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Abstract

A framework for calculations in a semi-Riemannian space with the typical metric
connection and curvature expressions is developed, with an emphasis on deriving
them from an embedding function as a more fundamental object than the metric
tensor.

The scale-invariant and ‘linearizing’ logarithmic nature of an ‘infinitesimal embed-
ding’ of a tangent space into its neighbourhood is observed, and a composition
scheme of spacetime scenarios from ‘outer’ non-invariant and ‘inner’ scale-invariant
embeddings is briefly outlined.
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1 Framework

1.1 General Conventions

Tensors are written in index notation.
The Einstein summation convention is always active, unless noted otherwise.

More unusually, contraction indices may be doubled when unambiguous, like for example
in Γa

γγ · gγγ, since at least one of the involved tensors is symmetric in that index pair.
Multiple indices of same variance are sometimes used to denote symmetries between all
indices involved, as in Γa

bb,b, and might even be contracted only in part, as in Γa
γγ,γ · gγγ,

as long as the operation is unambiguous.
Contraction might span over equations,

(
Aδδ = Bδδ

)
gδδ.

Index instances are printed in bold, like (Tt, Tx, Ty, Tz), when in Ta, a ∈ {t, x, y, z}.
As usual, a comma before an index (, δ) might be used as a short form for the partial
derivative (∂δ or ∂

∂xδ
), and a semicolon (; δ) for the covariant derivative (∇δ). The partial

derivative by an index instance may leave out the comma, Tt := T,t = ∂tT .

A dot (·) denotes a product, but in index notation not a ‘dot product’, since tensor
contractions are already signified by index notation, so Aa

b ·Bb
c = Bb

c · Aa
b.

The term ‘pro-symmetric’ might be used in contrast to ‘anti-symmetric’.

In matrices, zero elements may be left blank or replaced by a dot (·), see the null matrix,

0ab :=


·
·
·
·

 .
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1.2 Embedding Functions and the Jacobi Matrix

Be there a vector-valued function xa 7→ yµ = Jµ(xa), which converts ‘inner’ coordinates
xa to ‘outer’ coordinates yµ and can be seen as an embedding of an ‘inner’ space into an
‘outer’ space.1

The Jacobi matrix is the matrix of first partial derivatives of the embedding function,
if the latter is explicitly given, Jacobi

matrix
Jµ

a := Jµ
,a = ∂a Jµ .

In the special case that the embedding function is linear in all dimensions, the Jacobi
matrix is constant and the embedding function is determined by the linear transformation

yµ = Jµ(xa)
?
= Jµ

a · xa .

If the embedding function is not explicitly available, the Jacobi matrix itself is what to
start with. In any case, it shall be the most ‘fundamental tensor’ within this framework,
instead of the metric tensor.

The Jacobi matrix of a concatenation of embedding functions is the product of the Jacobi
matrices of those functions, so the concatenation of two embeddings A · B, and their
inverse, B−1 · A−1, is

Jµ
a :=

A

Jµ
γ ·

B

Jγ
a ⇔ J a

µ :=
B

J γ
µ ·

A

J a
γ ,

and with three and more consecutive embeddings with linearly increasing complexity,

Jµ
a :=

A

Jµ
β ·

B

Jβ
γ ·

C

Jγ
a ⇔ J a

µ :=
C

J β
µ ·

B

J γ
β ·

A

J a
γ , etc · · ·

Note that in the case of modeling a Minkowski spacetime, the signature of the metric is
not contained in the Jacobi matrix, but introduced from outside, as shown below, 1.3. infinit-

esimalConsider an infinitesimal embedding from one point to its neighbour, or a map tran-
sition function of an atlas of infinitely many maps, one for each point on the manifold.

In this limit, the Jacobi matrix, and its inverse, are infinitesimally equal to the identity
matrix,

Jµ
a

?→ δµ
a , J a

µ
?→ δ a

µ ,

but their derivatives need not vanish.

1.3 Metric Tensors

The first index of the Jacobi matrix, µ, lives in the outer space. To lower it, Outer
metric1similar [2, (9.3-4)], without explicitly naming the entity of derivatives
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Jµa :=
o
gµν · Jν

a ,

or raise it again, an outer metric tensor
o
gµν must be given. In the simplest case it is

a flat Euclidean,
o
gµν = δµν , or a Minkowski metric,

o
gµν = ηµν . But even when lowered,

the first index still lives in the outer space and can’t be contracted with indices from the
inner space.

To ‘transport’ a contravariant vector from the outer space, yµ, to one in the inner space,
xa, the Jacobi matrix itself, together with the outer metric is used,

xa :=
o
gµν · Jµ

a · yν .

