 
formed as the first basic code with δ digits, and the value code is formed 
as the second basic code with ω digits. The figure shows units that 
calculate the signals μ, η according to certain formulae. Only one of 
these signals may equal “1”, and is transmitted further as a π signal. If 
both of these signals equal zero, then the Null signal is generated, and 
the carry propagation process stops. Units calculating the δ and ω signals 
write them into the same-name trigger of the corresponding code’s 
register. This circuit finds the uppermost open path in the GC tree. 
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β
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πβα
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Fig. 6.8.5. Search unit for first open path, its number and value. 
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6.8.6. Reading unit of the number and value of the path with a 
given terminal vertex 
Fig. 6.8.6 shows a fragment of the circuit for reading the number and 

value of the path ending in the given terminal vertex. Unlike the previous 
circuits, here the carries propagate from left to right. At the same time, 
the number code is formed as the first basic code with δ digits, and the 
value code is formed as the second basic code with ω digits. Circuits 
conjugated with the β and α digits are differing. 
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π

π β γ
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π

π α γ
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Fig. 6.8.6. Reading unit of number and value of path with a given terminal vertex. 
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6.8.7. Next terminal vertex search unit 
This unit scans (with Carry_In and Carry_Out signals) the 

terminal vertexes starting with the given one (upon the InPut signal) and 
up to the first vertex with a value of one. The output signal is generated 
in such a vertex (OutPut) – see Fig. 6.8.7. 

α βor

OutPut

InPut

Carry_Out

Carry_In

 
Fig. 6.8.7. Next terminal vertex search unit. 
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7. Comparative Analysis 

 
This section is concerned with comparison between the 

characteristics of arithmetic units and random-access memory units that 
were presented above. Table 7.1 gives the list of the units, and Table 7.2 
shows their characteristics, where 

• T – reading/writing time 
• S – time of attribute search by known coordinates 
• R – digit capacity for random-access memory and equivalent 

digit capacity of AU 
• A – number of operations for affine transformation 
• n – digit capacity of one coordinate code 
• r – digit capacity of transformation parameter 
• a – total digit capacity of all transformation parameters (see 

(2.1.1.) 
• p – space dimension 

• M=2pn
 – number of points in the space - see (2.1.2) 

• F – number of fragments tiers when using vertical 
fragmentation 

• Q=2f
 – number of points in a fragment when using 

horizontal fragmentation 
• D=p(p-1) – number of adding in an affine transformation – 

see (2.2.1) 
• In p. 1 it is assumed that the search is performed in an 

unordered array TRAM 
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Table 7.1. The list of compared units 
№   
1 TRAM Random-access memory in traditional performance 
2 PSSRAM Full specific random-access memory 
3 FSSRAM Specific fragmentary random-access memory  
4 SAU Simplest arithmetic unit  
5 MSAU Arithmetic unit with rectangular codes 
6 FSAU Arithmetic unit with fragmentary rectangular codes 
7 VAU Vector arithmetic unit  
8 MVAU Vector arithmetic unit with rectangular codes 
9 FVAU Vector arithmetic unit with fragmentary rectangular 

codes 
10 FGAU Arithmetic unit with fragmentary geometrical codes 
11 MGAU Arithmetic unit with fragmentary geometrical codes 

combined with random-access memory 
 
Table 7.2. Characteristics of compared units 
№  T S R A 
1 TRAM 1 M/2 Mp(n+r) - 
2 PSSRAM 1 1 Mpr+M - 
3 FSSRAM F F ⎟

⎠
⎞

⎜
⎝
⎛ + F Mpr

F
MF  - 

4 SAU - - 7(n+r)+a M(D+p2) 
5 MSAU - - 7M(n+r)+a D+p2 
6 FSAU - - 7Q(n+r)+a (D+p2)M/Q 
7 VAU - - 7p(n+r)+a M 
8 MVAU - - 7Mp(n+r)+a 1 
9 FVAU - - 7Qp(n+r)+a M/Q 
10 FGAU - - ((pn-f)+Qpr +Q) M/Q 
11 MGAU 1 1 (Mpr +M) 1 
 

The performance time τ  of one operation is practically independent 
of the type of each listed unit. Therefore the performance time of affine 
transformation in each of these units is τAt = . In a unit time each 
unit solves τAtz 11 ==  problems of affine transformation. It is 

reasonable to define the quality of an arithmetic unit by the unit’s volume 
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necessary for solving a certain number of affine transformation 
problems, or by relative volume of a unit: the less is the relative volume W, 
the higher is the unit’s quality. Clearly, the relative volume of a unit is 

z
RW ≡  or W=AR. 

Similarly, the quality of random-access memory may be described by 
the ratio of its volume to the number of access operations performed in a 
unit time. Speaking of a reading/writing operation, the relative volume of 
random-access memory is W1=TR. Considering the operation of a 
point’s search in an unordered array, the relative volume of random-
access memory will be equal to W2=SR. It would be useful to consider 
a given mixture of these operation, but for that the statistics of access 
operations must be known. 

Table 7.3 shows the relative volume of all above described units. 
 
Table 7.3. Relative volume of compared units. 