In this way the first index of the Jacobi matrix can be transported and lowered,
which results in the (overall) metric tensor2 which is symmetric in its indices,
as long as the outer metric is symmetric,3 Overall

metric
gab :=

o
gµν · Jµ

a · Jν
b , or gaa =

o
gµµ · Jµ

a · Jµ
a .

In the limit of an infinitesimal embedding, where Jµ
a

?→ δµ
a,

the overall metric tensor reduces to the outer metric tensor,

gaa
?→ o

gaa , gaa ?→ o
gaa , (1)

but again, its derivatives need not vanish.

The metric tensor, as obtained from the Jacobi matrix with arbitrary mixed symmetry,
is always pro-symmetric4, and thus has lost some information.

In a 1-dimensional example, the single component of the metric is the square of the single
component of the Jacobian, g = j2, so that recovery of the original sign is ambiguous.

In 4D, the metric has only 10 different components, where the Jacobi matrix had 16,
so even more information is lost. Especially the orthogonal part of the Jacobi matrix is
invisible to the metric, so the metric is not susceptible to rotations any more.

Thus it is preferable to solve for the Jacobi matrix in the first place rather than for the
metric tensor, since the latter can be exactly formed from the former, but not the other
way around.

1.4 The Functional determinant

The functional determinant, sometimes called the ‘Jacobian’, is the determinant of the
Jacobi matrix, and often expressed as a square root from the determinant of the metric
tensor, Functional

determinant2similar to [2, (9.5)], but generalized to a non-flat outer metric tensor.
3Now the summation convention is extended to doubling indices
4introducing ‘pro-symmetric’ in contrast to ‘anti-symmetric’
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det
(
Jµ

a

)
=

√∣∣det
(
gab

)∣∣ =
√
|g| .

The functional determinant of a concatenated embedding is the product of the separate
Jacobi determinants,

det (Jµ
a) = det(

A

Jµ
a) · det(

B

Jµ
a) · det(

C

Jµ
a) · · · .

1.5 A ‘Hesse Stack’

The second partial derivatives of the embedding function form slices Hesse
matrix
stack

Jµ
ab := Jµ

a,b = ∂b Jµ
a = ∂b∂a Jµ ,

of a stack of Hesse matrices, which are symmetric in (a, b),
since partial derivatives commute,

Jµ
ab = Jµ

ba ,

and shall be called here ‘Hesse (matrix) stack’.

Since partial derivatives commute, each additional covariant index, which is appended
by expanding the Hesse stack through a partial derivation, has also a symmetry
interchangeable with the former covariant indices,

∂aJ
µ
aa = Jµ

aaa , ∂aJ
µ
aaa = Jµ

aaaa , etc . . .

The combined Hesse stack from a concatenation is formed by the Leibniz rule
from the separate Hesse stacks together with the separate Jacobi matrices, like

Jµ
ad =

A

Jµ
αδ ·

B

Jα
a ·

B

Jδ
d +

A

Jµ
α ·

B

Jα
ad , (2)

and for more consecutive embeddings with the number of matrix multiplications
increasing in second order, for example with 3 embeddings

Jµ
ad =

A

Jµ
νγ ·

B

Jν
α ·

C

Jα
a ·

B

Jγ
δ ·

C

Jδ
d +

A

Jµ
ν ·

B

Jν
αδ ·

C

Jα
a ·

C

Jδ
d +

A

Jµ
ν ·

B

Jν
γ ·

C

Jγ
ad ,

which is obviously a rather impractical calculation.

1.6 Metric Connections

From the Metric . . .

The usual deduction5 of the metric-compatible affine connection, or metric connection,
follows from the definition that the covariant derivative of the metric tensor vanishes
identically,

gab;c = gab,c − gαb · Γα
ac − gaβ · Γ

β
bc := 0 ,

5here similar to [2, (11.15-16)]
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so that

gab,c = Γabc + Γbac , (3)

and since scalar addition commutes, the affine connection being the metric connection
requires that again gab must be symmetric in (a, b).

Permuting

gac,b = Γacb + Γcab ,

gcb,a = Γcba + Γbca ,

and assuming that the Gamma symbol is symmetric in its last two indices, Γabc = Γacb,
we find a chain

Γabc = gab,c − Γbac , Γbac = gcb,a − Γcba , Γcab = gac,b − Γabc ,

so that

Γabc = gab,c + gac,b − gbc,a − Γabc ⇒
2 Γabc = gab,c + gac,b − gbc,a ⇒ (4)

Γabc = 1
2

(
gab,c + gac,b − gbc,a

)
.

With the opposite assumption, that the Gamma symbol be anti-symmetric in its last two
indices, no such equation can be found.

. . . to the Hesse tensor

Alternatively, by substituting

gab,c =
(
Jµ

a · Jν
b ·

o
gµν

)
,c

=
(
Jµ

ac · Jν
b + Jµ

a · Jν
bc

)
· o
gµν + Jµ

a · Jν
b ·

o
gµν,c

into (4), the Christoffel symbol of the first kind can be rewritten
in terms of the Jacobi matrix, the Hesse tensor and the outer metric

2 Γabc =
o
gµν ·

(
Jµ

a · Jν
bc + Jµ

b · J
ν
ac + Jµ

a · Jν
cb + Jµ

c · Jν
ab − Jµ

b · J
ν
ca − Jµ

c · Jν
ba

)
+ Jµ

a · Jν
b ·

o
gµν,c + Jµ

a · Jν
c ·

o
gµν,b − Jµ

b · J
ν
c ·

o
gµν,a ,

equivalent to

Γabc =
o
gµν · Jµ

a · Jν
bc + 1

2

(
Jµ

a · Jν
b ·

o
gµν,c + Jµ

a · Jν
c ·

o
gµν,b − Jµ

b · J
ν
c ·

o
gµν,a

)
=

o
gµν · Jµ

a · Jν
bc + Jµ

a ·
o

Γµνγ · Jν
b · Jγ

c ,

where the symmetry in (b, c) can again be established from the corresponding symmetry
of the Hesse tensor, and written in multi-index notation, Christoffel,

1st kind
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Γabb =
o
gµµ · Jµ

a · J
µ
bb + Jµ

a ·
o

Γµγγ · J
γ
b · J

γ
b . (5)

Notice how the outer connection is transported in all three indices into the inner space.

In case the outer metric is constant,
o

Γabc
?
= 0, this reduces to

Γabb
?
=

o
gµµ · Jµ

a · J
µ
bb ,

so expressing the metric connection from the embedding might be somewhat simpler
than deducing it from the metric tensor’s derivatives, (4).

Theorem. The Christoffel symbols are symmetric in the last two indices but the first one,
Γa

bb, as much as the metric tensor is symmetric (gaa, gaa) or partial derivatives commute.6

The Christoffel symbol of the second kind,

Γa
bb := gaa · Γabb , (6)

can in a similar way be expressed from the inverse Jacobi matrix and the Hesse tensor7,
so that calculation of an inner metric connection is even independent from the outer
metric, Christoffel,

2nd kind
i

Γa
bb = J a

µ · Jµ
bb , (7)

and in the limit of a flat inner embedding (J a
µ

?→ δ a
µ ) becomes identical to the Hesse

stack,

i

Γa
bb

?→ Jµ
bb .

The Christoffel 2nd of a combined embedding,
A

Jµ
γ ·

B

Jγ
a, follows from (7) with (2),

Γa
bd =

B

J a
α ·

A

J α
µ · Jµ

bd

=
B

J a
γ ·

A

J γ
µ ·

(A

Jµ
βδ ·

B

Jβ
b ·

B

Jδ
d +

A

Jµ
ν ·

B

Jν
bd

)
=

B

J a
α ·

A

J α
µ ·

A

Jµ
βδ ·

B

Jβ
b ·

B

Jδ
d +

B

J a
α ·

A

J α
µ ·

A

Jµ
γ ·

B

Jγ
bd

=
B

J a
α ·

A

Γα
βδ ·

B

Jβ
b ·

B

Jδ
d +

B

Γa
bd .

6Note that both the symmetries of gaa and Γabb come naturally from the model. It shall be suspected
that adding any additional concept to loosen restrictions rather than to constrain a system, might be a
counterproductive endeavour and even the latter a questionable procedure.

7similar [2, (11.14)] without explicitly naming the entity of second derivatives
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Since
A

Jµ
γ does not appear any more, we can take A as an outer embedding,

leaving only B for the inner,

Γa
bd = J a

α ·
o

Γα
βδ · J

β
b · J

δ
d +

i

Γa
bd ,

so the overall connection is again the sum of the inner connection with the outer
connection transported into the inner space in all three indices, similar to (5),

Γa
bb =

i

Γa
bb + J a

µ ·
o

Γµ
γγ · J

γ
b · J

γ
b ,

and in the limit of a flat inner embedding (Jν
b

?→ δν
b, J a

µ
?→ δ a

µ ),
becomes simply the sum of the outer and inner connection,

Γa
bb

?→
i

Γa
bb +

o

Γa
bb , (8)

and with a constant outer metric (
o
gab,c

?
= 0) reduces to the inner connection,

Γa
bb

?→
i

Γa
bb .

A more historical notation of the Christoffel symbols is[
b c
a

]
= Γabc ,

{
b c
a

}
= Γa

bc ,

explicitly meaning the metric connection, whereas the gamma symbol Γabc, Γa
bc more

generally denotes just an affine (Levi-Civita) connection, and might be declared in the
context to be the metric-compatible connection, as is the case in the present text.