№  AR SR 
1 TRAM  

2
)(2 rnpM +  

2 PSSRAM
⎟
⎠
⎞

⎜
⎝
⎛ + F Mpr

F
MF 2  

3 FSSRAM

 

Mpr  
4 SAU  
5 MSAU  
6 FSAU 

( )rnMp +214
 

 
7 VAU  
8 MVAU  
9 FVAU 

7Mp(n+r) 

 
10 FGAU Mpr   
11 MGAU Mpr  Mpr  

 
Based of this table we have built a more illustrative Table 7.4 of the 
relative volumes of the main units. 
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Table 7.4. Relative volumes of the main units 
№ Unit W=AR for processor; 

W1=TR or W2=SR for RAM 
1 TRAM - traditional random 

access memory 
)(1 rnMpW +=  

2/)(2
2 rnpMW +=  

3 SSRAM - specific static 
random access memory 

⎟
⎠
⎞

⎜
⎝
⎛ +

==

F Mpr
F
MF

WW

2

21
 

5 SAU - scalar arithmetic unit ( )rnMp +214  

8 VAU - vector arithmetic unit 7Mp(n+r) 
10 GAU – geometrical 

arithmetic unit
Mpr  

 
Fig. 1.1 (in the Introduction) gives a bar graph of the quality of all 

considered arithmetic units with n=r. The measuring unit in this bar 
graph is 14*М. For instance for p=3 the ratio of quality characteristics 
is  (84:14:1). 

The relative volume W2 of the unit TRAM for n=r is М times larger 
than relative volume W2 of the unit PSSRAM. For F>1 the ratio of 
relative volumes W2 of the units TRAM and FSSRAM is 

Fr
rnM

2
)( + . 

For example, at n=r the ratio of these volumes is М/F. 
The relative volume W1 of the unit TRAM at n=r is twice as large as 

the relative volume W1 of unit PSSRAM. For F>1 the ratio of relative 
volumes W1 of the units TRAM and FSSRAM is 

Fr
rn )( + . For 

example, at n=r their ratio is 2/F, i.e. the relative volume W1 of the 
unit TRAM is F/2 times smaller than the relative volume W1 of the 
unit FSSRAM. 

Let us assume now that in a given problem the reading/writing 
operations occur H times more often than search operations. 

Then the relative volume of random-access memory should be 
defined by the formula ( )STHRW += . This value can be found in 
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the Table 7.2. For the units TRAM and FSSRAM the relative volume is 
accordingly 

( )2/)( MHrnMpWT ++=  
and 

( ) ( )1+≈+⎟
⎠
⎞

⎜
⎝
⎛ += HFMprFFHMpr

F
MFW F

F . 

Ratio  ( )
( )( )2

1
MHrnMp

HFMpr
W
W

T

F
++
+

≈ . 

For rnMH =<<<< ,1  this ratio 
M

HF
W
W

T

F ≈ . Thus, the relative 

volume of FSSRAM is smaller than that of TRAM, if 1<≈
M

HF
W
W

T

F  or 

MHF < . The average number of tiers during vertical fragmentation is 
10≈F . Consequently, 

The relative volume of a specialized storage device is 
H

M
10

 times 

smaller than the relative volume of a traditional storage device. 
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Add – M-codes Adder 
AGC – attributic geometrical code 
AGCC – attributic geometrical complex code 
ARAM - attribute traditional random-access memory 
AU – arithmetic unit 
СAGC – contracted attributic geometrical code 
CoderPM - coder of positive P-code into М-code 
С-code – complex code in complex radix 
DecoderMP - decoder of M-code into P-code 
Deven – one-digit decoder circuit for even-numbered digit 
Dodd - one-digit decoder circuit for odd-numbered digit 
DRAM - dynamic random access memory 
FGAU – fragmetntary geometrical arithmetic unit 
FSAU – fragmetntary scalar arithmetic unit 
FSSRAM – fragmetntary specific static random access memory 
FVAU – fragmetntary vectorial arithmetic unit 
GAU – geometrical arithmetic unit 
GC - geometrical code 
Inv - M-code inverter 
InvAdd – M-codes inverse adder 
LP – linear part of MCF 
MCF - mixed code of figure 
mDecoderMP - full decoder of M-code into P-code 
Meven – one-digit coder circuit for even-numbered digit 
MGAU – maximum geometrical arithmetic unit 
Modd - one-digit coder circuit for odd-numbered digit 
MSAU – maximum scalar arithmetic unit 
MVAU - maximum vectorial arithmetic unit 
M-code – real numbers code in the radix “-2” 
nSign – M-code sign determinant 
Partitioning - partitioning unit for code’s parts 
PFGAU - processor with FGAU 
PGC – primary geometrical code 
PMGAU - processor with MGAU 
PreCoder - precoder  of P-code into M-code 
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PSSRAM – perfect specific static random access memory 
P-code – traditional code in the radix “2” 
RAM - random access memory 
RCS - rectangular code of scalars 
RCV - rectangular code of vectors 
RGP – raster geometrical processor 
SAU - scalar arithmetic unit 
Seven – one-digit sign determinant circuit for even-numbered 

digits 
Sodd - one-digit sign determinant circuit for odd-numbered digits 
SRAM - static random access memory 
SSRAM - specific static random access memory 
Sub – M-codes subtractor 
TRAM - traditional random access memory 
VAU - vector arithmetic unit 
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