1.7 Connection Products

We examine of the 6-ranked outer product of the connection, Γabc Γd
ef or Γa

bc Γd
ef ,

the 4-ranked first contractions.

Of the singly inter-contracted products of the Christoffel symbols of the first and second
kind, let us call the contraction between first indices the ‘connection product of the
first kind’, Connection

product,
1st kindΓγab · Γ

γ
cd = Γγcd · Γ

γ
ab .

Reversely expressing the Hesse stack from the Christoffel 1st by (6) and (7),

Jµ
bc =

o
gµµ · J a

µ · Γabc ,
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this product is equivalent to the most symmetric single-contracted outer product of the
Hesse stack with itself,

Jµ
ab ·

o
gµµ · J

µ
cd = Γγab · J γ

ν · o
gνµ · o

gµµ ·
o
gµν · J β

ν · Γβcd

= Γγab · gγγ · Γγcd = Γγ
ab · gγγ · Γ

γ
cd

= Γγab · Γ
γ

cd = Γγ
ab · Γγcd ,

which contains the metric as a factor.

Of 6 possible contractions are only 2 different, where one occurs twice,(
Γγab Γγ

δδ = Γγδδ Γγ
ab

)
gδδ ,

and another one 4-fold,

Γγaa Γγ
bb gab ,

which are now free from the metric factor.

There are two total scalar contractions,

Γγaa Γγ
bb gab gab and Γγaa Γγ

bb gaa gbb ,

which again contain the inverse metric as a factor.

Let us call the ‘daisy chain’ contraction between a last index of a Christoffel 1st or 2nd
with the first index of a Christoffel 2nd the ‘connection product of the second kind’,

Connection
product,
2nd kindΓabγ Γγ

cd or Γa
bγ Γγ

cd ,

the first containing the metric factor and the latter being metric-free.

Contract in the back,

Γabb Γb
δδ gδδ or Γa

bb Γb
δδ gδδ ,

or cross-wise,

Γaγγ Γγ
bb gγb or Γa

γγ Γγ
bb gγb ,

with, respectively, the former now being metric-free
and the latter containing the inverse metric factor.

Again there are two total scalar contractions,

Γα
αα Γα

δδ gδδ and Γα
γγ Γγ

αα gγα ,

also containing the inverse metric factor.
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1.8 Partial Connection Derivatives

Partial derivation is in general not interchangeable with raising and lowering of any index,(
gaa · Γa

bb

)
,d
6= gaa ·

(
Γa

bb,d

)
,

indeed, expressing from each other

Γabc,d =
(
gaγ · Γ

γ
bc

)
,d

= gaγ · Γ
γ

bc,d + gaγ,d · Γ
γ

bc

= gaγ · Γ
γ

bc,d +
(
Γaγd + Γγad

)
· Γγ

bc

= gaγ · Γ
γ

bc,d + Γaγd · Γ
γ

bc + Γγad · Γ
γ

bc

= gaγ · Γ
γ

bc,d + Γadγ · Γ
γ

bc + Γγbc · Γ
γ

ad ,

gives

gaγ · Γ
γ

bc,d = Γabc,d − Γadγ · Γ
γ

bc − Γγbc · Γ
γ

ad . (9)
Partial
Christoffel
1st

Expressing the overall partial derivative of Christoffel 1st from the separate
inner and outer connections,

Γabc,d =
i

Γabc,d + Jµ
ad ·

o

Γµβγ · J
β
b · J

γ
c

+ Jµ
a ·

o

Γµβγ,δ · J
β
b · J

γ
c · Jδ

d

+ Jµ
a ·

o

Γµβγ · J
β
bd · J

γ
c

+ Jµ
a ·

o

Γµβγ · J
β
b · J

γ
cd ,

becomes more sensible in the limit of a flat Jacobi matrix, Jν
b

?→ δν
b, J a

µ
?→ δ a

µ ,

where also Ja
bb

?→
i

Γa
bb, so that partial derivation is still not additive with respect to

inner and outer connection, but may be expressed from the gamma symbols alone,

Γabc,d
?→

o

Γabc,d +
i

Γabc,d +
o

Γγbc ·
i

Γγ
ad +

o

Γacγ ·
i

Γγ
bd +

o

Γabγ ·
i

Γγ
cd , (10)

Partial
Christoffel
2nd

Expressing the overall partial derivative of Christoffel 2nd from the separate
inner and outer connections,

Γa
bc,d =

i

Γa
bc,d + J a

µ ,d
·

o

Γµ
βγ · J

β
b · J

γ
c

+ J a
µ ·

o

Γµ
βγ,δ · J

β
b · J

γ
c · Jδ

d

+ J a
µ ·

o

Γµ
βγ · J

β
bd · J

γ
c

+ J a
µ ·

o

Γµ
βγ · J

β
b · J

γ
cd ,
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and in the limit of a flat Jacobi matrix, Jµ
a

?→ δµ
a, J a

µ
?→ δ a

µ ,

where also Ja
bb

?→
i

Γa
bb, so that partial derivation is still not additive with respect to

inner and outer connection, but may be expressed from the gamma symbols alone,

Γa
bc,d

?→
o

Γa
bc,d +

i

Γa
bc,d

?
−

i

Γa
dγ ·

o

Γγ
bc +

o

Γa
cγ ·

i

Γγ
bd +

o

Γa
bγ ·

i

Γγ
cd , (11)

TODO: Assuming J a
µ ,d

?→ −Γa
dµ, still missing a proof!

1.9 Covariant Connection Derivatives

Expressing the covariant derivative of Christoffel 1st
from the partial derivative of Christoffel 1st, Covar

Christoffel
1stΓabc;d = Γabc,d − Γγbc · Γ

γ
ad − Γaγc · Γ

γ
bd − Γabγ · Γ

γ
cd . (12)

Expressing the covariant derivatives of Christoffel 2nd
from the partial derivative of Christoffel 2nd, Covar

Christoffel
2ndΓa

bc;d = Γa
bc,d + Γa

dγ · Γ
γ

bc − Γa
γc · Γ

γ
bd − Γa

bγ · Γ
γ

cd . (13)

Corollary. Swapping (13) in (c, d) yields in the difference(
Γa

bc;d − Γa
bd;c

)
=

(
Γa

bc,d − Γa
bd,c

)
− 2

(
Γa

cγ · Γ
γ

bd − Γa
dγ · Γ

γ
bc

)
. (14)

Since the covariant derivative of the metric tensor per definiton vanishes identically,
gaa;d = 0, covariant derivation is interchangeable with raising and lowering of any index,(

gaaΓ
a

bb

)
;d

= gaa;d · Γa
bb + gaa ·

(
Γa

bb;d

)
.

Theorem. Covariant derivation of the Christoffel symbols is interchangeable
with raising and lowering of any index,(

gaaΓ
a

bb

)
;d

= gaa

(
Γa

bb;d

)
. (15)

1.10 Curvature Tensors

While mixed second partial derivatives commute, Aa
,c,d = Aa

,d,c,
mixed second covariant derivatives do not commute in general, (Aa

;c);d 6= (Aa
;d);c.

With the first derivative of a contravariant vector Aa,

Aa
;c = Aa

,c + Ab Γa
bc ,
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the twice covariant derivative can be expressed as

(Aa
;c);d = (Aa

,c);d + (Ab Γa
bc);d

= (Aa
,c);d + Ab

;d Γa
bc + Ab · (Γa

bc);d ,

with the covariant derivative of the partial derivative,

(Aa
,c);d = Aa

,c,d + Ab
,c Γa

bd − Aa
,b Γb

cd ,

and the covariant derivative of the connection (13),

(Γa
bc);d = Γa

bc,d + Γa
dγ Γγ

bc − Γa
γc Γγ

bd − Γa
bγ Γγ

cd .

Leaving out terms symmetric in (c, d),

(Aa
;c);d

?
= Ab

,c Γa
bd + Ab

,d Γa
bc + Ab Γa

bc,d + Ab Γa
dγ Γγ

bc , (16)

and expressing the commutator of covariant derivation as the difference
of (16) with itself when (c, d) swapped,

(Aa
;c);d − (Aa

;d);c

= Ab ·
(
Γa

bc,d − Γa
bd,c + Γa

dγ Γγ
bc − Γa

cγ Γγ
bd

)
= −Ab Ra

bcd ,

the Riemann curvature tensor is introduced8, Riemann
tensor

Ra
bcd =

(
Γa

bd,c − Γa
bc,d

)
+

(
Γa

cγ Γγ
bd − Γa

dγ Γγ
bc

)
, (17)

from which follows anti-symmetry in (c, d).

Contracting the first two indices without the metric, we get the doubly covariant
Ricci tensor, which does not contain the metric, Ricci

tensor
Rbd =

(
Γγ

bd,γ − Γγ
γb,d

)
+

(
Γα

αγ Γγ
bd − Γα

bγ Γγ
dα

)
,

In the following contractions the inverse inner metric is involved, that is,
the Ricci tensor in mixed variance,

Ra
b =

(
Γa

δδ,b − Γa
bδ,δ

)
gδδ +

(
Γa

bγ Γγ
δδ − Γa

δγ Γγ
δb

)
gδδ , (18)

and the fully contracted Ricci scalar, Ricci
scalar

R =
(
Γα

δδ,α − Γα
αδ,δ

)
gδδ +

(
Γα

αγ Γγ
δδ − Γα

δγ Γγ
δα

)
gδδ .

8similar [3, 6.5] or [2, (18.5-8)], see also [1, §12]



2 AN INFINITESIMAL TOOLKIT 13

Corollary. Expressing the Riemann tensor with covariant derivatives
instead of the partials,

Ra
bcd = Γa

bd;c + Γa
bγ Γγ

cd + Γa
dγ Γγ

bc − Γa
cγ Γγ

bd

− Γa
bc;d − Γa

bγ Γγ
cd − Γa

cγ Γγ
bd + Γa

dγ Γγ
bc

+ Γa
cγ Γγ

bd − Γa
dγ Γγ

bc

=
(
Γa

bd;c − Γa
bc;d

)
−

(
Γa

cγ Γγ
bd − Γa

dγ Γγ
bc

)
,

the result looks similar to (17), but with the product terms inverted.

Corollary. Expressing the Riemann tensor ‘halfway’ with one covariant derivative,

Ra
bcd = Γa

bd,c − Γa
bc;d − Γa

bγ Γγ
cd − Γa

cγ Γγ
bd + Γa

dγ Γγ
bc + Γa

cγ Γγ
bd − Γa

dγ Γγ
bc

= Γa
bd,c − Γa

bc;d − Γa
bγ Γγ

cd ,

we find

Γa
bc;d + Ra

bcd = Γa
bd,c − Γa

bγ Γγ
cd . (19)

2 An Infinitesimal Toolkit

In the former section, we investigated properties of and interactions between an outer
finite, and an inner flat, or infinitesimal, embedding. In this section, we discover special
properties of and interactions between infinitesimal embeddings themselves.

2.1 Matrix Exponential and Logarithm

The exponential of a square matrix is well-defined9, so that any real square matrix L
maps to another real square matrix E with a positive-definite determinant,

E = exp(L) := I +
∞∑

k=1

1

k!
·Lk , with det(E) > 0 ,

where I is the identity matrix.

The determinant of the exponential matrix is the exponential
of the trace of the original matrix,

det(E) = exp( tr
(
L

)
) .

9see [4, 5.6, p.350]
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Inversely, the logarithm of a positive-definite real square matrix is a well-defined real
square matrix10, with the necessary condition, that the determinant of the original matrix
is positive, det(E) > 0, and the sufficient condition, that all eigenvalues are positive,

L = log(E) :=
∞∑

k=1

(−1)k

k
· (E − I)k , as long as det(E) ∈]0, 2[ ,

where the above series converges perfectly in case the original matrix is infinitesimally
near identity, E

?→ I.

The trace of the log matrix is the logarithm of the determinant of the original matrix,

tr
(
L

)
= log

(
det(E)

)
.

To ‘normalize’ an exponential matrix, so that its determinant becomes one,
det(Ê) = 1, it may be ‘squeezed’ in an isotropic way,

Ê =
E

det(E)
, for example Êµ

a =
Eµ

a

det(Eµ
a)

.

The corresponding operation in the logarithmic domain is then
to zero out the trace of a logarithmic matrix, logarithmic

matrix
normali-
zation

L̂ = L− tr(L)

tr(I)
I , for example L̂a

b = La
b −

Lγ
γ

δγ
γ

δa
b , (20)

or for a mixed-variant matrix in a 4D space,

L̂a
b = La

b − 1
4
Lγ

γ δa
b .

We could express matrix multiplication through addition of matrix logarithms,

exp(A) · exp(B) = exp(A + B) ,

but while addition of matrices always commutes, A + B = B + A,
multiplication of matrices, exp(A) · exp(B) 6= exp(B) · exp(A),
does not commute in general.

We could define a ‘mean matrix multiplication’,

exp(A + B) := lim
n→∞

n∏
exp(A)1/n exp(B)1/n = lim

n→∞

n∏
exp(B)1/n exp(A)1/n .

which is still questionable when we deal with finite values.

But in infinitesimal steps ∂A, ∂B, where all involved matrices are infinitesimally
near identity, ∂A

?→ I, ∂B
?→ I, matrix multiplication commutes in the limit,

exp(∂A + ∂B) = exp(∂A) · exp(∂B) = exp(∂B) · exp(∂A) .

10see [5, 8.8]
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Theorem. Matrix multiplication commutes in the infinitesimal limit
and can then be replaced by the exponential of the sum of matrix logarithms.

Concrete solutions for exponentiation and logarithm of matrices
may be composed of some ‘standard solutions’. standard

solutionsThe exponential of the null matrix is the identity matrix, for example in 4D,
0

0
0

0

 exp−−−→


1

1
1

1

 .

The logarithm of a diagonal matrix is also a diagonal matrix, and operations are
simply element-wise,

t
x

y
z

 exp−−−→


et

ex

ey

ez

 .

The exponential of a pro-symmetric submatrix is another pro-symmetric submatrix,
containing the hyperbolic sine and cosine functions,[

· φ
φ ·

]
exp−−−→

[
cosh(φ) sinh(φ)
sinh(φ) cosh(φ)

]
.

The exponential of an anti-symmetric submatrix is an orthogonal submatrix,
containing the trigonometric sine and cosine functions,[

· −φ
φ ·

]
exp−−−→

[
cos(φ) − sin(φ)
sin(φ) cos(φ)

]
.

2.2 Infinitesimal Embeddings

In the infinitesimal limit, we define a logarithm of the Jacobi matrix, Jacobi
logarithm

Γµ
a := log(Jµ

a) → 0µ
a ,

so that the Jacobi matrix, and its inverse, can both be expressed as
exponentials of that logarithm,

Jµ
a = exp( Γµ

a) → δµ
a , J a

µ = exp(−Γµ
a) → δ a

µ ,
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and the Jacobi logarithm of the concatenation of infinitesimal embedding functions
is the sum of their Jacobi logarithms,

Γµ
a =

A

Γµ
a +

B

Γµ
a +

C

Γµ
a · · · . (21)

The partial derivative of the Jacobi logarithm is exactly the Christoffel 2nd, Christoffel,
2nd kind

∂c Γa
b = Γa

b,c = Γa
bc ,

that’s why the ‘Γ’ symbol has also been used for the Jacobi logarithm in the first place.

The Christoffel 2nd of the concatenation of infinitesimal embedding functions
is the sum of their Christoffel 2nds,

Γa
bc =

A

Γa
bc +

B

Γa
bc +

C

Γa
bc · · · . (22)

When the Hesse tensor is expressed back from the Jacobi logarithm and its derivative,
the introduction of the exponential can be observed,

Jµ
ab = Jµ

a,b = exp( Γµ
a),b = exp( Γµ

γ) · Γ
γ

a,b = Jµ
γ · Γ

γ
ab .

Expressing Christoffel 2 from (7) shows how the exponential gets eliminated,

J a
µ · Jµ

bc = exp(−Γa
β) · exp( Γβ

γ) · Γ
γ

bc = Γa
bc ,

thus Christoffel 2nd is a scale-invariant expression of the derivative of the Jacobi matrix,
and identical with the derivative of the Jacobi logarithm.

The logarithm of the functional determinant is the trace of the Jacobi logarithm, Logarithmic
functional
determinantlog( det(Jµ

a)) = tr( Γµ
a) = Γµ

µ ,

and the partial derivative of the logarithmic functional determinant is
the contraction of Christoffel 2nd with its first index,

∂d log( det(Jµ
a)) =

∂d det(Jµ
a)

det(Jµ
a)

= Γµ
µ,d = Γµ

µd .

Corollary. The logarithmic functional determinant of the sum of infinitesimal embeddings
is the sum of the separate logarithmic functional determinants,

log( det(Jµ
a)) =

A

Γµ
µ +

B

Γµ
µ +

C

Γµ
µ · · · ,

and the logarithmic functional determinant derivatives of a concatenated embedding
is then the sum of the separate logarithmic functional determinant derivatives,

∂d log( det(Jµ
a)) =

A

Γµ
µd +

B

Γµ
µd +

C

Γµ
µd · · · .
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Corollary. To ‘normalize’ the logarithmic Jacobi matrix, so that its trace vanishes,
Γ̂γ

γ := 0, the trace is zeroed out by subtraction, as in (20),

Γ̂a
b = Γa

b −
Γγ

γ

δγ
γ

δa
b ,

and especially in a 4D space,

Γ̂a
b

?
= Γa

b − 1
4
Γγ

γ δa
b .

2.3 Scale Invariance

Expressing the laws of nature from derivatives is essential for a near field picture. But
the derivatives of functions are still dependend on the ‘magnitude’ of the functions, unless
when viewed in a logarithmic local context.

To compare a 1D example with the general case, let there be an outer positive real function
f > 0 the chain of exponentiation with an inner function g ∈ R,

f(x) = eg(x) ∼ Jµ
a ,

then the derivative contains the outer function as a factor,

f ′(x) =
∂

∂x
f(x) = g′(x) · exp(g(x)) = g′(x) · f(x) ∼ Jµ

ab ,

which gets eliminated in the quotient

g′(x) =
f ′(x)

f(x)
=

∂

∂x
ln f(x) ∼ Γa

bc = Jµ
ab ·

(
Jµ

a

)−1
,

that is the essence of this ‘scale invariance’.

Canonically, the logarithmic Jacobi matrix is the constant identity,

f(x)

f(x)
= 1 ∼ Jµ

a ·
(
Jµ

a

)−1
= δa

b , (23)

remembering that it is her derivatives which in general do not vanish.

The flat Euclidean and Minkowski metrics are both scale-invariant and products and
partial derivatives of scale-invariant entities are themselves scale-invariant entities. Con-
traction of mutually contravariant indices leaves scale invariance untouched, but raising
and lowering of indices and contraction with the metric breaks scale invariance.
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2.4 A ‘Jacobi weight’

To quantify the degree of non-scale-invariance of an expression, be the exponent with
which the Jacobi matrix is multiplied in called the ‘Jacobi weight’. Within expressions
and equations, only terms of same weight may be added or equated.

Then the weight of any scale-invariant entity is 0, the weight of the Jacobi matrix itself is
1, the weight of the metric tensor is twice that, and the weights of inverses are negative.

The Jacobi weights of the relevant entities within this framework are summarized as fol-
lows:

Basic entities
Jacobi
weightsEntity Weight similar Text

gab, Γabc +2 f(x)2, f ′(x)f(x) ‘containing the metric’
Jµ

b, J
µ
bc +1 f(x), f ′(x)

δa
b, ηa

b, Γa
b 0 1 ‘free from the metric’, ‘scale-invariant’

Γa
bc, Γδ

δa 0 f ′(x)f(x)−1 ‘free from the metric’, ‘scale-invariant’
J b

µ −1 f(x)−1

gab, Γa
δδ gδδ −2 f(x)−2, f ′(x)f(x)−3 ‘containing the inverse metric’

Connection products

Entity Weight similar Text
ΓγabΓ

γ
cd, ΓabγΓ

γ
cd +2 f ′(x)2 ‘containing the metric’

Γa
bγΓ

γ
cd, ΓabγΓ

γ
δδ gδδ 0 f ′(x)2f(x)−2 ‘free from the metric’, ‘scale-invariant’

Γa
bγΓ

γ
δδ gδδ −2 f ′(x)2f(x)−4 ‘containing the inverse metric’

Connection derivatives

Entity Weight similar Text
Γabc,d +2 (f ′(x)f(x))′ ‘containing the metric’

Γabδ,δ gδδ 0 (f ′(x)f(x))′ f(x)−2 ‘free from the metric’, ‘scale-invariant’
Γa

bc,d, Γδ
δa,b 0 (f ′(x)/f(x))′ ‘free from the metric’, ‘scale-invariant’

Γa
bδ,δ gδδ −2 (f ′(x)/f(x))′ f(x)−2 ‘containing the inverse metric’
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Curvature tensors

Entity Weight Text
Rabcd +2 ‘containing the metric’

Ra
bcd, Rab 0 ‘free from the metric’, ‘scale-invariant’

Ra
b, R −2 ‘containing the inverse metric’

2.5 A Spacetime Test Bench Scheme

In the preceding section we found, that the composition of an infinitesimal embedding
from separate infinitesimal embeddings yields desirable simplifications,

• infinitesimal embeddings do not contribute to the overall metric tensor (1),

• the Jacobi logarithms are additive (21),

• the Christoffel 2nd are additive (22).

If not all embeddings can be made infinitesimal, then by moving any (possibly composed)
non-infinitesimal embedding to the place of an ‘outer’ embedding, the ‘inner’ embedding
is again free to be built from infinitesimal components only. This way most benefits are
retained,

• the overall metric tensor equals the outer metric tensor (1),

• the inner Jacobi logarithms are still additive (21),

• additivity of the inner Christoffel 2nd (22)
even extends to additivity with the outer connection (8),

while in this case combining the outer and inner second derivatives, (10), (11),
is still somewhat more complicated.

3 Conclusion

It has been shown, that the deduction not only of the metric tensor, but also of the metric
connection from the Jacobi matrix of an embedding function is a particularly simple and
clear operation.

It has also been shown, that a linearization of the metric connection is possible by taking
the logarithm of an infinitesimal embedding viewed as a strictly local phenomenon and
expressing its derivatives through exactly the Christoffel symbol of the second kind, where
a notion of ‘scale-invariance’ becomes manifest.

So the connection field can be represented as if simply ‘pasted’ onto distorted spacetime,
and separated from the distortion which it itself is actually causing.
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Revision History

Rev.2

In 2.4 ‘containing the inverse metric’ in the last row of the last table.

Rev.1

From 1.1, removed the choice of the Minkowski metric, because it is not used in this
document anyway.

Corrected an error in (23).

In 2.4 added some items to the tables.
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